LCOV - code coverage report
Current view: top level - src/backend/utils/adt - rangetypes_selfuncs.c (source / functions) Hit Total Coverage
Test: PostgreSQL Lines: 70 310 22.6 %
Date: 2017-09-29 13:40:31 Functions: 4 13 30.8 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * rangetypes_selfuncs.c
       4             :  *    Functions for selectivity estimation of range operators
       5             :  *
       6             :  * Estimates are based on histograms of lower and upper bounds, and the
       7             :  * fraction of empty ranges.
       8             :  *
       9             :  * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
      10             :  * Portions Copyright (c) 1994, Regents of the University of California
      11             :  *
      12             :  *
      13             :  * IDENTIFICATION
      14             :  *    src/backend/utils/adt/rangetypes_selfuncs.c
      15             :  *
      16             :  *-------------------------------------------------------------------------
      17             :  */
      18             : #include "postgres.h"
      19             : 
      20             : #include "access/htup_details.h"
      21             : #include "catalog/pg_operator.h"
      22             : #include "catalog/pg_statistic.h"
      23             : #include "catalog/pg_type.h"
      24             : #include "utils/builtins.h"
      25             : #include "utils/lsyscache.h"
      26             : #include "utils/rangetypes.h"
      27             : #include "utils/selfuncs.h"
      28             : #include "utils/typcache.h"
      29             : 
      30             : static double calc_rangesel(TypeCacheEntry *typcache, VariableStatData *vardata,
      31             :               RangeType *constval, Oid operator);
      32             : static double default_range_selectivity(Oid operator);
      33             : static double calc_hist_selectivity(TypeCacheEntry *typcache,
      34             :                       VariableStatData *vardata, RangeType *constval,
      35             :                       Oid operator);
      36             : static double calc_hist_selectivity_scalar(TypeCacheEntry *typcache,
      37             :                              RangeBound *constbound,
      38             :                              RangeBound *hist, int hist_nvalues,
      39             :                              bool equal);
      40             : static int rbound_bsearch(TypeCacheEntry *typcache, RangeBound *value,
      41             :                RangeBound *hist, int hist_length, bool equal);
      42             : static float8 get_position(TypeCacheEntry *typcache, RangeBound *value,
      43             :              RangeBound *hist1, RangeBound *hist2);
      44             : static float8 get_len_position(double value, double hist1, double hist2);
      45             : static float8 get_distance(TypeCacheEntry *typcache, RangeBound *bound1,
      46             :              RangeBound *bound2);
      47             : static int length_hist_bsearch(Datum *length_hist_values,
      48             :                     int length_hist_nvalues, double value, bool equal);
      49             : static double calc_length_hist_frac(Datum *length_hist_values,
      50             :                       int length_hist_nvalues, double length1, double length2, bool equal);
      51             : static double calc_hist_selectivity_contained(TypeCacheEntry *typcache,
      52             :                                 RangeBound *lower, RangeBound *upper,
      53             :                                 RangeBound *hist_lower, int hist_nvalues,
      54             :                                 Datum *length_hist_values, int length_hist_nvalues);
      55             : static double calc_hist_selectivity_contains(TypeCacheEntry *typcache,
      56             :                                RangeBound *lower, RangeBound *upper,
      57             :                                RangeBound *hist_lower, int hist_nvalues,
      58             :                                Datum *length_hist_values, int length_hist_nvalues);
      59             : 
      60             : /*
      61             :  * Returns a default selectivity estimate for given operator, when we don't
      62             :  * have statistics or cannot use them for some reason.
      63             :  */
      64             : static double
      65         105 : default_range_selectivity(Oid operator)
      66             : {
      67         105 :     switch (operator)
      68             :     {
      69             :         case OID_RANGE_OVERLAP_OP:
      70          10 :             return 0.01;
      71             : 
      72             :         case OID_RANGE_CONTAINS_OP:
      73             :         case OID_RANGE_CONTAINED_OP:
      74          21 :             return 0.005;
      75             : 
      76             :         case OID_RANGE_CONTAINS_ELEM_OP:
      77             :         case OID_RANGE_ELEM_CONTAINED_OP:
      78             : 
      79             :             /*
      80             :              * "range @> elem" is more or less identical to a scalar
      81             :              * inequality "A >= b AND A <= c".
      82             :              */
      83          12 :             return DEFAULT_RANGE_INEQ_SEL;
      84             : 
      85             :         case OID_RANGE_LESS_OP:
      86             :         case OID_RANGE_LESS_EQUAL_OP:
      87             :         case OID_RANGE_GREATER_OP:
      88             :         case OID_RANGE_GREATER_EQUAL_OP:
      89             :         case OID_RANGE_LEFT_OP:
      90             :         case OID_RANGE_RIGHT_OP:
      91             :         case OID_RANGE_OVERLAPS_LEFT_OP:
      92             :         case OID_RANGE_OVERLAPS_RIGHT_OP:
      93             :             /* these are similar to regular scalar inequalities */
      94          62 :             return DEFAULT_INEQ_SEL;
      95             : 
      96             :         default:
      97             :             /* all range operators should be handled above, but just in case */
      98           0 :             return 0.01;
      99             :     }
     100             : }
     101             : 
     102             : /*
     103             :  * rangesel -- restriction selectivity for range operators
     104             :  */
     105             : Datum
     106         135 : rangesel(PG_FUNCTION_ARGS)
     107             : {
     108         135 :     PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
     109         135 :     Oid         operator = PG_GETARG_OID(1);
     110         135 :     List       *args = (List *) PG_GETARG_POINTER(2);
     111         135 :     int         varRelid = PG_GETARG_INT32(3);
     112             :     VariableStatData vardata;
     113             :     Node       *other;
     114             :     bool        varonleft;
     115             :     Selectivity selec;
     116         135 :     TypeCacheEntry *typcache = NULL;
     117         135 :     RangeType  *constrange = NULL;
     118             : 
     119             :     /*
     120             :      * If expression is not (variable op something) or (something op
     121             :      * variable), then punt and return a default estimate.
     122             :      */
     123         135 :     if (!get_restriction_variable(root, args, varRelid,
     124             :                                   &vardata, &other, &varonleft))
     125           0 :         PG_RETURN_FLOAT8(default_range_selectivity(operator));
     126             : 
     127             :     /*
     128             :      * Can't do anything useful if the something is not a constant, either.
     129             :      */
     130         135 :     if (!IsA(other, Const))
     131             :     {
     132           0 :         ReleaseVariableStats(vardata);
     133           0 :         PG_RETURN_FLOAT8(default_range_selectivity(operator));
     134             :     }
     135             : 
     136             :     /*
     137             :      * All the range operators are strict, so we can cope with a NULL constant
     138             :      * right away.
