Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * selfuncs.c
4 : * Selectivity functions and index cost estimation functions for
5 : * standard operators and index access methods.
6 : *
7 : * Selectivity routines are registered in the pg_operator catalog
8 : * in the "oprrest" and "oprjoin" attributes.
9 : *
10 : * Index cost functions are located via the index AM's API struct,
11 : * which is obtained from the handler function registered in pg_am.
12 : *
13 : * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
14 : * Portions Copyright (c) 1994, Regents of the University of California
15 : *
16 : *
17 : * IDENTIFICATION
18 : * src/backend/utils/adt/selfuncs.c
19 : *
20 : *-------------------------------------------------------------------------
21 : */
22 :
23 : /*----------
24 : * Operator selectivity estimation functions are called to estimate the
25 : * selectivity of WHERE clauses whose top-level operator is their operator.
26 : * We divide the problem into two cases:
27 : * Restriction clause estimation: the clause involves vars of just
28 : * one relation.
29 : * Join clause estimation: the clause involves vars of multiple rels.
30 : * Join selectivity estimation is far more difficult and usually less accurate
31 : * than restriction estimation.
32 : *
33 : * When dealing with the inner scan of a nestloop join, we consider the
34 : * join's joinclauses as restriction clauses for the inner relation, and
35 : * treat vars of the outer relation as parameters (a/k/a constants of unknown
36 : * values). So, restriction estimators need to be able to accept an argument
37 : * telling which relation is to be treated as the variable.
38 : *
39 : * The call convention for a restriction estimator (oprrest function) is
40 : *
41 : * Selectivity oprrest (PlannerInfo *root,
42 : * Oid operator,
43 : * List *args,
44 : * int varRelid);
45 : *
46 : * root: general information about the query (rtable and RelOptInfo lists
47 : * are particularly important for the estimator).
48 : * operator: OID of the specific operator in question.
49 : * args: argument list from the operator clause.
50 : * varRelid: if not zero, the relid (rtable index) of the relation to
51 : * be treated as the variable relation. May be zero if the args list
52 : * is known to contain vars of only one relation.
53 : *
54 : * This is represented at the SQL level (in pg_proc) as
55 : *
56 : * float8 oprrest (internal, oid, internal, int4);
57 : *
58 : * The result is a selectivity, that is, a fraction (0 to 1) of the rows
59 : * of the relation that are expected to produce a TRUE result for the
60 : * given operator.
61 : *
62 : * The call convention for a join estimator (oprjoin function) is similar
63 : * except that varRelid is not needed, and instead join information is
64 : * supplied:
65 : *
66 : * Selectivity oprjoin (PlannerInfo *root,
67 : * Oid operator,
68 : * List *args,
69 : * JoinType jointype,
70 : * SpecialJoinInfo *sjinfo);
71 : *
72 : * float8 oprjoin (internal, oid, internal, int2, internal);
73 : *
74 : * (Before Postgres 8.4, join estimators had only the first four of these
75 : * parameters. That signature is still allowed, but deprecated.) The
76 : * relationship between jointype and sjinfo is explained in the comments for
77 : * clause_selectivity() --- the short version is that jointype is usually
78 : * best ignored in favor of examining sjinfo.
79 : *
80 : * Join selectivity for regular inner and outer joins is defined as the
81 : * fraction (0 to 1) of the cross product of the relations that is expected
82 : * to produce a TRUE result for the given operator. For both semi and anti
83 : * joins, however, the selectivity is defined as the fraction of the left-hand
84 : * side relation's rows that are expected to have a match (ie, at least one
85 : * row with a TRUE result) in the right-hand side.
86 : *
87 : * For both oprrest and oprjoin functions, the operator's input collation OID
88 : * (if any) is passed using the standard fmgr mechanism, so that the estimator
89 : * function can fetch it with PG_GET_COLLATION(). Note, however, that all
90 : * statistics in pg_statistic are currently built using the database's default
91 : * collation. Thus, in most cases where we are looking at statistics, we
92 : * should ignore the actual operator collation and use DEFAULT_COLLATION_OID.
93 : * We expect that the error induced by doing this is usually not large enough
94 : * to justify complicating matters.
95 : *----------
96 : */
97 :
98 : #include "postgres.h"
99 :
100 : #include <ctype.h>
101 : #include <float.h>
102 : #include <math.h>
103 :
104 : #include "access/brin.h"
105 : #include "access/gin.h"
106 : #include "access/htup_details.h"
107 : #include "access/sysattr.h"
108 : #include "catalog/index.h"
109 : #include "catalog/pg_am.h"
110 : #include "catalog/pg_collation.h"
111 : #include "catalog/pg_operator.h"
112 : #include "catalog/pg_opfamily.h"
113 : #include "catalog/pg_statistic.h"
114 : #include "catalog/pg_statistic_ext.h"
115 : #include "catalog/pg_type.h"
116 : #include "executor/executor.h"
117 : #include "mb/pg_wchar.h"
118 : #include "miscadmin.h"
119 : #include "nodes/makefuncs.h"
120 : #include "nodes/nodeFuncs.h"
121 : #include "optimizer/clauses.h"
122 : #include "optimizer/cost.h"
123 : #include "optimizer/pathnode.h"
124 : #include "optimizer/paths.h"
125 : #include "optimizer/plancat.h"
126 : #include "optimizer/predtest.h"
127 : #include "optimizer/restrictinfo.h"
128 : #include "optimizer/var.h"
129 : #include "parser/parse_clause.h"
130 : #include "parser/parse_coerce.h"
131 : #include "parser/parsetree.h"
132 : #include "statistics/statistics.h"
133 : #include "utils/acl.h"
134 : #include "utils/builtins.h"
135 : #include "utils/bytea.h"
136 : #include "utils/date.h"
137 : #include "utils/datum.h"
138 : #include "utils/fmgroids.h"
139 : #include "utils/index_selfuncs.h"
140 : #include "utils/lsyscache.h"
141 : #include "utils/nabstime.h"
142 : #include "utils/pg_locale.h"
143 : #include "utils/rel.h"
144 : #include "utils/selfuncs.h"
145 : #include "utils/spccache.h"
146 : #include "utils/syscache.h"
147 : #include "utils/timestamp.h"
148 : #include "utils/tqual.h"
149 : #include "utils/typcache.h"
150 : #include "utils/varlena.h"
151 :
152 :
153 : /* Hooks for plugins to get control when we ask for stats */
154 : get_relation_stats_hook_type get_relation_stats_hook = NULL;
155 : get_index_stats_hook_type get_index_stats_hook = NULL;
156 :
157 : static double eqsel_internal(PG_FUNCTION_ARGS, bool negate);
158 : static double var_eq_const(VariableStatData *vardata, Oid operator,
159 : Datum constval, bool constisnull,
160 : bool varonleft, bool negate);
161 : static double var_eq_non_const(VariableStatData *vardata, Oid operator,
162 : Node *other,
163 : bool varonleft, bool negate);
164 : static double ineq_histogram_selectivity(PlannerInfo *root,
165 : VariableStatData *vardata,
166 : FmgrInfo *opproc, bool isgt,
167 : Datum constval, Oid consttype);
168 : static double eqjoinsel_inner(Oid operator,
169 : VariableStatData *vardata1, VariableStatData *vardata2);
170 : static double eqjoinsel_semi(Oid operator,
171 : VariableStatData *vardata1, VariableStatData *vardata2,
172 : RelOptInfo *inner_rel);
173 : static bool estimate_multivariate_ndistinct(PlannerInfo *root,
174 : RelOptInfo *rel, List **varinfos, double *ndistinct);
175 : static bool convert_to_scalar(Datum value, Oid valuetypid, double *scaledvalue,
176 : Datum lobound, Datum hibound, Oid boundstypid,
177 : double *scaledlobound, double *scaledhibound);
178 : static double convert_numeric_to_scalar(Datum value, Oid typid);
179 : static void convert_string_to_scalar(char *value,
180 : double *scaledvalue,
181 : char *lobound,
182 : double *scaledlobound,
183 : char *hibound,
184 : double *scaledhibound);
185 : static void convert_bytea_to_scalar(Datum value,
186 : double *scaledvalue,
187 : Datum lobound,
188 : double *scaledlobound,
189 : Datum hibound,
190 : double *scaledhibound);
191 : static double convert_one_string_to_scalar(char *value,
192 : int rangelo, int rangehi);
193 : static double convert_one_bytea_to_scalar(unsigned char *value, int valuelen,
194 : int rangelo, int rangehi);
195 : static char *convert_string_datum(Datum value, Oid typid);
196 : static double convert_timevalue_to_scalar(Datum value, Oid typid);
197 : static void examine_simple_variable(PlannerInfo *root, Var *var,
198 : VariableStatData *vardata);
199 : static bool get_variable_range(PlannerInfo *root, VariableStatData *vardata,
200 : Oid sortop, Datum *min, Datum *max);
201 : static bool get_actual_variable_range(PlannerInfo *root,
202 : VariableStatData *vardata,
203 : Oid sortop,
204 : Datum *min, Datum *max);
205 : static RelOptInfo *find_join_input_rel(PlannerInfo *root, Relids relids);
206 : static Selectivity prefix_selectivity(PlannerInfo *root,
207 : VariableStatData *vardata,
208 : Oid vartype, Oid opfamily, Const *prefixcon);
209 : static Selectivity like_selectivity(const char *patt, int pattlen,
210 : bool case_insensitive);
211 : static Selectivity regex_selectivity(const char *patt, int pattlen,
212 : bool case_insensitive,
213 : int fixed_prefix_len);
214 : static Datum string_to_datum(const char *str, Oid datatype);
215 : static Const *string_to_const(const char *str, Oid datatype);
216 : static Const *string_to_bytea_const(const char *str, size_t str_len);
217 : static List *add_predicate_to_quals(IndexOptInfo *index, List *indexQuals);
218 :
219 :
220 : /*
221 : * eqsel - Selectivity of "=" for any data types.
222 : *
223 : * Note: this routine is also used to estimate selectivity for some
224 : * operators that are not "=" but have comparable selectivity behavior,
225 : * such as "~=" (geometric approximate-match). Even for "=", we must
226 : * keep in mind that the left and right datatypes may differ.
227 : */
228 : Datum
229 17346 : eqsel(PG_FUNCTION_ARGS)
230 : {
231 17346 : PG_RETURN_FLOAT8((float8) eqsel_internal(fcinfo, false));
232 : }
233 :
234 : /*
235 : * Common code for eqsel() and neqsel()
236 : */
237 : static double
238 18633 : eqsel_internal(PG_FUNCTION_ARGS, bool negate)
239 : {
240 18633 : PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
241 18633 : Oid operator = PG_GETARG_OID(1);
242 18633 : List *args = (List *) PG_GETARG_POINTER(2);
243 18633 : int varRelid = PG_GETARG_INT32(3);
244 : VariableStatData vardata;
245 : Node *other;
246 : bool varonleft;
247 : double selec;
248 :
249 : /*
250 : * When asked about <>, we do the estimation using the corresponding =
251 : * operator, then convert to <> via "1.0 - eq_selectivity - nullfrac".
252 : */
253 18633 : if (negate)
254 : {
255 1287 : operator = get_negator(operator);
256 1287 : if (!OidIsValid(operator))
257 : {
258 : /* Use default selectivity (should we raise an error instead?) */
259 0 : return 1.0 - DEFAULT_EQ_SEL;
260 : }
261 : }
262 :
263 : /*
264 : * If expression is not variable = something or something = variable, then
265 : * punt and return a default estimate.
266 : */
267 18633 : if (!get_restriction_variable(root, args, varRelid,
268 : &vardata, &other, &varonleft))
269 141 : return negate ? (1.0 - DEFAULT_EQ_SEL) : DEFAULT_EQ_SEL;
270 :
271 : /*
272 : * We can do a lot better if the something is a constant. (Note: the
273 : * Const might result from estimation rather than being a simple constant
274 : * in the query.)
275 : */
276 18492 : if (IsA(other, Const))
277 23808 : selec = var_eq_const(&vardata, operator,
278 7936 : ((Const *) other)->constvalue,
279 7936 : ((Const *) other)->constisnull,
280 : varonleft, negate);
281 : else
282 10556 : selec = var_eq_non_const(&vardata, operator, other,
283 : varonleft, negate);
284 :
285 18492 : ReleaseVariableStats(vardata);
286 :
287 18492 : return selec;
288 : }
289 :
290 : /*
291 : * var_eq_const --- eqsel for var = const case
292 : *
293 : * This is split out so that some other estimation functions can use it.
294 : */
295 : static double
296 9086 : var_eq_const(VariableStatData *vardata, Oid operator,
297 : Datum constval, bool constisnull,
298 : bool varonleft, bool negate)
299 : {
300 : double selec;
301 9086 : double nullfrac = 0.0;
302 : bool isdefault;
303 : Oid opfuncoid;
304 :
305 : /*
306 : * If the constant is NULL, assume operator is strict and return zero, ie,
307 : * operator will never return TRUE. (It's zero even for a negator op.)
308 : */
309 9086 : if (constisnull)
310 3 : return 0.0;
311 :
312 : /*
313 : * Grab the nullfrac for use below. Note we allow use of nullfrac
314 : * regardless of security check.
315 : */
316 9083 : if (HeapTupleIsValid(vardata->statsTuple))
317 : {
318 : Form_pg_statistic stats;
319 :
320 5034 : stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
321 5034 : nullfrac = stats->stanullfrac;
322 : }
323 :
324 : /*
325 : * If we matched the var to a unique index or DISTINCT clause, assume
326 : * there is exactly one match regardless of anything else. (This is
327 : * slightly bogus, since the index or clause's equality operator might be
328 : * different from ours, but it's much more likely to be right than
329 : * ignoring the information.)
330 : */
331 9083 : if (vardata->isunique && vardata->rel && vardata->rel->tuples >= 1.0)
332 : {
333 1464 : selec = 1.0 / vardata->rel->tuples;
334 : }
335 12331 : else if (HeapTupleIsValid(vardata->statsTuple) &&
336 4712 : statistic_proc_security_check(vardata,
337 : (opfuncoid = get_opcode(operator))))
338 4712 : {
339 : AttStatsSlot sslot;
340 4712 : bool match = false;
341 : int i;
342 :
343 : /*
344 : * Is the constant "=" to any of the column's most common values?
345 : * (Although the given operator may not really be "=", we will assume
346 : * that seeing whether it returns TRUE is an appropriate test. If you
347 : * don't like this, maybe you shouldn't be using eqsel for your
348 : * operator...)
349 : */
350 4712 : if (get_attstatsslot(&sslot, vardata->statsTuple,
351 : STATISTIC_KIND_MCV, InvalidOid,
352 : ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS))
353 : {
354 : FmgrInfo eqproc;
355 :
356 3519 : fmgr_info(opfuncoid, &eqproc);
357 :
358 44959 : for (i = 0; i < sslot.nvalues; i++)
359 : {
360 : /* be careful to apply operator right way 'round */
361 42945 : if (varonleft)
362 42945 : match = DatumGetBool(FunctionCall2Coll(&eqproc,
363 : DEFAULT_COLLATION_OID,
364 : sslot.values[i],
365 : constval));
366 : else
367 0 : match = DatumGetBool(FunctionCall2Coll(&eqproc,
368 : DEFAULT_COLLATION_OID,
369 : constval,
370 : sslot.values[i]));
371 42945 : if (match)
372 1505 : break;
373 : }
374 : }
375 : else
376 : {
377 : /* no most-common-value info available */
378 1193 : i = 0; /* keep compiler quiet */
379 : }
380 :
381 4712 : if (match)
382 : {
383 : /*
384 : * Constant is "=" to this common value. We know selectivity
385 : * exactly (or as exactly as ANALYZE could calculate it, anyway).
386 : */
387 1505 : selec = sslot.numbers[i];
388 : }
389 : else
390 : {
391 : /*
392 : * Comparison is against a constant that is neither NULL nor any
393 : * of the common values. Its selectivity cannot be more than
394 : * this:
395 : */
396 3207 : double sumcommon = 0.0;
397 : double otherdistinct;
398 :
399 42186 : for (i = 0; i < sslot.nnumbers; i++)
400 38979 : sumcommon += sslot.numbers[i];
401 3207 : selec = 1.0 - sumcommon - nullfrac;
402 3207 : CLAMP_PROBABILITY(selec);
403 :
404 : /*
405 : * and in fact it's probably a good deal less. We approximate that
406 : * all the not-common values share this remaining fraction
407 : * equally, so we divide by the number of other distinct values.
408 : */
409 6414 : otherdistinct = get_variable_numdistinct(vardata, &isdefault) -
410 3207 : sslot.nnumbers;
411 3207 : if (otherdistinct > 1)
412 2422 : selec /= otherdistinct;
413 :
414 : /*
415 : * Another cross-check: selectivity shouldn't be estimated as more
416 : * than the least common "most common value".
417 : */
418 3207 : if (sslot.nnumbers > 0 && selec > sslot.numbers[sslot.nnumbers - 1])
419 0 : selec = sslot.numbers[sslot.nnumbers - 1];
420 : }
421 :
422 4712 : free_attstatsslot(&sslot);
423 : }
424 : else
425 : {
426 : /*
427 : * No ANALYZE stats available, so make a guess using estimated number
428 : * of distinct values and assuming they are equally common. (The guess
429 : * is unlikely to be very good, but we do know a few special cases.)
430 : */
431 2907 : selec = 1.0 / get_variable_numdistinct(vardata, &isdefault);
432 : }
433 :
434 : /* now adjust if we wanted <> rather than = */
435 9083 : if (negate)
436 858 : selec = 1.0 - selec - nullfrac;
437 :
438 : /* result should be in range, but make sure... */
439 9083 : CLAMP_PROBABILITY(selec);
440 :
441 9083 : return selec;
442 : }
443 :
444 : /*
445 : * var_eq_non_const --- eqsel for var = something-other-than-const case
446 : */
447 : static double
448 10556 : var_eq_non_const(VariableStatData *vardata, Oid operator,
449 : Node *other,
450 : bool varonleft, bool negate)
451 : {
452 : double selec;
453 10556 : double nullfrac = 0.0;
454 : bool isdefault;
455 :
456 : /*
457 : * Grab the nullfrac for use below.
458 : */
459 10556 : if (HeapTupleIsValid(vardata->statsTuple))
460 : {
461 : Form_pg_statistic stats;
462 :
463 4296 : stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
464 4296 : nullfrac = stats->stanullfrac;
465 : }
466 :
467 : /*
468 : * If we matched the var to a unique index or DISTINCT clause, assume
469 : * there is exactly one match regardless of anything else. (This is
470 : * slightly bogus, since the index or clause's equality operator might be
471 : * different from ours, but it's much more likely to be right than
472 : * ignoring the information.)
473 : */
474 10556 : if (vardata->isunique && vardata->rel && vardata->rel->tuples >= 1.0)
475 : {
476 4996 : selec = 1.0 / vardata->rel->tuples;
477 : }
478 5560 : else if (HeapTupleIsValid(vardata->statsTuple))
479 : {
480 : double ndistinct;
481 : AttStatsSlot sslot;
482 :
483 : /*
484 : * Search is for a value that we do not know a priori, but we will
485 : * assume it is not NULL. Estimate the selectivity as non-null
486 : * fraction divided by number of distinct values, so that we get a
487 : * result averaged over all possible values whether common or
488 : * uncommon. (Essentially, we are assuming that the not-yet-known
489 : * comparison value is equally likely to be any of the possible
490 : * values, regardless of their frequency in the table. Is that a good
491 : * idea?)
492 : */
493 4108 : selec = 1.0 - nullfrac;
494 4108 : ndistinct = get_variable_numdistinct(vardata, &isdefault);
495 4108 : if (ndistinct > 1)
496 3806 : selec /= ndistinct;
497 :
498 : /*
499 : * Cross-check: selectivity should never be estimated as more than the
500 : * most common value's.
501 : */
502 4108 : if (get_attstatsslot(&sslot, vardata->statsTuple,
503 : STATISTIC_KIND_MCV, InvalidOid,
504 : ATTSTATSSLOT_NUMBERS))
505 : {
506 3365 : if (sslot.nnumbers > 0 && selec > sslot.numbers[0])
507 30 : selec = sslot.numbers[0];
508 3365 : free_attstatsslot(&sslot);
509 : }
510 : }
511 : else
512 : {
513 : /*
514 : * No ANALYZE stats available, so make a guess using estimated number
515 : * of distinct values and assuming they are equally common. (The guess
516 : * is unlikely to be very good, but we do know a few special cases.)
517 : */
518 1452 : selec = 1.0 / get_variable_numdistinct(vardata, &isdefault);
519 : }
520 :
521 : /* now adjust if we wanted <> rather than = */
522 10556 : if (negate)
523 336 : selec = 1.0 - selec - nullfrac;
524 :
525 : /* result should be in range, but make sure... */
526 10556 : CLAMP_PROBABILITY(selec);
527 :
528 10556 : return selec;
529 : }
530 :
531 : /*
532 : * neqsel - Selectivity of "!=" for any data types.
533 : *
534 : * This routine is also used for some operators that are not "!="
535 : * but have comparable selectivity behavior. See above comments
536 : * for eqsel().
537 : */
538 : Datum
539 1287 : neqsel(PG_FUNCTION_ARGS)
540 : {
541 1287 : PG_RETURN_FLOAT8((float8) eqsel_internal(fcinfo, true));
542 : }
543 :
544 : /*
545 : * scalarineqsel - Selectivity of "<", "<=", ">", ">=" for scalars.