     139             :      */
     140         135 :     if (((Const *) other)->constisnull)
     141             :     {
     142           0 :         ReleaseVariableStats(vardata);
     143           0 :         PG_RETURN_FLOAT8(0.0);
     144             :     }
     145             : 
     146             :     /*
     147             :      * If var is on the right, commute the operator, so that we can assume the
     148             :      * var is on the left in what follows.
     149             :      */
     150         135 :     if (!varonleft)
     151             :     {
     152             :         /* we have other Op var, commute to make var Op other */
     153           1 :         operator = get_commutator(operator);
     154           1 :         if (!operator)
     155             :         {
     156             :             /* Use default selectivity (should we raise an error instead?) */
     157           0 :             ReleaseVariableStats(vardata);
     158           0 :             PG_RETURN_FLOAT8(default_range_selectivity(operator));
     159             :         }
     160             :     }
     161             : 
     162             :     /*
     163             :      * OK, there's a Var and a Const we're dealing with here.  We need the
     164             :      * Const to be of same range type as the column, else we can't do anything
     165             :      * useful. (Such cases will likely fail at runtime, but here we'd rather
     166             :      * just return a default estimate.)
     167             :      *
     168             :      * If the operator is "range @> element", the constant should be of the
     169             :      * element type of the range column. Convert it to a range that includes
     170             :      * only that single point, so that we don't need special handling for that
     171             :      * in what follows.
     172             :      */
     173         135 :     if (operator == OID_RANGE_CONTAINS_ELEM_OP)
     174             :     {
     175          11 :         typcache = range_get_typcache(fcinfo, vardata.vartype);
     176             : 
     177          11 :         if (((Const *) other)->consttype == typcache->rngelemtype->type_id)
     178             :         {
     179             :             RangeBound  lower,
     180             :                         upper;
     181             : 
     182          11 :             lower.inclusive = true;
     183          11 :             lower.val = ((Const *) other)->constvalue;
     184          11 :             lower.infinite = false;
     185          11 :             lower.lower = true;
     186          11 :             upper.inclusive = true;
     187          11 :             upper.val = ((Const *) other)->constvalue;
     188          11 :             upper.infinite = false;
     189          11 :             upper.lower = false;
     190          11 :             constrange = range_serialize(typcache, &lower, &upper, false);
     191             :         }
     192             :     }
     193         124 :     else if (operator == OID_RANGE_ELEM_CONTAINED_OP)
     194             :     {
     195             :         /*
     196             :          * Here, the Var is the elem, not the range.  For now we just punt and
     197             :          * return the default estimate.  In future we could disassemble the
     198             :          * range constant and apply scalarineqsel ...
     199             :          */
     200             :     }
     201         123 :     else if (((Const *) other)->consttype == vardata.vartype)
     202             :     {
     203             :         /* Both sides are the same range type */
     204         123 :         typcache = range_get_typcache(fcinfo, vardata.vartype);
     205             : 
     206         123 :         constrange = DatumGetRangeType(((Const *) other)->constvalue);
     207             :     }
     208             : 
     209             :     /*
     210             :      * If we got a valid constant on one side of the operator, proceed to
     211             :      * estimate using statistics. Otherwise punt and return a default constant
     212             :      * estimate.  Note that calc_rangesel need not handle
     213             :      * OID_RANGE_ELEM_CONTAINED_OP.
     214             :      */
     215         135 :     if (constrange)
     216         134 :         selec = calc_rangesel(typcache, &vardata, constrange, operator);
     217             :     else
     218           1 :         selec = default_range_selectivity(operator);
     219             : 
     220         135 :     ReleaseVariableStats(vardata);
     221             : 
     222         135 :     CLAMP_PROBABILITY(selec);
     223             : 
     224         135 :     PG_RETURN_FLOAT8((float8) selec);
     225             : }
     226             : 
     227             : static double
     228         134 : calc_rangesel(TypeCacheEntry *typcache, VariableStatData *vardata,
     229             :               RangeType *constval, Oid operator)
     230             : {
     231             :     double      hist_selec;
     232             :     double      selec;
     233             :     float4      empty_frac,
     234             :                 null_frac;
     235             : 
     236             :     /*
     237             :      * First look up the fraction of NULLs and empty ranges from pg_statistic.
     238             :      */
     239         134 :     if (HeapTupleIsValid(vardata->statsTuple))
     240             :     {
     241             :         Form_pg_statistic stats;
     242             :         AttStatsSlot sslot;
     243             : 
     244           0 :         stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
     245           0 :         null_frac = stats->stanullfrac;
     246             : 
     247             :         /* Try to get fraction of empty ranges */
     248           0 :         if (get_attstatsslot(&sslot, vardata->statsTuple,
     249             :                              STATISTIC_KIND_RANGE_LENGTH_HISTOGRAM,
     250             :                              InvalidOid,
     251             :                              ATTSTATSSLOT_NUMBERS))
     252             :         {
     253           0 :             if (sslot.nnumbers != 1)
     254           0 :                 elog(ERROR, "invalid empty fraction statistic");  /* shouldn't happen */
     255           0 :             empty_frac = sslot.numbers[0];
     256           0 :             free_attstatsslot(&sslot);
     257             :         }
     258             :         else
     259             :         {
     260             :             /* No empty fraction statistic. Assume no empty ranges. */
     261           0 :             empty_frac = 0.0;
     262             :         }
     263             :     }
     264             :     else
     265             :     {
     266             :         /*
     267             :          * No stats are available. Follow through the calculations below
     268             :          * anyway, assuming no NULLs and no empty ranges. This still allows us
     269             :          * to give a better-than-nothing estimate based on whether the
     270             :          * constant is an empty range or not.