546 : *
547 : * This is the guts of both scalarltsel and scalargtsel. The caller has
548 : * commuted the clause, if necessary, so that we can treat the variable as
549 : * being on the left. The caller must also make sure that the other side
550 : * of the clause is a non-null Const, and dissect same into a value and
551 : * datatype.
552 : *
553 : * This routine works for any datatype (or pair of datatypes) known to
554 : * convert_to_scalar(). If it is applied to some other datatype,
555 : * it will return a default estimate.
556 : */
557 : static double
558 2698 : scalarineqsel(PlannerInfo *root, Oid operator, bool isgt,
559 : VariableStatData *vardata, Datum constval, Oid consttype)
560 : {
561 : Form_pg_statistic stats;
562 : FmgrInfo opproc;
563 : double mcv_selec,
564 : hist_selec,
565 : sumcommon;
566 : double selec;
567 :
568 2698 : if (!HeapTupleIsValid(vardata->statsTuple))
569 : {
570 : /* no stats available, so default result */
571 1221 : return DEFAULT_INEQ_SEL;
572 : }
573 1477 : stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
574 :
575 1477 : fmgr_info(get_opcode(operator), &opproc);
576 :
577 : /*
578 : * If we have most-common-values info, add up the fractions of the MCV
579 : * entries that satisfy MCV OP CONST. These fractions contribute directly
580 : * to the result selectivity. Also add up the total fraction represented
581 : * by MCV entries.
582 : */
583 1477 : mcv_selec = mcv_selectivity(vardata, &opproc, constval, true,
584 : &sumcommon);
585 :
586 : /*
587 : * If there is a histogram, determine which bin the constant falls in, and
588 : * compute the resulting contribution to selectivity.
589 : */
590 1477 : hist_selec = ineq_histogram_selectivity(root, vardata, &opproc, isgt,
591 : constval, consttype);
592 :
593 : /*
594 : * Now merge the results from the MCV and histogram calculations,
595 : * realizing that the histogram covers only the non-null values that are
596 : * not listed in MCV.
597 : */
598 1477 : selec = 1.0 - stats->stanullfrac - sumcommon;
599 :
600 1477 : if (hist_selec >= 0.0)
601 1322 : selec *= hist_selec;
602 : else
603 : {
604 : /*
605 : * If no histogram but there are values not accounted for by MCV,
606 : * arbitrarily assume half of them will match.
607 : */
608 155 : selec *= 0.5;
609 : }
610 :
611 1477 : selec += mcv_selec;
612 :
613 : /* result should be in range, but make sure... */
614 1477 : CLAMP_PROBABILITY(selec);
615 :
616 1477 : return selec;
617 : }
618 :
619 : /*
620 : * mcv_selectivity - Examine the MCV list for selectivity estimates
621 : *
622 : * Determine the fraction of the variable's MCV population that satisfies
623 : * the predicate (VAR OP CONST), or (CONST OP VAR) if !varonleft. Also
624 : * compute the fraction of the total column population represented by the MCV
625 : * list. This code will work for any boolean-returning predicate operator.
626 : *
627 : * The function result is the MCV selectivity, and the fraction of the
628 : * total population is returned into *sumcommonp. Zeroes are returned
629 : * if there is no MCV list.
630 : */
631 : double
632 1662 : mcv_selectivity(VariableStatData *vardata, FmgrInfo *opproc,
633 : Datum constval, bool varonleft,
634 : double *sumcommonp)
635 : {
636 : double mcv_selec,
637 : sumcommon;
638 : AttStatsSlot sslot;
639 : int i;
640 :
641 1662 : mcv_selec = 0.0;
642 1662 : sumcommon = 0.0;
643 :
644 3236 : if (HeapTupleIsValid(vardata->statsTuple) &&
645 3144 : statistic_proc_security_check(vardata, opproc->fn_oid) &&
646 1570 : get_attstatsslot(&sslot, vardata->statsTuple,
647 : STATISTIC_KIND_MCV, InvalidOid,
648 : ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS))
649 : {
650 37269 : for (i = 0; i < sslot.nvalues; i++)
651 : {
652 72820 : if (varonleft ?
653 36410 : DatumGetBool(FunctionCall2Coll(opproc,
654 : DEFAULT_COLLATION_OID,
655 : sslot.values[i],
656 : constval)) :
657 0 : DatumGetBool(FunctionCall2Coll(opproc,
658 : DEFAULT_COLLATION_OID,
659 : constval,
660 : sslot.values[i])))
661 15499 : mcv_selec += sslot.numbers[i];
662 36410 : sumcommon += sslot.numbers[i];
663 : }
664 859 : free_attstatsslot(&sslot);
665 : }
666 :
667 1662 : *sumcommonp = sumcommon;
668 1662 : return mcv_selec;
669 : }
670 :
671 : /*
672 : * histogram_selectivity - Examine the histogram for selectivity estimates
673 : *
674 : * Determine the fraction of the variable's histogram entries that satisfy
675 : * the predicate (VAR OP CONST), or (CONST OP VAR) if !varonleft.
676 : *
677 : * This code will work for any boolean-returning predicate operator, whether
678 : * or not it has anything to do with the histogram sort operator. We are
679 : * essentially using the histogram just as a representative sample. However,
680 : * small histograms are unlikely to be all that representative, so the caller
681 : * should be prepared to fall back on some other estimation approach when the
682 : * histogram is missing or very small. It may also be prudent to combine this
683 : * approach with another one when the histogram is small.
684 : *
685 : * If the actual histogram size is not at least min_hist_size, we won't bother
686 : * to do the calculation at all. Also, if the n_skip parameter is > 0, we
687 : * ignore the first and last n_skip histogram elements, on the grounds that
688 : * they are outliers and hence not very representative. Typical values for
689 : * these parameters are 10 and 1.
690 : *
691 : * The function result is the selectivity, or -1 if there is no histogram
692 : * or it's smaller than min_hist_size.
693 : *
694 : * The output parameter *hist_size receives the actual histogram size,
695 : * or zero if no histogram. Callers may use this number to decide how
696 : * much faith to put in the function result.
697 : *
698 : * Note that the result disregards both the most-common-values (if any) and
699 : * null entries. The caller is expected to combine this result with
700 : * statistics for those portions of the column population. It may also be
701 : * prudent to clamp the result range, ie, disbelieve exact 0 or 1 outputs.
702 : */
703 : double
704 185 : histogram_selectivity(VariableStatData *vardata, FmgrInfo *opproc,
705 : Datum constval, bool varonleft,
706 : int min_hist_size, int n_skip,
707 : int *hist_size)
708 : {
709 : double result;
710 : AttStatsSlot sslot;
711 :
712 : /* check sanity of parameters */
713 185 : Assert(n_skip >= 0);
714 185 : Assert(min_hist_size > 2 * n_skip);
715 :
716 282 : if (HeapTupleIsValid(vardata->statsTuple) &&
717 194 : statistic_proc_security_check(vardata, opproc->fn_oid) &&
718 97 : get_attstatsslot(&sslot, vardata->statsTuple,
719 : STATISTIC_KIND_HISTOGRAM, InvalidOid,
720 : ATTSTATSSLOT_VALUES))
721 : {
722 97 : *hist_size = sslot.nvalues;
723 97 : if (sslot.nvalues >= min_hist_size)
724 : {
725 66 : int nmatch = 0;
726 : int i;
727 :
728 6545 : for (i = n_skip; i < sslot.nvalues - n_skip; i++)
729 : {
730 12958 : if (varonleft ?
731 6479 : DatumGetBool(FunctionCall2Coll(opproc,
732 : DEFAULT_COLLATION_OID,
733 : sslot.values[i],
734 : constval)) :
735 0 : DatumGetBool(FunctionCall2Coll(opproc,
736 : DEFAULT_COLLATION_OID,
737 : constval,
738 : sslot.values[i])))
739 251 : nmatch++;
740 : }
741 66 : result = ((double) nmatch) / ((double) (sslot.nvalues - 2 * n_skip));
742 : }
743 : else
744 31 : result = -1;
745 97 : free_attstatsslot(&sslot);
746 : }
747 : else
748 : {
749 88 : *hist_size = 0;
750 88 : result = -1;
751 : }
752 :
753 185 : return result;
754 : }
755 :
756 : /*
757 : * ineq_histogram_selectivity - Examine the histogram for scalarineqsel
758 : *
759 : * Determine the fraction of the variable's histogram population that
760 : * satisfies the inequality condition, ie, VAR < CONST or VAR > CONST.
761 : *
762 : * Returns -1 if there is no histogram (valid results will always be >= 0).
763 : *
764 : * Note that the result disregards both the most-common-values (if any) and
765 : * null entries. The caller is expected to combine this result with
766 : * statistics for those portions of the column population.
767 : */
768 : static double
769 1591 : ineq_histogram_selectivity(PlannerInfo *root,
770 : VariableStatData *vardata,
771 : FmgrInfo *opproc, bool isgt,
772 : Datum constval, Oid consttype)
773 : {
774 : double hist_selec;
775 : AttStatsSlot sslot;
776 :
777 1591 : hist_selec = -1.0;
778 :
779 : /*
780 : * Someday, ANALYZE might store more than one histogram per rel/att,
781 : * corresponding to more than one possible sort ordering defined for the
782 : * column type. However, to make that work we will need to figure out
783 : * which staop to search for --- it's not necessarily the one we have at
784 : * hand! (For example, we might have a '<=' operator rather than the '<'
785 : * operator that will appear in staop.) For now, assume that whatever
786 : * appears in pg_statistic is sorted the same way our operator sorts, or
787 : * the reverse way if isgt is TRUE.
788 : */
789 3132 : if (HeapTupleIsValid(vardata->statsTuple) &&
790 3078 : statistic_proc_security_check(vardata, opproc->fn_oid) &&
791 1537 : get_attstatsslot(&sslot, vardata->statsTuple,
792 : STATISTIC_KIND_HISTOGRAM, InvalidOid,
793 : ATTSTATSSLOT_VALUES))
794 : {
795 1386 : if (sslot.nvalues > 1)
796 : {
797 : /*
798 : * Use binary search to find proper location, ie, the first slot
799 : * at which the comparison fails. (If the given operator isn't
800 : * actually sort-compatible with the histogram, you'll get garbage
801 : * results ... but probably not any more garbage-y than you would
802 : * from the old linear search.)
803 : *
804 : * If the binary search accesses the first or last histogram
805 : * entry, we try to replace that endpoint with the true column min
806 : * or max as found by get_actual_variable_range(). This
807 : * ameliorates misestimates when the min or max is moving as a
808 : * result of changes since the last ANALYZE. Note that this could
809 : * result in effectively including MCVs into the histogram that
810 : * weren't there before, but we don't try to correct for that.