     271             :          */
     272         134 :         null_frac = 0.0;
     273         134 :         empty_frac = 0.0;
     274             :     }
     275             : 
     276         134 :     if (RangeIsEmpty(constval))
     277             :     {
     278             :         /*
     279             :          * An empty range matches all ranges, all empty ranges, or nothing,
     280             :          * depending on the operator
     281             :          */
     282          30 :         switch (operator)
     283             :         {
     284             :                 /* these return false if either argument is empty */
     285             :             case OID_RANGE_OVERLAP_OP:
     286             :             case OID_RANGE_OVERLAPS_LEFT_OP:
     287             :             case OID_RANGE_OVERLAPS_RIGHT_OP:
     288             :             case OID_RANGE_LEFT_OP:
     289             :             case OID_RANGE_RIGHT_OP:
     290             :                 /* nothing is less than an empty range */
     291             :             case OID_RANGE_LESS_OP:
     292           1 :                 selec = 0.0;
     293           1 :                 break;
     294             : 
     295             :                 /* only empty ranges can be contained by an empty range */
     296             :             case OID_RANGE_CONTAINED_OP:
     297             :                 /* only empty ranges are <= an empty range */
     298             :             case OID_RANGE_LESS_EQUAL_OP:
     299           9 :                 selec = empty_frac;
     300           9 :                 break;
     301             : 
     302             :                 /* everything contains an empty range */
     303             :             case OID_RANGE_CONTAINS_OP:
     304             :                 /* everything is >= an empty range */
     305             :             case OID_RANGE_GREATER_EQUAL_OP:
     306          15 :                 selec = 1.0;
     307          15 :                 break;
     308             : 
     309             :                 /* all non-empty ranges are > an empty range */
     310             :             case OID_RANGE_GREATER_OP:
     311           5 :                 selec = 1.0 - empty_frac;
     312           5 :                 break;
     313             : 
     314             :                 /* an element cannot be empty */
     315             :             case OID_RANGE_CONTAINS_ELEM_OP:
     316             :             default:
     317           0 :                 elog(ERROR, "unexpected operator %u", operator);
     318             :                 selec = 0.0;    /* keep compiler quiet */
     319             :                 break;
     320             :         }
     321             :     }
     322             :     else
     323             :     {
     324             :         /*
     325             :          * Calculate selectivity using bound histograms. If that fails for
     326             :          * some reason, e.g no histogram in pg_statistic, use the default
     327             :          * constant estimate for the fraction of non-empty values. This is
     328             :          * still somewhat better than just returning the default estimate,
     329             :          * because this still takes into account the fraction of empty and
     330             :          * NULL tuples, if we had statistics for them.
     331             :          */
     332         104 :         hist_selec = calc_hist_selectivity(typcache, vardata, constval,
     333             :                                            operator);
     334         104 :         if (hist_selec < 0.0)
     335         104 :             hist_selec = default_range_selectivity(operator);
     336             : 
     337             :         /*
     338             :          * Now merge the results for the empty ranges and histogram
     339             :          * calculations, realizing that the histogram covers only the
     340             :          * non-null, non-empty values.
     341             :          */
     342         104 :         if (operator == OID_RANGE_CONTAINED_OP)
     343             :         {
     344             :             /* empty is contained by anything non-empty */
     345          10 :             selec = (1.0 - empty_frac) * hist_selec + empty_frac;
     346             :         }
     347             :         else
     348             :         {
     349             :             /* with any other operator, empty Op non-empty matches nothing */
     350          94 :             selec = (1.0 - empty_frac) * hist_selec;
     351             :         }
     352             :     }
     353             : 
     354             :     /* all range operators are strict */
     355         134 :     selec *= (1.0 - null_frac);
     356             : 
     357             :     /* result should be in range, but make sure... */
     358         134 :     CLAMP_PROBABILITY(selec);
     359             : 
     360         134 :     return selec;
     361             : }
     362             : 
     363             : /*
     364             :  * Calculate range operator selectivity using histograms of range bounds.
     365             :  *
     366             :  * This estimate is for the portion of values that are not empty and not
     367             :  * NULL.
     368             :  */
     369             : static double
     370         104 : calc_hist_selectivity(TypeCacheEntry *typcache, VariableStatData *vardata,
     371             :                       RangeType *constval, Oid operator)
     372             : {
     373             :     AttStatsSlot hslot;
     374             :     AttStatsSlot lslot;
     375             :     int         nhist;
     376             :     RangeBound *hist_lower;
     377             :     RangeBound *hist_upper;
     378             :     int         i;
     379             :     RangeBound  const_lower;
     380             :     RangeBound  const_upper;
     381             :     bool        empty;
     382             :     double      hist_selec;
     383             : 
     384             :     /* Can't use the histogram with insecure range support functions */
     385         104 :     if (!statistic_proc_security_check(vardata,
     386             :                                        typcache->rng_cmp_proc_finfo.fn_oid))
     387           0 :         return -1;
     388         208 :     if (OidIsValid(typcache->rng_subdiff_finfo.fn_oid) &&
     389         104 :         !statistic_proc_security_check(vardata,
     390             :                                        typcache->rng_subdiff_finfo.fn_oid))
     391           0 :         return -1;
     392             : 
     393             :     /* Try to get histogram of ranges */
     394         104 :     if (!(HeapTupleIsValid(vardata->statsTuple) &&
     395           0 :           get_attstatsslot(&hslot, vardata->statsTuple,
     396             :                            STATISTIC_KIND_BOUNDS_HISTOGRAM, InvalidOid,
     397             :                            ATTSTATSSLOT_VALUES)))
     398         104 :         return -1.0;
     399             : 
     400             :     /*
     401             :      * Convert histogram of ranges into histograms of its lower and upper
     402             :      * bounds.
     403             :      */
     404           0 :     nhist = hslot.nvalues;
     405           0 :     hist_lower = (RangeBound *) palloc(sizeof(RangeBound) * nhist);
     406           0 :     hist_upper = (RangeBound *) palloc(sizeof(RangeBound) * nhist);
     407           0 :     for (i = 0; i < nhist; i++)
     408             :     {
     409           0 :         range_deserialize(typcache, DatumGetRangeType(hslot.values[i]),
     410           0 :                           &hist_lower[i], &hist_upper[i], &empty);
     411             :         /* The histogram should not contain any empty ranges */
     412           0 :         if (empty)
     413           0 :             elog(ERROR, "bounds histogram contains an empty range");
     414             :     }
     415             : 
     416             :     /* @> and @< also need a histogram of range lengths */
     417           0 :     if (operator == OID_RANGE_CONTAINS_OP ||
     418             :         operator == OID_RANGE_CONTAINED_OP)
     419             :     {
     420           0 :         if (!(HeapTupleIsValid(vardata->statsTuple) &&
     421           0 :               get_attstatsslot(&lslot, vardata->statsTuple,
     422             :                                STATISTIC_KIND_RANGE_LENGTH_HISTOGRAM,
     423             :                                InvalidOid,
     424             :                                ATTSTATSSLOT_VALUES)))
     425             :         {
     426           0 :             free_attstatsslot(&hslot);
     427           0 :             return -1.0;
     428             :         }
     429             : 
     430             :         /* check that it's a histogram, not just a dummy entry */
     431           0 :         if (lslot.nvalues < 2)
     432             :         {
     433           0 :             free_attstatsslot(&lslot);
     434           0 :             free_attstatsslot(&hslot);
     435           0 :             return -1.0;
     436             :         }
     437             :     }
     438             :     else
     439           0 :         memset(&lslot, 0, sizeof(lslot));
     440             : 
     441             :     /* Extract the bounds of the constant value. */
     442           0 :     range_deserialize(typcache, constval, &const_lower, &const_upper, &empty);
     443           0 :     Assert(!empty);
     444             : 
     445             :     /*
     446             :      * Calculate selectivity comparing the lower or upper bound of the
     447             :      * constant with the histogram of lower or upper bounds.