811 : */
812 : double histfrac;
813 1386 : int lobound = 0; /* first possible slot to search */
814 1386 : int hibound = sslot.nvalues; /* last+1 slot to search */
815 1386 : bool have_end = false;
816 :
817 : /*
818 : * If there are only two histogram entries, we'll want up-to-date
819 : * values for both. (If there are more than two, we need at most
820 : * one of them to be updated, so we deal with that within the
821 : * loop.)
822 : */
823 1386 : if (sslot.nvalues == 2)
824 32 : have_end = get_actual_variable_range(root,
825 : vardata,
826 : sslot.staop,
827 : &sslot.values[0],
828 32 : &sslot.values[1]);
829 :
830 10890 : while (lobound < hibound)
831 : {
832 8118 : int probe = (lobound + hibound) / 2;
833 : bool ltcmp;
834 :
835 : /*
836 : * If we find ourselves about to compare to the first or last
837 : * histogram entry, first try to replace it with the actual
838 : * current min or max (unless we already did so above).
839 : */
840 8118 : if (probe == 0 && sslot.nvalues > 2)
841 566 : have_end = get_actual_variable_range(root,
842 : vardata,
843 : sslot.staop,
844 : &sslot.values[0],
845 : NULL);
846 7552 : else if (probe == sslot.nvalues - 1 && sslot.nvalues > 2)
847 652 : have_end = get_actual_variable_range(root,
848 : vardata,
849 : sslot.staop,
850 : NULL,
851 652 : &sslot.values[probe]);
852 :
853 8118 : ltcmp = DatumGetBool(FunctionCall2Coll(opproc,
854 : DEFAULT_COLLATION_OID,
855 : sslot.values[probe],
856 : constval));
857 8118 : if (isgt)
858 2821 : ltcmp = !ltcmp;
859 8118 : if (ltcmp)
860 2782 : lobound = probe + 1;
861 : else
862 5336 : hibound = probe;
863 : }
864 :
865 1386 : if (lobound <= 0)
866 : {
867 : /* Constant is below lower histogram boundary. */
868 430 : histfrac = 0.0;
869 : }
870 956 : else if (lobound >= sslot.nvalues)
871 : {
872 : /* Constant is above upper histogram boundary. */
873 223 : histfrac = 1.0;
874 : }
875 : else
876 : {
877 733 : int i = lobound;
878 : double val,
879 : high,
880 : low;
881 : double binfrac;
882 :
883 : /*
884 : * We have values[i-1] <= constant <= values[i].
885 : *
886 : * Convert the constant and the two nearest bin boundary
887 : * values to a uniform comparison scale, and do a linear
888 : * interpolation within this bin.
889 : */
890 2199 : if (convert_to_scalar(constval, consttype, &val,
891 1466 : sslot.values[i - 1], sslot.values[i],
892 : vardata->vartype,
893 : &low, &high))
894 : {
895 732 : if (high <= low)
896 : {
897 : /* cope if bin boundaries appear identical */
898 24 : binfrac = 0.5;
899 : }
900 708 : else if (val <= low)
901 64 : binfrac = 0.0;
902 644 : else if (val >= high)
903 24 : binfrac = 1.0;
904 : else
905 : {
906 620 : binfrac = (val - low) / (high - low);
907 :
908 : /*
909 : * Watch out for the possibility that we got a NaN or
910 : * Infinity from the division. This can happen
911 : * despite the previous checks, if for example "low"
912 : * is -Infinity.
913 : */
914 620 : if (isnan(binfrac) ||
915 620 : binfrac < 0.0 || binfrac > 1.0)
916 0 : binfrac = 0.5;
917 : }
918 : }
919 : else
920 : {
921 : /*
922 : * Ideally we'd produce an error here, on the grounds that
923 : * the given operator shouldn't have scalarXXsel
924 : * registered as its selectivity func unless we can deal
925 : * with its operand types. But currently, all manner of
926 : * stuff is invoking scalarXXsel, so give a default
927 : * estimate until that can be fixed.
928 : */
929 1 : binfrac = 0.5;
930 : }
931 :
932 : /*
933 : * Now, compute the overall selectivity across the values
934 : * represented by the histogram. We have i-1 full bins and
935 : * binfrac partial bin below the constant.
936 : */
937 733 : histfrac = (double) (i - 1) + binfrac;
938 733 : histfrac /= (double) (sslot.nvalues - 1);
939 : }
940 :
941 : /*
942 : * Now histfrac = fraction of histogram entries below the
943 : * constant.
944 : *
945 : * Account for "<" vs ">"
946 : */
947 1386 : hist_selec = isgt ? (1.0 - histfrac) : histfrac;
948 :
949 : /*
950 : * The histogram boundaries are only approximate to begin with,
951 : * and may well be out of date anyway. Therefore, don't believe
952 : * extremely small or large selectivity estimates --- unless we
953 : * got actual current endpoint values from the table.
954 : */
955 1386 : if (have_end)
956 566 : CLAMP_PROBABILITY(hist_selec);
957 : else
958 : {
959 820 : if (hist_selec < 0.0001)
960 119 : hist_selec = 0.0001;
961 701 : else if (hist_selec > 0.9999)
962 223 : hist_selec = 0.9999;
963 : }
964 : }
965 :
966 1386 : free_attstatsslot(&sslot);
967 : }
968 :
969 1591 : return hist_selec;
970 : }
971 :
972 : /*
973 : * scalarltsel - Selectivity of "<" (also "<=") for scalars.
974 : */
975 : Datum
976 1005 : scalarltsel(PG_FUNCTION_ARGS)
977 : {
978 1005 : PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
979 1005 : Oid operator = PG_GETARG_OID(1);
980 1005 : List *args = (List *) PG_GETARG_POINTER(2);
981 1005 : int varRelid = PG_GETARG_INT32(3);
982 : VariableStatData vardata;
983 : Node *other;
984 : bool varonleft;
985 : Datum constval;
986 : Oid consttype;
987 : bool isgt;
988 : double selec;
989 :
990 : /*
991 : * If expression is not variable op something or something op variable,
992 : * then punt and return a default estimate.
993 : */
994 1005 : if (!get_restriction_variable(root, args, varRelid,
995 : &vardata, &other, &varonleft))
996 18 : PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
997 :
998 : /*
999 : * Can't do anything useful if the something is not a constant, either.
1000 : */
1001 987 : if (!IsA(other, Const))
1002 : {
1003 75 : ReleaseVariableStats(vardata);
1004 75 : PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
1005 : }
1006 :
1007 : /*
1008 : * If the constant is NULL, assume operator is strict and return zero, ie,
1009 : * operator will never return TRUE.
1010 : */
1011 912 : if (((Const *) other)->constisnull)
1012 : {
1013 0 : ReleaseVariableStats(vardata);
1014 0 : PG_RETURN_FLOAT8(0.0);
1015 : }
1016 912 : constval = ((Const *) other)->constvalue;
1017 912 : consttype = ((Const *) other)->consttype;
1018 :
1019 : /*
1020 : * Force the var to be on the left to simplify logic in scalarineqsel.
1021 : */
1022 912 : if (varonleft)
1023 : {
1024 : /* we have var < other */
1025 904 : isgt = false;
1026 : }
1027 : else
1028 : {
1029 : /* we have other < var, commute to make var > other */
1030 8 : operator = get_commutator(operator);
1031 8 : if (!operator)
1032 : {
1033 : /* Use default selectivity (should we raise an error instead?) */
1034 0 : ReleaseVariableStats(vardata);
1035 0 : PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
1036 : }
1037 8 : isgt = true;
1038 : }
1039 :
1040 912 : selec = scalarineqsel(root, operator, isgt, &vardata, constval, consttype);
1041 :
1042 912 : ReleaseVariableStats(vardata);
1043 :
1044 912 : PG_RETURN_FLOAT8((float8) selec);
1045 : }
1046 :
1047 : /*
1048 : * scalargtsel - Selectivity of ">" (also ">=") for integers.
1049 : */
1050 : Datum
1051 1133 : scalargtsel(PG_FUNCTION_ARGS)
1052 : {
1053 1133 : PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
1054 1133 : Oid operator = PG_GETARG_OID(1);
1055 1133 : List *args = (List *) PG_GETARG_POINTER(2);
1056 1133 : int varRelid = PG_GETARG_INT32(3);
1057 : VariableStatData vardata;
1058 : Node *other;
1059 : bool varonleft;
1060 : Datum constval;
1061 : Oid consttype;
1062 : bool isgt;
1063 : double selec;
1064 :
1065 : /*
1066 : * If expression is not variable op something or something op variable,
1067 : * then punt and return a default estimate.
1068 : */
1069 1133 : if (!get_restriction_variable(root, args, varRelid,
1070 : &vardata, &other, &varonleft))
1071 3 : PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
1072 :
1073 : /*
1074 : * Can't do anything useful if the something is not a constant, either.
1075 : */
1076 1130 : if (!IsA(other, Const))
1077 : {
1078 16 : ReleaseVariableStats(vardata);
1079 16 : PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
1080 : }
1081 :
1082 : /*
1083 : * If the constant is NULL, assume operator is strict and return zero, ie,
1084 : * operator will never return TRUE.
1085 : */
1086 1114 : if (((Const *) other)->constisnull)
1087 : {
1088 0 : ReleaseVariableStats(vardata);
1089 0 : PG_RETURN_FLOAT8(0.0);
1090 : }
1091 1114 : constval = ((Const *) other)->constvalue;
1092 1114 : consttype = ((Const *) other)->consttype;
1093 :
1094 : /*
1095 : * Force the var to be on the left to simplify logic in scalarineqsel.
1096 : */
1097 1114 : if (varonleft)
1098 : {
1099 : /* we have var > other */
1100 1105 : isgt = true;
1101 : }
1102 : else
1103 : {
1104 : /* we have other > var, commute to make var < other */
1105 9 : operator = get_commutator(operator);
1106 9 : if (!operator)
1107 : {
1108 : /* Use default selectivity (should we raise an error instead?) */
1109 0 : ReleaseVariableStats(vardata);
1110 0 : PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
1111 : }
1112 9 : isgt = false;
1113 : }
1114 :
1115 1114 : selec = scalarineqsel(root, operator, isgt, &vardata, constval, consttype);
1116 :
1117 1114 : ReleaseVariableStats(vardata);
1118 :
1119 1114 : PG_RETURN_FLOAT8((float8) selec);
1120 : }
1121 :
1122 : /*
1123 : * patternsel - Generic code for pattern-match selectivity.
1124 : */
1125 : static double
1126 461 : patternsel(PG_FUNCTION_ARGS, Pattern_Type ptype, bool negate)
1127 : {
1128 461 : PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
1129 461 : Oid operator = PG_GETARG_OID(1);
1130 461 : List *args = (List *) PG_GETARG_POINTER(2);
1131 461 : int varRelid = PG_GETARG_INT32(3);
1132 461 : Oid collation = PG_GET_COLLATION();
1133 : VariableStatData vardata;
1134 : Node *other;
1135 : bool varonleft;
1136 : Datum constval;
1137 : Oid consttype;
1138 : Oid vartype;
1139 : Oid opfamily;
1140 : Pattern_Prefix_Status pstatus;
1141 : Const *patt;
1142 461 : Const *prefix = NULL;
1143 461 : Selectivity rest_selec = 0;
1144 461 : double nullfrac = 0.0;
1145 : double result;
1146 :
1147 : /*
1148 : * If this is for a NOT LIKE or similar operator, get the corresponding
1149 : * positive-match operator and work with that. Set result to the correct
1150 : * default estimate, too.
1151 : */
1152 461 : if (negate)
1153 : {
1154 33 : operator = get_negator(operator);
1155 33 : if (!OidIsValid(operator))
1156 0 : elog(ERROR, "patternsel called for operator without a negator");
1157 33 : result = 1.0 - DEFAULT_MATCH_SEL;
1158 : }
1159 : else
1160 : {
1161 428 : result = DEFAULT_MATCH_SEL;
1162 : }
1163 :
1164 : /*
1165 : * If expression is not variable op constant, then punt and return a
1166 : * default estimate.
1167 : */
1168 461 : if (!get_restriction_variable(root, args, varRelid,
1169 : &vardata, &other, &varonleft))
1170 2 : return result;
1171 459 : if (!varonleft || !IsA(other, Const))
1172 : {
1173 0 : ReleaseVariableStats(vardata);
1174 0 : return result;
1175 : }
1176 :
1177 : /*
1178 : * If the constant is NULL, assume operator is strict and return zero, ie,
1179 : * operator will never return TRUE. (It's zero even for a negator op.)
1180 : */
1181 459 : if (((Const *) other)->constisnull)
1182 : {
1183 0 : ReleaseVariableStats(vardata);
1184 0 : return 0.0;
1185 : }
1186 459 : constval = ((Const *) other)->constvalue;
1187 459 : consttype = ((Const *) other)->consttype;
1188 :
1189 : /*
1190 : * The right-hand const is type text or bytea for all supported operators.
1191 : * We do not expect to see binary-compatible types here, since
1192 : * const-folding should have relabeled the const to exactly match the
1193 : * operator's declared type.
1194 : */
1195 459 : if (consttype != TEXTOID && consttype != BYTEAOID)
1196 : {
1197 0 : ReleaseVariableStats(vardata);
1198 0 : return result;
1199 : }
1200 :
1201 : /*
1202 : * Similarly, the exposed type of the left-hand side should be one of
1203 : * those we know. (Do not look at vardata.atttype, which might be
1204 : * something binary-compatible but different.) We can use it to choose
1205 : * the index opfamily from which we must draw the comparison operators.
1206 : *
1207 : * NOTE: It would be more correct to use the PATTERN opfamilies than the
1208 : * simple ones, but at the moment ANALYZE will not generate statistics for
1209 : * the PATTERN operators. But our results are so approximate anyway that
1210 : * it probably hardly matters.
1211 : */
1212 459 : vartype = vardata.vartype;
1213 :
1214 459 : switch (vartype)
1215 : {
1216 : case TEXTOID:
1217 79 : opfamily = TEXT_BTREE_FAM_OID;
1218 79 : break;
1219 : case BPCHAROID:
1220 6 : opfamily = BPCHAR_BTREE_FAM_OID;
1221 6 : break;
1222 : case NAMEOID:
1223 374 : opfamily = NAME_BTREE_FAM_OID;
1224 374 : break;
1225 : case BYTEAOID:
1226 0 : opfamily = BYTEA_BTREE_FAM_OID;
1227 0 : break;
1228 : default:
1229 0 : ReleaseVariableStats(vardata);
1230 0 : return result;
1231 : }
1232 :
1233 : /*
1234 : * Grab the nullfrac for use below.
1235 : */
1236 459 : if (HeapTupleIsValid(vardata.statsTuple))
1237 : {
1238 : Form_pg_statistic stats;
1239 :
1240 363 : stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple);
1241 363 : nullfrac = stats->stanullfrac;
1242 : }
1243 :
1244 : /*
1245 : * Pull out any fixed prefix implied by the pattern, and estimate the
1246 : * fractional selectivity of the remainder of the pattern. Unlike many of
1247 : * the other functions in this file, we use the pattern operator's actual
1248 : * collation for this step. This is not because we expect the collation
1249 : * to make a big difference in the selectivity estimate (it seldom would),
1250 : * but because we want to be sure we cache compiled regexps under the
1251 : * right cache key, so that they can be re-used at runtime.
1252 : */
1253 459 : patt = (Const *) other;
1254 459 : pstatus = pattern_fixed_prefix(patt, ptype, collation,
1255 : &prefix, &rest_selec);
1256 :
1257 : /*
1258 : * If necessary, coerce the prefix constant to the right type.
1259 : */
1260 459 : if (prefix && prefix->consttype != vartype)
1261 : {
1262 : char *prefixstr;
1263 :
1264 362 : switch (prefix->consttype)
1265 : {
1266 : case TEXTOID:
1267 362 : prefixstr = TextDatumGetCString(prefix->constvalue);
1268 362 : break;
1269 : case BYTEAOID:
1270 0 : prefixstr = DatumGetCString(DirectFunctionCall1(byteaout,
1271 : prefix->constvalue));
1272 0 : break;
1273 : default:
1274 0 : elog(ERROR, "unrecognized consttype: %u",
1275 : prefix->consttype);
1276 : ReleaseVariableStats(vardata);
1277 : return result;
1278 : }
1279 362 : prefix = string_to_const(prefixstr, vartype);
1280 362 : pfree(prefixstr);
1281 : }
1282 :
1283 459 : if (pstatus == Pattern_Prefix_Exact)
1284 : {
1285 : /*
1286 : * Pattern specifies an exact match, so pretend operator is '='
1287 : */
1288 274 : Oid eqopr = get_opfamily_member(opfamily, vartype, vartype,
1289 : BTEqualStrategyNumber);
1290 :
1291 274 : if (eqopr == InvalidOid)
1292 0 : elog(ERROR, "no = operator for opfamily %u", opfamily);
1293 274 : result = var_eq_const(&vardata, eqopr, prefix->constvalue,
1294 : false, true, false);
1295 : }
1296 : else
1297 : {
1298 : /*
1299 : * Not exact-match pattern. If we have a sufficiently large
1300 : * histogram, estimate selectivity for the histogram part of the
1301 : * population by counting matches in the histogram. If not, estimate
1302 : * selectivity of the fixed prefix and remainder of pattern
1303 : * separately, then combine the two to get an estimate of the
1304 : * selectivity for the part of the column population represented by
1305 : * the histogram. (For small histograms, we combine these
1306 : * approaches.)
1307 : *
1308 : * We then add up data for any most-common-values values; these are
1309 : * not in the histogram population, and we can get exact answers for
1310 : * them by applying the pattern operator, so there's no reason to
1311 : * approximate. (If the MCVs cover a significant part of the total
1312 : * population, this gives us a big leg up in accuracy.)
1313 : */
1314 : Selectivity selec;
1315 : int hist_size;
1316 : FmgrInfo opproc;
1317 : double mcv_selec,
1318 : sumcommon;
1319 :
1320 : /* Try to use the histogram entries to get selectivity */
1321 185 : fmgr_info(get_opcode(operator), &opproc);
1322 :
1323 185 : selec = histogram_selectivity(&vardata, &opproc, constval, true,
1324 : 10, 1, &hist_size);
1325 :
1326 : /* If not at least 100 entries, use the heuristic method */
1327 185 : if (hist_size < 100)
1328 : {
1329 : Selectivity heursel;
1330 : Selectivity prefixsel;
1331 :
1332 120 : if (pstatus == Pattern_Prefix_Partial)
1333 82 : prefixsel = prefix_selectivity(root, &vardata, vartype,
1334 : opfamily, prefix);
1335 : else
1336 38 : prefixsel = 1.0;
1337 120 : heursel = prefixsel * rest_selec;
1338 :
1339 120 : if (selec < 0) /* fewer than 10 histogram entries? */
1340 119 : selec = heursel;
1341 : else
1342 : {
1343 : /*
1344 : * For histogram sizes from 10 to 100, we combine the
1345 : * histogram and heuristic selectivities, putting increasingly
1346 : * more trust in the histogram for larger sizes.
1347 : */
1348 1 : double hist_weight = hist_size / 100.0;
1349 :
1350 1 : selec = selec * hist_weight + heursel * (1.0 - hist_weight);
1351 : }
1352 : }
1353 :
1354 : /* In any case, don't believe extremely small or large estimates. */
1355 185 : if (selec < 0.0001)
1356 101 : selec = 0.0001;
1357 84 : else if (selec > 0.9999)
1358 4 : selec = 0.9999;
1359 :
1360 : /*
1361 : * If we have most-common-values info, add up the fractions of the MCV
1362 : * entries that satisfy MCV OP PATTERN. These fractions contribute
1363 : * directly to the result selectivity. Also add up the total fraction
1364 : * represented by MCV entries.
1365 : */
1366 185 : mcv_selec = mcv_selectivity(&vardata, &opproc, constval, true,
1367 : &sumcommon);
1368 :
1369 : /*
1370 : * Now merge the results from the MCV and histogram calculations,
1371 : * realizing that the histogram covers only the non-null values that
1372 : * are not listed in MCV.
1373 : */
1374 185 : selec *= 1.0 - nullfrac - sumcommon;
1375 185 : selec += mcv_selec;
1376 185 : result = selec;
1377 : }
1378 :
1379 : /* now adjust if we wanted not-match rather than match */
1380 459 : if (negate)
1381 31 : result = 1.0 - result - nullfrac;
1382 :
1383 : /* result should be in range, but make sure... */
1384 459 : CLAMP_PROBABILITY(result);
1385 :
1386 459 : if (prefix)
1387 : {
1388 421 : pfree(DatumGetPointer(prefix->constvalue));
1389 421 : pfree(prefix);
1390 : }
1391 :
1392 459 : ReleaseVariableStats(vardata);
1393 :
1394 459 : return result;
1395 : }
1396 :
1397 : /*
1398 : * regexeqsel - Selectivity of regular-expression pattern match.
1399 : */
1400 : Datum
1401 329 : regexeqsel(PG_FUNCTION_ARGS)
1402 : {
1403 329 : PG_RETURN_FLOAT8(patternsel(fcinfo, Pattern_Type_Regex, false));
1404 : }
1405 :
1406 : /*
1407 : * icregexeqsel - Selectivity of case-insensitive regex match.