     448             :      */
     449           0 :     switch (operator)
     450             :     {
     451             :         case OID_RANGE_LESS_OP:
     452             : 
     453             :             /*
     454             :              * The regular b-tree comparison operators (<, <=, >, >=) compare
     455             :              * the lower bounds first, and the upper bounds for values with
     456             :              * equal lower bounds. Estimate that by comparing the lower bounds
     457             :              * only. This gives a fairly accurate estimate assuming there
     458             :              * aren't many rows with a lower bound equal to the constant's
     459             :              * lower bound.
     460             :              */
     461           0 :             hist_selec =
     462             :                 calc_hist_selectivity_scalar(typcache, &const_lower,
     463             :                                              hist_lower, nhist, false);
     464           0 :             break;
     465             : 
     466             :         case OID_RANGE_LESS_EQUAL_OP:
     467           0 :             hist_selec =
     468             :                 calc_hist_selectivity_scalar(typcache, &const_lower,
     469             :                                              hist_lower, nhist, true);
     470           0 :             break;
     471             : 
     472             :         case OID_RANGE_GREATER_OP:
     473           0 :             hist_selec =
     474           0 :                 1 - calc_hist_selectivity_scalar(typcache, &const_lower,
     475             :                                                  hist_lower, nhist, false);
     476           0 :             break;
     477             : 
     478             :         case OID_RANGE_GREATER_EQUAL_OP:
     479           0 :             hist_selec =
     480           0 :                 1 - calc_hist_selectivity_scalar(typcache, &const_lower,
     481             :                                                  hist_lower, nhist, true);
     482           0 :             break;
     483             : 
     484             :         case OID_RANGE_LEFT_OP:
     485             :             /* var << const when upper(var) < lower(const) */
     486           0 :             hist_selec =
     487             :                 calc_hist_selectivity_scalar(typcache, &const_lower,
     488             :                                              hist_upper, nhist, false);
     489           0 :             break;
     490             : 
     491             :         case OID_RANGE_RIGHT_OP:
     492             :             /* var >> const when lower(var) > upper(const) */
     493           0 :             hist_selec =
     494           0 :                 1 - calc_hist_selectivity_scalar(typcache, &const_upper,
     495             :                                                  hist_lower, nhist, true);
     496           0 :             break;
     497             : 
     498             :         case OID_RANGE_OVERLAPS_RIGHT_OP:
     499             :             /* compare lower bounds */
     500           0 :             hist_selec =
     501           0 :                 1 - calc_hist_selectivity_scalar(typcache, &const_lower,
     502             :                                                  hist_lower, nhist, false);
     503           0 :             break;
     504             : 
     505             :         case OID_RANGE_OVERLAPS_LEFT_OP:
     506             :             /* compare upper bounds */
     507           0 :             hist_selec =
     508             :                 calc_hist_selectivity_scalar(typcache, &const_upper,
     509             :                                              hist_upper, nhist, true);
     510           0 :             break;
     511             : 
     512             :         case OID_RANGE_OVERLAP_OP:
     513             :         case OID_RANGE_CONTAINS_ELEM_OP:
     514             : 
     515             :             /*
     516             :              * A && B <=> NOT (A << B OR A >> B).
     517             :              *
     518             :              * Since A << B and A >> B are mutually exclusive events we can
     519             :              * sum their probabilities to find probability of (A << B OR A >>
     520             :              * B).
     521             :              *
     522             :              * "range @> elem" is equivalent to "range && [elem,elem]". The
     523             :              * caller already constructed the singular range from the element
     524             :              * constant, so just treat it the same as &&.
     525             :              */
     526           0 :             hist_selec =
     527             :                 calc_hist_selectivity_scalar(typcache, &const_lower, hist_upper,
     528             :                                              nhist, false);
     529           0 :             hist_selec +=
     530           0 :                 (1.0 - calc_hist_selectivity_scalar(typcache, &const_upper, hist_lower,
     531           0 :                                                     nhist, true));
     532           0 :             hist_selec = 1.0 - hist_selec;
     533           0 :             break;
     534             : 
     535             :         case OID_RANGE_CONTAINS_OP:
     536           0 :             hist_selec =
     537           0 :                 calc_hist_selectivity_contains(typcache, &const_lower,
     538             :                                                &const_upper, hist_lower, nhist,
     539             :                                                lslot.values, lslot.nvalues);
     540           0 :             break;
     541             : 
     542             :         case OID_RANGE_CONTAINED_OP:
     543           0 :             if (const_lower.infinite)
     544             :             {
     545             :                 /*
     546             :                  * Lower bound no longer matters. Just estimate the fraction
     547             :                  * with an upper bound <= const upper bound
     548             :                  */
     549           0 :                 hist_selec =
     550             :                     calc_hist_selectivity_scalar(typcache, &const_upper,
     551             :                                                  hist_upper, nhist, true);
     552             :             }
     553           0 :             else if (const_upper.infinite)
     554             :             {
     555           0 :                 hist_selec =
     556           0 :                     1.0 - calc_hist_selectivity_scalar(typcache, &const_lower,
     557             :                                                        hist_lower, nhist, false);
     558             :             }
     559             :             else
     560             :             {
     561           0 :                 hist_selec =
     562           0 :                     calc_hist_selectivity_contained(typcache, &const_lower,
     563             :                                                     &const_upper, hist_lower, nhist,
     564             :                                                     lslot.values, lslot.nvalues);
     565             :             }
     566           0 :             break;
     567             : 
     568             :         default:
     569           0 :             elog(ERROR, "unknown range operator %u", operator);
     570             :             hist_selec = -1.0;  /* keep compiler quiet */
     571             :             break;
     572             :     }
     573             : 
     574           0 :     free_attstatsslot(&lslot);
     575           0 :     free_attstatsslot(&hslot);
     576             : 
     577           0 :     return hist_selec;
     578             : }
     579             : 
     580             : 
     581             : /*
     582             :  * Look up the fraction of values less than (or equal, if 'equal' argument
     583             :  * is true) a given const in a histogram of range bounds.