1408 : */
1409 : Datum
1410 0 : icregexeqsel(PG_FUNCTION_ARGS)
1411 : {
1412 0 : PG_RETURN_FLOAT8(patternsel(fcinfo, Pattern_Type_Regex_IC, false));
1413 : }
1414 :
1415 : /*
1416 : * likesel - Selectivity of LIKE pattern match.
1417 : */
1418 : Datum
1419 99 : likesel(PG_FUNCTION_ARGS)
1420 : {
1421 99 : PG_RETURN_FLOAT8(patternsel(fcinfo, Pattern_Type_Like, false));
1422 : }
1423 :
1424 : /*
1425 : * iclikesel - Selectivity of ILIKE pattern match.
1426 : */
1427 : Datum
1428 0 : iclikesel(PG_FUNCTION_ARGS)
1429 : {
1430 0 : PG_RETURN_FLOAT8(patternsel(fcinfo, Pattern_Type_Like_IC, false));
1431 : }
1432 :
1433 : /*
1434 : * regexnesel - Selectivity of regular-expression pattern non-match.
1435 : */
1436 : Datum
1437 20 : regexnesel(PG_FUNCTION_ARGS)
1438 : {
1439 20 : PG_RETURN_FLOAT8(patternsel(fcinfo, Pattern_Type_Regex, true));
1440 : }
1441 :
1442 : /*
1443 : * icregexnesel - Selectivity of case-insensitive regex non-match.
1444 : */
1445 : Datum
1446 2 : icregexnesel(PG_FUNCTION_ARGS)
1447 : {
1448 2 : PG_RETURN_FLOAT8(patternsel(fcinfo, Pattern_Type_Regex_IC, true));
1449 : }
1450 :
1451 : /*
1452 : * nlikesel - Selectivity of LIKE pattern non-match.
1453 : */
1454 : Datum
1455 11 : nlikesel(PG_FUNCTION_ARGS)
1456 : {
1457 11 : PG_RETURN_FLOAT8(patternsel(fcinfo, Pattern_Type_Like, true));
1458 : }
1459 :
1460 : /*
1461 : * icnlikesel - Selectivity of ILIKE pattern non-match.
1462 : */
1463 : Datum
1464 0 : icnlikesel(PG_FUNCTION_ARGS)
1465 : {
1466 0 : PG_RETURN_FLOAT8(patternsel(fcinfo, Pattern_Type_Like_IC, true));
1467 : }
1468 :
1469 : /*
1470 : * boolvarsel - Selectivity of Boolean variable.
1471 : *
1472 : * This can actually be called on any boolean-valued expression. If it
1473 : * involves only Vars of the specified relation, and if there are statistics
1474 : * about the Var or expression (the latter is possible if it's indexed) then
1475 : * we'll produce a real estimate; otherwise it's just a default.
1476 : */
1477 : Selectivity
1478 2255 : boolvarsel(PlannerInfo *root, Node *arg, int varRelid)
1479 : {
1480 : VariableStatData vardata;
1481 : double selec;
1482 :
1483 2255 : examine_variable(root, arg, varRelid, &vardata);
1484 2255 : if (HeapTupleIsValid(vardata.statsTuple))
1485 : {
1486 : /*
1487 : * A boolean variable V is equivalent to the clause V = 't', so we
1488 : * compute the selectivity as if that is what we have.
1489 : */
1490 844 : selec = var_eq_const(&vardata, BooleanEqualOperator,
1491 : BoolGetDatum(true), false, true, false);
1492 : }
1493 1411 : else if (is_funcclause(arg))
1494 : {
1495 : /*
1496 : * If we have no stats and it's a function call, estimate 0.3333333.
1497 : * This seems a pretty unprincipled choice, but Postgres has been
1498 : * using that estimate for function calls since 1992. The hoariness
1499 : * of this behavior suggests that we should not be in too much hurry
1500 : * to use another value.
1501 : */
1502 1091 : selec = 0.3333333;
1503 : }
1504 : else
1505 : {
1506 : /* Otherwise, the default estimate is 0.5 */
1507 320 : selec = 0.5;
1508 : }
1509 2255 : ReleaseVariableStats(vardata);
1510 2255 : return selec;
1511 : }
1512 :
1513 : /*
1514 : * booltestsel - Selectivity of BooleanTest Node.
1515 : */
1516 : Selectivity
1517 20 : booltestsel(PlannerInfo *root, BoolTestType booltesttype, Node *arg,
1518 : int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
1519 : {
1520 : VariableStatData vardata;
1521 : double selec;
1522 :
1523 20 : examine_variable(root, arg, varRelid, &vardata);
1524 :
1525 20 : if (HeapTupleIsValid(vardata.statsTuple))
1526 : {
1527 : Form_pg_statistic stats;
1528 : double freq_null;
1529 : AttStatsSlot sslot;
1530 :
1531 0 : stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple);
1532 0 : freq_null = stats->stanullfrac;
1533 :
1534 0 : if (get_attstatsslot(&sslot, vardata.statsTuple,
1535 : STATISTIC_KIND_MCV, InvalidOid,
1536 : ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS)
1537 0 : && sslot.nnumbers > 0)
1538 0 : {
1539 : double freq_true;
1540 : double freq_false;
1541 :
1542 : /*
1543 : * Get first MCV frequency and derive frequency for true.
1544 : */
1545 0 : if (DatumGetBool(sslot.values[0]))
1546 0 : freq_true = sslot.numbers[0];
1547 : else
1548 0 : freq_true = 1.0 - sslot.numbers[0] - freq_null;
1549 :
1550 : /*
1551 : * Next derive frequency for false. Then use these as appropriate
1552 : * to derive frequency for each case.
1553 : */
1554 0 : freq_false = 1.0 - freq_true - freq_null;
1555 :
1556 0 : switch (booltesttype)
1557 : {
1558 : case IS_UNKNOWN:
1559 : /* select only NULL values */
1560 0 : selec = freq_null;
1561 0 : break;
1562 : case IS_NOT_UNKNOWN:
1563 : /* select non-NULL values */
1564 0 : selec = 1.0 - freq_null;
1565 0 : break;
1566 : case IS_TRUE:
1567 : /* select only TRUE values */
1568 0 : selec = freq_true;
1569 0 : break;
1570 : case IS_NOT_TRUE:
1571 : /* select non-TRUE values */
1572 0 : selec = 1.0 - freq_true;
1573 0 : break;
1574 : case IS_FALSE:
1575 : /* select only FALSE values */
1576 0 : selec = freq_false;
1577 0 : break;
1578 : case IS_NOT_FALSE:
1579 : /* select non-FALSE values */
1580 0 : selec = 1.0 - freq_false;
1581 0 : break;
1582 : default:
1583 0 : elog(ERROR, "unrecognized booltesttype: %d",
1584 : (int) booltesttype);
1585 : selec = 0.0; /* Keep compiler quiet */
1586 : break;
1587 : }
1588 :
1589 0 : free_attstatsslot(&sslot);
1590 : }
1591 : else
1592 : {
1593 : /*
1594 : * No most-common-value info available. Still have null fraction
1595 : * information, so use it for IS [NOT] UNKNOWN. Otherwise adjust
1596 : * for null fraction and assume a 50-50 split of TRUE and FALSE.
1597 : */
1598 0 : switch (booltesttype)
1599 : {
1600 : case IS_UNKNOWN:
1601 : /* select only NULL values */
1602 0 : selec = freq_null;
1603 0 : break;
1604 : case IS_NOT_UNKNOWN:
1605 : /* select non-NULL values */
1606 0 : selec = 1.0 - freq_null;
1607 0 : break;
1608 : case IS_TRUE:
1609 : case IS_FALSE:
1610 : /* Assume we select half of the non-NULL values */
1611 0 : selec = (1.0 - freq_null) / 2.0;
1612 0 : break;
1613 : case IS_NOT_TRUE:
1614 : case IS_NOT_FALSE:
1615 : /* Assume we select NULLs plus half of the non-NULLs */
1616 : /* equiv. to freq_null + (1.0 - freq_null) / 2.0 */
1617 0 : selec = (freq_null + 1.0) / 2.0;
1618 0 : break;
1619 : default:
1620 0 : elog(ERROR, "unrecognized booltesttype: %d",
1621 : (int) booltesttype);
1622 : selec = 0.0; /* Keep compiler quiet */
1623 : break;
1624 : }
1625 : }
1626 : }
1627 : else
1628 : {
1629 : /*
1630 : * If we can't get variable statistics for the argument, perhaps
1631 : * clause_selectivity can do something with it. We ignore the
1632 : * possibility of a NULL value when using clause_selectivity, and just
1633 : * assume the value is either TRUE or FALSE.
1634 : */
1635 20 : switch (booltesttype)
1636 : {
1637 : case IS_UNKNOWN:
1638 0 : selec = DEFAULT_UNK_SEL;
1639 0 : break;
1640 : case IS_NOT_UNKNOWN:
1641 0 : selec = DEFAULT_NOT_UNK_SEL;
1642 0 : break;
1643 : case IS_TRUE:
1644 : case IS_NOT_FALSE:
1645 5 : selec = (double) clause_selectivity(root, arg,
1646 : varRelid,
1647 : jointype, sjinfo);
1648 5 : break;
1649 : case IS_FALSE:
1650 : case IS_NOT_TRUE:
1651 15 : selec = 1.0 - (double) clause_selectivity(root, arg,
1652 : varRelid,
1653 : jointype, sjinfo);
1654 15 : break;
1655 : default:
1656 0 : elog(ERROR, "unrecognized booltesttype: %d",
1657 : (int) booltesttype);
1658 : selec = 0.0; /* Keep compiler quiet */
1659 : break;
1660 : }
1661 : }
1662 :
1663 20 : ReleaseVariableStats(vardata);
1664 :
1665 : /* result should be in range, but make sure... */
1666 20 : CLAMP_PROBABILITY(selec);
1667 :
1668 20 : return (Selectivity) selec;
1669 : }
1670 :
1671 : /*
1672 : * nulltestsel - Selectivity of NullTest Node.
1673 : */
1674 : Selectivity
1675 887 : nulltestsel(PlannerInfo *root, NullTestType nulltesttype, Node *arg,
1676 : int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
1677 : {
1678 : VariableStatData vardata;
1679 : double selec;
1680 :
1681 887 : examine_variable(root, arg, varRelid, &vardata);
1682 :
1683 887 : if (HeapTupleIsValid(vardata.statsTuple))
1684 : {
1685 : Form_pg_statistic stats;
1686 : double freq_null;
1687 :
1688 357 : stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple);
1689 357 : freq_null = stats->stanullfrac;
1690 :
1691 357 : switch (nulltesttype)
1692 : {
1693 : case IS_NULL:
1694 :
1695 : /*
1696 : * Use freq_null directly.
1697 : */
1698 287 : selec = freq_null;
1699 287 : break;
1700 : case IS_NOT_NULL:
1701 :
1702 : /*
1703 : * Select not unknown (not null) values. Calculate from
1704 : * freq_null.