     584             :  */
     585             : static double
     586           0 : calc_hist_selectivity_scalar(TypeCacheEntry *typcache, RangeBound *constbound,
     587             :                              RangeBound *hist, int hist_nvalues, bool equal)
     588             : {
     589             :     Selectivity selec;
     590             :     int         index;
     591             : 
     592             :     /*
     593             :      * Find the histogram bin the given constant falls into. Estimate
     594             :      * selectivity as the number of preceding whole bins.
     595             :      */
     596           0 :     index = rbound_bsearch(typcache, constbound, hist, hist_nvalues, equal);
     597           0 :     selec = (Selectivity) (Max(index, 0)) / (Selectivity) (hist_nvalues - 1);
     598             : 
     599             :     /* Adjust using linear interpolation within the bin */
     600           0 :     if (index >= 0 && index < hist_nvalues - 1)
     601           0 :         selec += get_position(typcache, constbound, &hist[index],
     602           0 :                               &hist[index + 1]) / (Selectivity) (hist_nvalues - 1);
     603             : 
     604           0 :     return selec;
     605             : }
     606             : 
     607             : /*
     608             :  * Binary search on an array of range bounds. Returns greatest index of range
     609             :  * bound in array which is less(less or equal) than given range bound. If all
     610             :  * range bounds in array are greater or equal(greater) than given range bound,
     611             :  * return -1. When "equal" flag is set conditions in brackets are used.
     612             :  *
     613             :  * This function is used in scalar operator selectivity estimation. Another
     614             :  * goal of this function is to find a histogram bin where to stop
     615             :  * interpolation of portion of bounds which are less or equal to given bound.
     616             :  */
     617             : static int
     618           0 : rbound_bsearch(TypeCacheEntry *typcache, RangeBound *value, RangeBound *hist,
     619             :                int hist_length, bool equal)
     620             : {
     621           0 :     int         lower = -1,
     622           0 :                 upper = hist_length - 1,
     623             :                 cmp,
     624             :                 middle;
     625             : 
     626           0 :     while (lower < upper)
     627             :     {
     628           0 :         middle = (lower + upper + 1) / 2;
     629           0 :         cmp = range_cmp_bounds(typcache, &hist[middle], value);
     630             : 
     631           0 :         if (cmp < 0 || (equal && cmp == 0))
     632           0 :             lower = middle;
     633             :         else
     634           0 :             upper = middle - 1;
     635             :     }
     636           0 :     return lower;
     637             : }
     638             : 
     639             : 
     640             : /*
     641             :  * Binary search on length histogram. Returns greatest index of range length in
     642             :  * histogram which is less than (less than or equal) the given length value. If
     643             :  * all lengths in the histogram are greater than (greater than or equal) the
     644             :  * given length, returns -1.
     645             :  */
     646             : static int
     647           0 : length_hist_bsearch(Datum *length_hist_values, int length_hist_nvalues,
     648             :                     double value, bool equal)
     649             : {
     650           0 :     int         lower = -1,
     651           0 :                 upper = length_hist_nvalues - 1,
     652             :                 middle;
     653             : 
     654           0 :     while (lower < upper)
     655             :     {
     656             :         double      middleval;
     657             : 
     658           0 :         middle = (lower + upper + 1) / 2;
     659             : 
     660           0 :         middleval = DatumGetFloat8(length_hist_values[middle]);
     661           0 :         if (middleval < value || (equal && middleval <= value))
     662           0 :             lower = middle;
     663             :         else
     664           0 :             upper = middle - 1;
     665             :     }
     666           0 :     return lower;
     667             : }
     668             : 
     669             : /*
     670             :  * Get relative position of value in histogram bin in [0,1] range.
     671             :  */
     672             : static float8
     673           0 : get_position(TypeCacheEntry *typcache, RangeBound *value, RangeBound *hist1,
     674             :              RangeBound *hist2)
     675             : {
     676           0 :     bool        has_subdiff = OidIsValid(typcache->rng_subdiff_finfo.fn_oid);
     677             :     float8      position;
     678             : 
     679           0 :     if (!hist1->infinite && !hist2->infinite)
     680             :     {
     681             :         float8      bin_width;
     682             : 
     683             :         /*
     684             :          * Both bounds are finite. Assuming the subtype's comparison function
     685             :          * works sanely, the value must be finite, too, because it lies
     686             :          * somewhere between the bounds. If it doesn't, just return something.
     687             :          */
     688           0 :         if (value->infinite)
     689           0 :             return 0.5;
     690             : 
     691             :         /* Can't interpolate without subdiff function */
     692           0 :         if (!has_subdiff)
     693           0 :             return 0.5;
     694             : 
     695             :         /* Calculate relative position using subdiff function. */
     696           0 :         bin_width = DatumGetFloat8(FunctionCall2Coll(
     697             :                                                      &typcache->rng_subdiff_finfo,
     698             :                                                      typcache->rng_collation,
     699             :                                                      hist2->val,
     700             :                                                      hist1->val));
     701           0 :         if (bin_width <= 0.0)
     702           0 :             return 0.5;         /* zero width bin */
     703             : 
     704           0 :         position = DatumGetFloat8(FunctionCall2Coll(
     705             :                                                     &typcache->rng_subdiff_finfo,
     706             :                                                     typcache->rng_collation,
     707             :                                                     value->val,
     708             :                                                     hist1->val))
     709             :             / bin_width;
     710             : 
     711             :         /* Relative position must be in [0,1] range */
     712           0 :         position = Max(position, 0.0);
     713           0 :         position = Min(position, 1.0);
     714           0 :         return position;
     715             :     }
     716           0 :     else if (hist1->infinite && !hist2->infinite)
     717             :     {
     718             :         /*
     719             :          * Lower bin boundary is -infinite, upper is finite. If the value is
     720             :          * -infinite, return 0.0 to indicate it's equal to the lower bound.
     721             :          * Otherwise return 1.0 to indicate it's infinitely far from the lower
     722             :          * bound.
     723             :          */
     724           0 :         return ((value->infinite && value->lower) ? 0.0 : 1.0);
     725             :     }
     726           0 :     else if (!hist1->infinite && hist2->infinite)
     727             :     {
     728             :         /* same as above, but in reverse */
     729           0 :         return ((value->infinite && !value->lower) ? 1.0 : 0.0);
     730             :     }
     731             :     else
     732             :     {
     733             :         /*
     734             :          * If both bin boundaries are infinite, they should be equal to each
     735             :          * other, and the value should also be infinite and equal to both
     736             :          * bounds. (But don't Assert that, to avoid crashing if a user creates
     737             :          * a datatype with a broken comparison function).
     738             :          *
     739             :          * Assume the value to lie in the middle of the infinite bounds.
     740             :          */
     741           0 :         return 0.5;
     742             :     }
     743             : }
     744             : 
     745             : 
     746             : /*
     747             :  * Get relative position of value in a length histogram bin in [0,1] range.
     748             :  */
     749             : static double
     750           0 : get_len_position(double value, double hist1, double hist2)
     751             : {
     752           0 :     if (!is_infinite(hist1) && !is_infinite(hist2))
     753             :     {
     754             :         /*
     755             :          * Both bounds are finite. The value should be finite too, because it
     756             :          * lies somewhere between the bounds. If it doesn't, just return
     757             :          * something.
     758             :          */
     759           0 :         if (is_infinite(value))
     760           0 :             return 0.5;
     761             : 
     762           0 :         return 1.0 - (hist2 - value) / (hist2 - hist1);
     763             :     }
     764           0 :     else if (is_infinite(hist1) && !is_infinite(hist2))
     765             :     {
     766             :         /*
     767             :          * Lower bin boundary is -infinite, upper is finite. Return 1.0 to
     768             :          * indicate the value is infinitely far from the lower bound.
     769             :          */
     770           0 :         return 1.0;
     771             :     }
     772           0 :     else if (is_infinite(hist1) && is_infinite(hist2))
     773             :     {
     774             :         /* same as above, but in reverse */
     775           0 :         return 0.0;
     776             :     }
     777             :     else
     778             :     {
     779             :         /*
     780             :          * If both bin boundaries are infinite, they should be equal to each
     781             :          * other, and the value should also be infinite and equal to both
     782             :          * bounds. (But don't Assert that, to avoid crashing unnecessarily if
     783             :          * the caller messes up)
     784             :          *
     785             :          * Assume the value to lie in the middle of the infinite bounds.
     786             :          */
     787           0 :         return 0.5;
     788             :     }
     789             : }
     790             : 
     791             : /*
     792             :  * Measure distance between two range bounds.
     793             :  */
     794             : static float8
     795           0 : get_distance(TypeCacheEntry *typcache, RangeBound *bound1, RangeBound *bound2)
     796             : {
     797           0 :     bool        has_subdiff = OidIsValid(typcache->rng_subdiff_finfo.fn_oid);
     798             : 
     799           0 :     if (!bound1->infinite && !bound2->infinite)
     800             :     {
     801             :         /*
     802             :          * No bounds are infinite, use subdiff function or return default
     803             :          * value of 1.0 if no subdiff is available.
     804             :          */
     805           0 :         if (has_subdiff)
     806           0 :             return
     807           0 :                 DatumGetFloat8(FunctionCall2Coll(&typcache->rng_subdiff_finfo,
     808             :                                                  typcache->rng_collation,
     809             :                                                  bound2->val,
     810             :                                                  bound1->val));
     811             :         else
     812           0 :             return 1.0;
     813             :     }
     814           0 :     else if (bound1->infinite && bound2->infinite)
     815             :     {
     816             :         /* Both bounds are infinite */
     817           0 :         if (bound1->lower == bound2->lower)
     818           0 :             return 0.0;
     819             :         else
     820           0 :             return get_float8_infinity();
     821             :     }
     822             :     else
     823             :     {
     824             :         /* One bound is infinite, another is not */
     825           0 :         return get_float8_infinity();
     826             :     }
     827             : }
     828             : 
     829             : /*
     830             :  * Calculate the average of function P(x), in the interval [length1, length2],
     831             :  * where P(x) is the fraction of tuples with length < x (or length <= x if
     832             :  * 'equal' is true).
     833             :  */
     834             : static double
     835           0 : calc_length_hist_frac(Datum *length_hist_values, int length_hist_nvalues,
     836             :                       double length1, double length2, bool equal)
     837             : {
     838             :     double      frac;
     839             :     double      A,
     840             :                 B,
     841             :                 PA,
     842             :                 PB;
     843             :     double      pos;
     844             :     int         i;
     845             :     double      area;
     846             : 
     847           0 :     Assert(length2 >= length1);
     848             : 
     849           0 :     if (length2 < 0.0)
     850           0 :         return 0.0;             /* shouldn't happen, but doesn't hurt to check */
     851             : 
     852             :     /* All lengths in the table are <= infinite. */
     853           0 :     if (is_infinite(length2) && equal)
     854           0 :         return 1.0;
     855             : 
     856             :     /*----------
     857             :      * The average of a function between A and B can be calculated by the
     858             :      * formula:
     859             :      *
     860             :      *          B
     861             :      *    1     /
     862             :      * -------  | P(x)dx
     863             :      *  B - A   /
     864             :      *          A
     865             :      *
     866             :      * The geometrical interpretation of the integral is the area under the
     867             :      * graph of P(x). P(x) is defined by the length histogram. We calculate
     868             :      * the area in a piecewise fashion, iterating through the length histogram
     869             :      * bins. Each bin is a trapezoid:
     870             :      *
     871             :      *       P(x2)
     872             :      *        /|
     873             :      *       / |
     874             :      * P(x1)/  |
     875             :      *     |   |
     876             :      *     |   |
     877             :      *  ---+---+--
     878             :      *     x1  x2
     879             :      *
     880             :      * where x1 and x2 are the boundaries of the current histogram, and P(x1)
     881             :      * and P(x1) are the cumulative fraction of tuples at the boundaries.