1705 : */
1706 70 : selec = 1.0 - freq_null;
1707 70 : break;
1708 : default:
1709 0 : elog(ERROR, "unrecognized nulltesttype: %d",
1710 : (int) nulltesttype);
1711 : return (Selectivity) 0; /* keep compiler quiet */
1712 : }
1713 : }
1714 : else
1715 : {
1716 : /*
1717 : * No ANALYZE stats available, so make a guess
1718 : */
1719 530 : switch (nulltesttype)
1720 : {
1721 : case IS_NULL:
1722 217 : selec = DEFAULT_UNK_SEL;
1723 217 : break;
1724 : case IS_NOT_NULL:
1725 313 : selec = DEFAULT_NOT_UNK_SEL;
1726 313 : break;
1727 : default:
1728 0 : elog(ERROR, "unrecognized nulltesttype: %d",
1729 : (int) nulltesttype);
1730 : return (Selectivity) 0; /* keep compiler quiet */
1731 : }
1732 : }
1733 :
1734 887 : ReleaseVariableStats(vardata);
1735 :
1736 : /* result should be in range, but make sure... */
1737 887 : CLAMP_PROBABILITY(selec);
1738 :
1739 887 : return (Selectivity) selec;
1740 : }
1741 :
1742 : /*
1743 : * strip_array_coercion - strip binary-compatible relabeling from an array expr
1744 : *
1745 : * For array values, the parser normally generates ArrayCoerceExpr conversions,
1746 : * but it seems possible that RelabelType might show up. Also, the planner
1747 : * is not currently tense about collapsing stacked ArrayCoerceExpr nodes,
1748 : * so we need to be ready to deal with more than one level.
1749 : */
1750 : static Node *
1751 1851 : strip_array_coercion(Node *node)
1752 : {
1753 : for (;;)
1754 : {
1755 1867 : if (node && IsA(node, ArrayCoerceExpr) &&
1756 16 : ((ArrayCoerceExpr *) node)->elemfuncid == InvalidOid)
1757 : {
1758 16 : node = (Node *) ((ArrayCoerceExpr *) node)->arg;
1759 : }
1760 1835 : else if (node && IsA(node, RelabelType))
1761 : {
1762 : /* We don't really expect this case, but may as well cope */
1763 0 : node = (Node *) ((RelabelType *) node)->arg;
1764 : }
1765 : else
1766 : break;
1767 16 : }
1768 1835 : return node;
1769 : }
1770 :
1771 : /*
1772 : * scalararraysel - Selectivity of ScalarArrayOpExpr Node.
1773 : */
1774 : Selectivity
1775 498 : scalararraysel(PlannerInfo *root,
1776 : ScalarArrayOpExpr *clause,
1777 : bool is_join_clause,
1778 : int varRelid,
1779 : JoinType jointype,
1780 : SpecialJoinInfo *sjinfo)
1781 : {
1782 498 : Oid operator = clause->opno;
1783 498 : bool useOr = clause->useOr;
1784 498 : bool isEquality = false;
1785 498 : bool isInequality = false;
1786 : Node *leftop;
1787 : Node *rightop;
1788 : Oid nominal_element_type;
1789 : Oid nominal_element_collation;
1790 : TypeCacheEntry *typentry;
1791 : RegProcedure oprsel;
1792 : FmgrInfo oprselproc;
1793 : Selectivity s1;
1794 : Selectivity s1disjoint;
1795 :
1796 : /* First, deconstruct the expression */
1797 498 : Assert(list_length(clause->args) == 2);
1798 498 : leftop = (Node *) linitial(clause->args);
1799 498 : rightop = (Node *) lsecond(clause->args);
1800 :
1801 : /* aggressively reduce both sides to constants */
1802 498 : leftop = estimate_expression_value(root, leftop);
1803 498 : rightop = estimate_expression_value(root, rightop);
1804 :
1805 : /* get nominal (after relabeling) element type of rightop */
1806 498 : nominal_element_type = get_base_element_type(exprType(rightop));
1807 498 : if (!OidIsValid(nominal_element_type))
1808 0 : return (Selectivity) 0.5; /* probably shouldn't happen */
1809 : /* get nominal collation, too, for generating constants */
1810 498 : nominal_element_collation = exprCollation(rightop);
1811 :
1812 : /* look through any binary-compatible relabeling of rightop */
1813 498 : rightop = strip_array_coercion(rightop);
1814 :
1815 : /*
1816 : * Detect whether the operator is the default equality or inequality
1817 : * operator of the array element type.
1818 : */
1819 498 : typentry = lookup_type_cache(nominal_element_type, TYPECACHE_EQ_OPR);
1820 498 : if (OidIsValid(typentry->eq_opr))
1821 : {
1822 498 : if (operator == typentry->eq_opr)
1823 451 : isEquality = true;
1824 47 : else if (get_negator(operator) == typentry->eq_opr)
1825 41 : isInequality = true;
1826 : }
1827 :
1828 : /*
1829 : * If it is equality or inequality, we might be able to estimate this as a
1830 : * form of array containment; for instance "const = ANY(column)" can be
1831 : * treated as "ARRAY[const] <@ column". scalararraysel_containment tries
1832 : * that, and returns the selectivity estimate if successful, or -1 if not.
1833 : */
1834 498 : if ((isEquality || isInequality) && !is_join_clause)
1835 : {
1836 492 : s1 = scalararraysel_containment(root, leftop, rightop,
1837 : nominal_element_type,
1838 : isEquality, useOr, varRelid);
1839 492 : if (s1 >= 0.0)
1840 8 : return s1;
1841 : }
1842 :
1843 : /*
1844 : * Look up the underlying operator's selectivity estimator. Punt if it
1845 : * hasn't got one.
1846 : */
1847 490 : if (is_join_clause)
1848 0 : oprsel = get_oprjoin(operator);
1849 : else
1850 490 : oprsel = get_oprrest(operator);
1851 490 : if (!oprsel)
1852 0 : return (Selectivity) 0.5;
1853 490 : fmgr_info(oprsel, &oprselproc);
1854 :
1855 : /*
1856 : * In the array-containment check above, we must only believe that an
1857 : * operator is equality or inequality if it is the default btree equality
1858 : * operator (or its negator) for the element type, since those are the
1859 : * operators that array containment will use. But in what follows, we can
1860 : * be a little laxer, and also believe that any operators using eqsel() or
1861 : * neqsel() as selectivity estimator act like equality or inequality.
1862 : */
1863 490 : if (oprsel == F_EQSEL || oprsel == F_EQJOINSEL)
1864 449 : isEquality = true;
1865 41 : else if (oprsel == F_NEQSEL || oprsel == F_NEQJOINSEL)
1866 35 : isInequality = true;
1867 :
1868 : /*
1869 : * We consider three cases:
1870 : *
1871 : * 1. rightop is an Array constant: deconstruct the array, apply the
1872 : * operator's selectivity function for each array element, and merge the
1873 : * results in the same way that clausesel.c does for AND/OR combinations.
1874 : *
1875 : * 2. rightop is an ARRAY[] construct: apply the operator's selectivity
1876 : * function for each element of the ARRAY[] construct, and merge.
1877 : *
1878 : * 3. otherwise, make a guess ...
1879 : */
1880 490 : if (rightop && IsA(rightop, Const))
1881 305 : {
1882 305 : Datum arraydatum = ((Const *) rightop)->constvalue;
1883 305 : bool arrayisnull = ((Const *) rightop)->constisnull;
1884 : ArrayType *arrayval;
1885 : int16 elmlen;
1886 : bool elmbyval;
1887 : char elmalign;
1888 : int num_elems;
1889 : Datum *elem_values;
1890 : bool *elem_nulls;
1891 : int i;
1892 :
1893 305 : if (arrayisnull) /* qual can't succeed if null array */
1894 0 : return (Selectivity) 0.0;
1895 305 : arrayval = DatumGetArrayTypeP(arraydatum);
1896 305 : get_typlenbyvalalign(ARR_ELEMTYPE(arrayval),
1897 : &elmlen, &elmbyval, &elmalign);
1898 305 : deconstruct_array(arrayval,
1899 : ARR_ELEMTYPE(arrayval),
1900 : elmlen, elmbyval, elmalign,
1901 : &elem_values, &elem_nulls, &num_elems);
1902 :
1903 : /*
1904 : * For generic operators, we assume the probability of success is
1905 : * independent for each array element. But for "= ANY" or "<> ALL",
1906 : * if the array elements are distinct (which'd typically be the case)
1907 : * then the probabilities are disjoint, and we should just sum them.
1908 : *
1909 : * If we were being really tense we would try to confirm that the
1910 : * elements are all distinct, but that would be expensive and it
1911 : * doesn't seem to be worth the cycles; it would amount to penalizing
1912 : * well-written queries in favor of poorly-written ones. However, we
1913 : * do protect ourselves a little bit by checking whether the
1914 : * disjointness assumption leads to an impossible (out of range)
1915 : * probability; if so, we fall back to the normal calculation.
1916 : */
1917 305 : s1 = s1disjoint = (useOr ? 0.0 : 1.0);
1918 :
1919 1232 : for (i = 0; i < num_elems; i++)
1920 : {
1921 : List *args;
1922 : Selectivity s2;
1923 :
1924 927 : args = list_make2(leftop,
1925 : makeConst(nominal_element_type,
1926 : -1,
1927 : nominal_element_collation,
1928 : elmlen,
1929 : elem_values[i],
1930 : elem_nulls[i],
1931 : elmbyval));
1932 927 : if (is_join_clause)
1933 0 : s2 = DatumGetFloat8(FunctionCall5Coll(&oprselproc,
1934 : clause->inputcollid,
1935 : PointerGetDatum(root),
1936 : ObjectIdGetDatum(operator),
1937 : PointerGetDatum(args),
1938 : Int16GetDatum(jointype),
1939 : PointerGetDatum(sjinfo)));
1940 : else
1941 927 : s2 = DatumGetFloat8(FunctionCall4Coll(&oprselproc,
1942 : clause->inputcollid,
1943 : PointerGetDatum(root),
1944 : ObjectIdGetDatum(operator),
1945 : PointerGetDatum(args),
1946 : Int32GetDatum(varRelid)));
1947 :
1948 927 : if (useOr)
1949 : {
1950 829 : s1 = s1 + s2 - s1 * s2;
1951 829 : if (isEquality)
1952 813 : s1disjoint += s2;
1953 : }
1954 : else
1955 : {
1956 98 : s1 = s1 * s2;
1957 98 : if (isInequality)
1958 98 : s1disjoint += s2 - 1.0;
1959 : }
1960 : }
1961 :
1962 : /* accept disjoint-probability estimate if in range */
1963 305 : if ((useOr ? isEquality : isInequality) &&
1964 291 : s1disjoint >= 0.0 && s1disjoint <= 1.0)
1965 291 : s1 = s1disjoint;
1966 : }
1967 191 : else if (rightop && IsA(rightop, ArrayExpr) &&
1968 6 : !((ArrayExpr *) rightop)->multidims)
1969 6 : {
1970 6 : ArrayExpr *arrayexpr = (ArrayExpr *) rightop;
1971 : int16 elmlen;
1972 : bool elmbyval;
1973 : ListCell *l;
1974 :
1975 6 : get_typlenbyval(arrayexpr->element_typeid,
1976 : &elmlen, &elmbyval);
1977 :
1978 : /*
1979 : * We use the assumption of disjoint probabilities here too, although
1980 : * the odds of equal array elements are rather higher if the elements
1981 : * are not all constants (which they won't be, else constant folding
1982 : * would have reduced the ArrayExpr to a Const). In this path it's
1983 : * critical to have the sanity check on the s1disjoint estimate.