     882             :      *
     883             :      * The area of each trapezoid is 1/2 * (P(x2) + P(x1)) * (x2 - x1)
     884             :      *
     885             :      * The first bin contains the lower bound passed by the caller, so we
     886             :      * use linear interpolation between the previous and next histogram bin
     887             :      * boundary to calculate P(x1). Likewise for the last bin: we use linear
     888             :      * interpolation to calculate P(x2). For the bins in between, x1 and x2
     889             :      * lie on histogram bin boundaries, so P(x1) and P(x2) are simply:
     890             :      * P(x1) =    (bin index) / (number of bins)
     891             :      * P(x2) = (bin index + 1 / (number of bins)
     892             :      */
     893             : 
     894             :     /* First bin, the one that contains lower bound */
     895           0 :     i = length_hist_bsearch(length_hist_values, length_hist_nvalues, length1, equal);
     896           0 :     if (i >= length_hist_nvalues - 1)
     897           0 :         return 1.0;
     898             : 
     899           0 :     if (i < 0)
     900             :     {
     901           0 :         i = 0;
     902           0 :         pos = 0.0;
     903             :     }
     904             :     else
     905             :     {
     906             :         /* interpolate length1's position in the bin */
     907           0 :         pos = get_len_position(length1,
     908           0 :                                DatumGetFloat8(length_hist_values[i]),
     909           0 :                                DatumGetFloat8(length_hist_values[i + 1]));
     910             :     }
     911           0 :     PB = (((double) i) + pos) / (double) (length_hist_nvalues - 1);
     912           0 :     B = length1;
     913             : 
     914             :     /*
     915             :      * In the degenerate case that length1 == length2, simply return
     916             :      * P(length1). This is not merely an optimization: if length1 == length2,
     917             :      * we'd divide by zero later on.
     918             :      */
     919           0 :     if (length2 == length1)
     920           0 :         return PB;
     921             : 
     922             :     /*
     923             :      * Loop through all the bins, until we hit the last bin, the one that
     924             :      * contains the upper bound. (if lower and upper bounds are in the same
     925             :      * bin, this falls out immediately)
     926             :      */
     927           0 :     area = 0.0;
     928           0 :     for (; i < length_hist_nvalues - 1; i++)
     929             :     {
     930           0 :         double      bin_upper = DatumGetFloat8(length_hist_values[i + 1]);
     931             : 
     932             :         /* check if we've reached the last bin */
     933           0 :         if (!(bin_upper < length2 || (equal && bin_upper <= length2)))
     934             :             break;
     935             : 
     936             :         /* the upper bound of previous bin is the lower bound of this bin */
     937           0 :         A = B;
     938           0 :         PA = PB;
     939             : 
     940           0 :         B = bin_upper;
     941           0 :         PB = (double) i / (double) (length_hist_nvalues - 1);
     942             : 
     943             :         /*
     944             :          * Add the area of this trapezoid to the total. The point of the
     945             :          * if-check is to avoid NaN, in the corner case that PA == PB == 0,
     946             :          * and B - A == Inf. The area of a zero-height trapezoid (PA == PB ==
     947             :          * 0) is zero, regardless of the width (B - A).
     948             :          */
     949           0 :         if (PA > 0 || PB > 0)
     950           0 :             area += 0.5 * (PB + PA) * (B - A);
     951             :     }
     952             : 
     953             :     /* Last bin */
     954           0 :     A = B;
     955           0 :     PA = PB;
     956             : 
     957           0 :     B = length2;                /* last bin ends at the query upper bound */
     958           0 :     if (i >= length_hist_nvalues - 1)
     959           0 :         pos = 0.0;
     960             :     else
     961             :     {
     962           0 :         if (DatumGetFloat8(length_hist_values[i]) == DatumGetFloat8(length_hist_values[i + 1]))
     963           0 :             pos = 0.0;
     964             :         else
     965           0 :             pos = get_len_position(length2, DatumGetFloat8(length_hist_values[i]), DatumGetFloat8(length_hist_values[i + 1]));
     966             :     }
     967           0 :     PB = (((double) i) + pos) / (double) (length_hist_nvalues - 1);
     968             : 
     969           0 :     if (PA > 0 || PB > 0)
     970           0 :         area += 0.5 * (PB + PA) * (B - A);
     971             : 
     972             :     /*
     973             :      * Ok, we have calculated the area, ie. the integral. Divide by width to
     974             :      * get the requested average.
     975             :      *
     976             :      * Avoid NaN arising from infinite / infinite. This happens at least if
     977             :      * length2 is infinite. It's not clear what the correct value would be in
     978             :      * that case, so 0.5 seems as good as any value.
     979             :      */
     980           0 :     if (is_infinite(area) && is_infinite(length2))
     981           0 :         frac = 0.5;
     982             :     else
     983           0 :         frac = area / (length2 - length1);
     984             : 
     985           0 :     return frac;
     986             : }
     987             : 
     988             : /*
     989             :  * Calculate selectivity of "var <@ const" operator, ie. estimate the fraction
     990             :  * of ranges that fall within the constant lower and upper bounds. This uses
     991             :  * the histograms of range lower bounds and range lengths, on the assumption
     992             :  * that the range lengths are independent of the lower bounds.
     993             :  *
     994             :  * The caller has already checked that constant lower and upper bounds are
     995             :  * finite.
     996             :  */
     997             : static double
     998           0 : calc_hist_selectivity_contained(TypeCacheEntry *typcache,
     999             :                                 RangeBound *lower, RangeBound *upper,
    1000             :                                 RangeBound *hist_lower, int hist_nvalues,
    1001             :                                 Datum *length_hist_values, int length_hist_nvalues)
    1002             : {
    1003             :     int         i,
    1004             :                 upper_index;
    1005             :     float8      prev_dist;
    1006             :     double      bin_width;
    1007             :     double      upper_bin_width;
    1008             :     double      sum_frac;
    1009             : 
    1010             :     /*
    1011             :      * Begin by finding the bin containing the upper bound, in the lower bound
    1012             :      * histogram. Any range with a lower bound > constant upper bound can't
    1013             :      * match, ie. there are no matches in bins greater than upper_index.
    1014             :      */
    1015           0 :     upper->inclusive = !upper->inclusive;
    1016           0 :     upper->lower = true;
    1017           0 :     upper_index = rbound_bsearch(typcache, upper, hist_lower, hist_nvalues,
    1018             :                                  false);
    1019             : 
    1020             :     /*
    1021             :      * Calculate upper_bin_width, ie. the fraction of the (upper_index,
    1022             :      * upper_index + 1) bin which is greater than upper bound of query range
    1023             :      * using linear interpolation of subdiff function.
    1024             :      */
    1025           0 :     if (upper_index >= 0 && upper_index < hist_nvalues - 1)
    1026           0 :         upper_bin_width = get_position(typcache, upper,
    1027           0 :                                        &hist_lower[upper_index],
    1028           0 :                                        &hist_lower[upper_index + 1]);
    1029             :     else
    1030           0 :         upper_bin_width = 0.0;
    1031             : 
    1032             :     /*
    1033             :      * In the loop, dist and prev_dist are the distance of the "current" bin's
    1034             :      * lower and upper bounds from the constant upper bound.
    1035             :      *
    1036             :      * bin_width represents the width of the current bin. Normally it is 1.0,
    1037             :      * meaning a full width bin, but can be less in the corner cases: start
    1038             :      * and end of the loop. We start with bin_width = upper_bin_width, because
    1039             :      * we begin at the bin containing the upper bound.
    1040             :      */
    1041           0 :     prev_dist = 0.0;
    1042           0 :     bin_width = upper_bin_width;
    1043             : 
    1044           0 :     sum_frac = 0.0;
    1045           0 :     for (i = upper_index; i >= 0; i--)
    1046             :     {
    1047             :         double      dist;
    1048             :         double      length_hist_frac;
    1049           0 :         bool        final_bin = false;
    1050             : 
    1051             :         /*
    1052             :          * dist -- distance from upper bound of query range to lower bound of
    1053             :          * the current bin in the lower bound histogram. Or to the lower bound
    1054             :          * of the constant range, if this is the final bin, containing the
    1055             :          * constant lower bound.
    1056             :          */
    1057           0 :         if (range_cmp_bounds(typcache, &hist_lower[i], lower) < 0)
    1058             :         {
    1059           0 :             dist = get_distance(typcache, lower, upper);
    1060             : 
    1061             :             /*
    1062             :              * Subtract from bin_width the portion of this bin that we want to
    1063             :              * ignore.
    1064             :              */
    1065           0 :             bin_width -= get_position(typcache, lower, &hist_lower[i],
    1066           0 :                                       &hist_lower[i + 1]);
    1067           0 :             if (bin_width < 0.0)
    1068           0 :                 bin_width = 0.0;
    1069           0 :             final_bin = true;
    1070             :         }
    1071             :         else
    1072           0 :             dist = get_distance(typcache, &hist_lower[i], upper);
    1073             : 
    1074             :         /*
    1075             :          * Estimate the fraction of tuples in this bin that are narrow enough
    1076             :          * to not exceed the distance to the upper bound of the query range.
    1077             :          */
    1078           0 :         length_hist_frac = calc_length_hist_frac(length_hist_values,
    1079             :                                                  length_hist_nvalues,
    1080             :                                                  prev_dist, dist, true);
    1081             : 
    1082             :         /*
    1083             :          * Add the fraction of tuples in this bin, with a suitable length, to
    1084             :          * the total.
    1085             :          */
    1086           0 :         sum_frac += length_hist_frac * bin_width / (double) (hist_nvalues - 1);
    1087             : 
    1088           0 :         if (final_bin)
    1089           0 :             break;
    1090             : 
    1091           0 :         bin_width = 1.0;
    1092           0 :         prev_dist = dist;
    1093             :     }
    1094             : 
    1095           0 :     return sum_frac;
    1096             : }
    1097             : 
    1098             : /*
    1099             :  * Calculate selectivity of "var @> const" operator, ie. estimate the fraction
    1100             :  * of ranges that contain the constant lower and upper bounds. This uses
    1101             :  * the histograms of range lower bounds and range lengths, on the assumption
    1102             :  * that the range lengths are independent of the lower bounds.
    1103             :  *
    1104             :  * Note, this is "var @> const", ie. estimate the fraction of ranges that
    1105             :  * contain the constant lower and upper bounds.
    1106             :  */
    1107             : static double
    1108           0 : calc_hist_selectivity_contains(TypeCacheEntry *typcache,
    1109             :                                RangeBound *lower, RangeBound *upper,
    1110             :                                RangeBound *hist_lower, int hist_nvalues,
    1111             :                                Datum *length_hist_values, int length_hist_nvalues)
    1112             : {
    1113             :     int         i,
    1114             :                 lower_index;
    1115             :     double      bin_width,
    1116             :                 lower_bin_width;
    1117             :     double      sum_frac;
    1118             :     float8      prev_dist;
    1119             : 
    1120             :     /* Find the bin containing the lower bound of query range. */
    1121           0 :     lower_index = rbound_bsearch(typcache, lower, hist_lower, hist_nvalues,
    1122             :                                  true);
    1123             : 
    1124             :     /*
    1125             :      * Calculate lower_bin_width, ie. the fraction of the of (lower_index,
    1126             :      * lower_index + 1) bin which is greater than lower bound of query range
    1127             :      * using linear interpolation of subdiff function.
    1128             :      */
    1129           0 :     if (lower_index >= 0 && lower_index < hist_nvalues - 1)
    1130           0 :         lower_bin_width = get_position(typcache, lower, &hist_lower[lower_index],
    1131           0 :                                        &hist_lower[lower_index + 1]);
    1132             :     else
    1133           0 :         lower_bin_width = 0.0;
    1134             : 
    1135             :     /*
    1136             :      * Loop through all the lower bound bins, smaller than the query lower
    1137             :      * bound. In the loop, dist and prev_dist are the distance of the
    1138             :      * "current" bin's lower and upper bounds from the constant upper bound.
    1139             :      * We begin from query lower bound, and walk backwards, so the first bin's
    1140             :      * upper bound is the query lower bound, and its distance to the query
    1141             :      * upper bound is the length of the query range.
    1142             :      *
    1143             :      * bin_width represents the width of the current bin. Normally it is 1.0,
    1144             :      * meaning a full width bin, except for the first bin, which is only
    1145             :      * counted up to the constant lower bound.
    1146             :      */
    1147           0 :     prev_dist = get_distance(typcache, lower, upper);
    1148           0 :     sum_frac = 0.0;
    1149           0 :     bin_width = lower_bin_width;
    1150           0 :     for (i = lower_index; i >= 0; i--)
    1151             :     {
    1152             :         float8      dist;
    1153             :         double      length_hist_frac;
    1154             : 
    1155             :         /*
    1156             :          * dist -- distance from upper bound of query range to current value
    1157             :          * of lower bound histogram or lower bound of query range (if we've
    1158             :          * reach it).
    1159             :          */
    1160           0 :         dist = get_distance(typcache, &hist_lower[i], upper);
    1161             : 
    1162             :         /*
    1163             :          * Get average fraction of length histogram which covers intervals
    1164             :          * longer than (or equal to) distance to upper bound of query range.
    1165             :          */
    1166           0 :         length_hist_frac =
    1167           0 :             1.0 - calc_length_hist_frac(length_hist_values,
    1168             :                                         length_hist_nvalues,
    1169             :                                         prev_dist, dist, false);
    1170             : 
    1171           0 :         sum_frac += length_hist_frac * bin_width / (double) (hist_nvalues - 1);
    1172             : 
    1173           0 :         bin_width = 1.0;
    1174           0 :         prev_dist = dist;
    1175             :     }
    1176             : 
    1177           0 :     return sum_frac;
    1178             : }

Generated by: LCOV version 1.11