1984 : */
1985 6 : s1 = s1disjoint = (useOr ? 0.0 : 1.0);
1986 :
1987 18 : foreach(l, arrayexpr->elements)
1988 : {
1989 12 : Node *elem = (Node *) lfirst(l);
1990 : List *args;
1991 : Selectivity s2;
1992 :
1993 : /*
1994 : * Theoretically, if elem isn't of nominal_element_type we should
1995 : * insert a RelabelType, but it seems unlikely that any operator
1996 : * estimation function would really care ...
1997 : */
1998 12 : args = list_make2(leftop, elem);
1999 12 : if (is_join_clause)
2000 0 : s2 = DatumGetFloat8(FunctionCall5Coll(&oprselproc,
2001 : clause->inputcollid,
2002 : PointerGetDatum(root),
2003 : ObjectIdGetDatum(operator),
2004 : PointerGetDatum(args),
2005 : Int16GetDatum(jointype),
2006 : PointerGetDatum(sjinfo)));
2007 : else
2008 12 : s2 = DatumGetFloat8(FunctionCall4Coll(&oprselproc,
2009 : clause->inputcollid,
2010 : PointerGetDatum(root),
2011 : ObjectIdGetDatum(operator),
2012 : PointerGetDatum(args),
2013 : Int32GetDatum(varRelid)));
2014 :
2015 12 : if (useOr)
2016 : {
2017 12 : s1 = s1 + s2 - s1 * s2;
2018 12 : if (isEquality)
2019 12 : s1disjoint += s2;
2020 : }
2021 : else
2022 : {
2023 0 : s1 = s1 * s2;
2024 0 : if (isInequality)
2025 0 : s1disjoint += s2 - 1.0;
2026 : }
2027 : }
2028 :
2029 : /* accept disjoint-probability estimate if in range */
2030 6 : if ((useOr ? isEquality : isInequality) &&
2031 6 : s1disjoint >= 0.0 && s1disjoint <= 1.0)
2032 6 : s1 = s1disjoint;
2033 : }
2034 : else
2035 : {
2036 : CaseTestExpr *dummyexpr;
2037 : List *args;
2038 : Selectivity s2;
2039 : int i;
2040 :
2041 : /*
2042 : * We need a dummy rightop to pass to the operator selectivity
2043 : * routine. It can be pretty much anything that doesn't look like a
2044 : * constant; CaseTestExpr is a convenient choice.
2045 : */
2046 179 : dummyexpr = makeNode(CaseTestExpr);
2047 179 : dummyexpr->typeId = nominal_element_type;
2048 179 : dummyexpr->typeMod = -1;
2049 179 : dummyexpr->collation = clause->inputcollid;
2050 179 : args = list_make2(leftop, dummyexpr);
2051 179 : if (is_join_clause)
2052 0 : s2 = DatumGetFloat8(FunctionCall5Coll(&oprselproc,
2053 : clause->inputcollid,
2054 : PointerGetDatum(root),
2055 : ObjectIdGetDatum(operator),
2056 : PointerGetDatum(args),
2057 : Int16GetDatum(jointype),
2058 : PointerGetDatum(sjinfo)));
2059 : else
2060 179 : s2 = DatumGetFloat8(FunctionCall4Coll(&oprselproc,
2061 : clause->inputcollid,
2062 : PointerGetDatum(root),
2063 : ObjectIdGetDatum(operator),
2064 : PointerGetDatum(args),
2065 : Int32GetDatum(varRelid)));
2066 179 : s1 = useOr ? 0.0 : 1.0;
2067 :
2068 : /*
2069 : * Arbitrarily assume 10 elements in the eventual array value (see
2070 : * also estimate_array_length). We don't risk an assumption of
2071 : * disjoint probabilities here.
2072 : */
2073 1969 : for (i = 0; i < 10; i++)
2074 : {
2075 1790 : if (useOr)
2076 1790 : s1 = s1 + s2 - s1 * s2;
2077 : else
2078 0 : s1 = s1 * s2;
2079 : }
2080 : }
2081 :
2082 : /* result should be in range, but make sure... */
2083 490 : CLAMP_PROBABILITY(s1);
2084 :
2085 490 : return s1;
2086 : }
2087 :
2088 : /*
2089 : * Estimate number of elements in the array yielded by an expression.
2090 : *
2091 : * It's important that this agree with scalararraysel.
2092 : */
2093 : int
2094 1337 : estimate_array_length(Node *arrayexpr)
2095 : {
2096 : /* look through any binary-compatible relabeling of arrayexpr */
2097 1337 : arrayexpr = strip_array_coercion(arrayexpr);
2098 :
2099 1337 : if (arrayexpr && IsA(arrayexpr, Const))
2100 : {
2101 760 : Datum arraydatum = ((Const *) arrayexpr)->constvalue;
2102 760 : bool arrayisnull = ((Const *) arrayexpr)->constisnull;
2103 : ArrayType *arrayval;
2104 :
2105 760 : if (arrayisnull)
2106 3 : return 0;
2107 757 : arrayval = DatumGetArrayTypeP(arraydatum);
2108 757 : return ArrayGetNItems(ARR_NDIM(arrayval), ARR_DIMS(arrayval));
2109 : }
2110 594 : else if (arrayexpr && IsA(arrayexpr, ArrayExpr) &&
2111 17 : !((ArrayExpr *) arrayexpr)->multidims)
2112 : {
2113 17 : return list_length(((ArrayExpr *) arrayexpr)->elements);
2114 : }
2115 : else
2116 : {
2117 : /* default guess --- see also scalararraysel */
2118 560 : return 10;
2119 : }
2120 : }
2121 :
2122 : /*
2123 : * rowcomparesel - Selectivity of RowCompareExpr Node.
2124 : *
2125 : * We estimate RowCompare selectivity by considering just the first (high
2126 : * order) columns, which makes it equivalent to an ordinary OpExpr. While
2127 : * this estimate could be refined by considering additional columns, it
2128 : * seems unlikely that we could do a lot better without multi-column
2129 : * statistics.
2130 : */
2131 : Selectivity
2132 9 : rowcomparesel(PlannerInfo *root,
2133 : RowCompareExpr *clause,
2134 : int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
2135 : {
2136 : Selectivity s1;
2137 9 : Oid opno = linitial_oid(clause->opnos);
2138 9 : Oid inputcollid = linitial_oid(clause->inputcollids);
2139 : List *opargs;
2140 : bool is_join_clause;
2141 :
2142 : /* Build equivalent arg list for single operator */
2143 9 : opargs = list_make2(linitial(clause->largs), linitial(clause->rargs));
2144 :
2145 : /*
2146 : * Decide if it's a join clause. This should match clausesel.c's
2147 : * treat_as_join_clause(), except that we intentionally consider only the
2148 : * leading columns and not the rest of the clause.
2149 : */
2150 9 : if (varRelid != 0)
2151 : {
2152 : /*
2153 : * Caller is forcing restriction mode (eg, because we are examining an
2154 : * inner indexscan qual).
2155 : */
2156 1 : is_join_clause = false;
2157 : }
2158 8 : else if (sjinfo == NULL)
2159 : {
2160 : /*
2161 : * It must be a restriction clause, since it's being evaluated at a
2162 : * scan node.
2163 : */
2164 6 : is_join_clause = false;
2165 : }
2166 : else
2167 : {
2168 : /*
2169 : * Otherwise, it's a join if there's more than one relation used.
2170 : */
2171 2 : is_join_clause = (NumRelids((Node *) opargs) > 1);
2172 : }
2173 :
2174 9 : if (is_join_clause)
2175 : {
2176 : /* Estimate selectivity for a join clause. */
2177 2 : s1 = join_selectivity(root, opno,
2178 : opargs,
2179 : inputcollid,
2180 : jointype,
2181 : sjinfo);
2182 : }
2183 : else
2184 : {
2185 : /* Estimate selectivity for a restriction clause. */
2186 7 : s1 = restriction_selectivity(root, opno,
2187 : opargs,
2188 : inputcollid,
2189 : varRelid);
2190 : }
2191 :
2192 9 : return s1;
2193 : }
2194 :
2195 : /*
2196 : * eqjoinsel - Join selectivity of "="
2197 : */
2198 : Datum
2199 6061 : eqjoinsel(PG_FUNCTION_ARGS)
2200 : {
2201 6061 : PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
2202 6061 : Oid operator = PG_GETARG_OID(1);
2203 6061 : List *args = (List *) PG_GETARG_POINTER(2);
2204 :
2205 : #ifdef NOT_USED
2206 : JoinType jointype = (JoinType) PG_GETARG_INT16(3);
2207 : #endif
2208 6061 : SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) PG_GETARG_POINTER(4);
2209 : double selec;
2210 : VariableStatData vardata1;
2211 : VariableStatData vardata2;
2212 : bool join_is_reversed;
2213 : RelOptInfo *inner_rel;
2214 :
2215 6061 : get_join_variables(root, args, sjinfo,
2216 : &vardata1, &vardata2, &join_is_reversed);
2217 :
2218 6061 : switch (sjinfo->jointype)
2219 : {
2220 : case JOIN_INNER:
2221 : case JOIN_LEFT:
2222 : case JOIN_FULL:
2223 5755 : selec = eqjoinsel_inner(operator, &vardata1, &vardata2);
2224 5755 : break;
2225 : case JOIN_SEMI:
2226 : case JOIN_ANTI:
2227 :
2228 : /*
2229 : * Look up the join's inner relation. min_righthand is sufficient
2230 : * information because neither SEMI nor ANTI joins permit any
2231 : * reassociation into or out of their RHS, so the righthand will
2232 : * always be exactly that set of rels.
2233 : */
2234 306 : inner_rel = find_join_input_rel(root, sjinfo->min_righthand);
2235 :
2236 306 : if (!join_is_reversed)
2237 64 : selec = eqjoinsel_semi(operator, &vardata1, &vardata2,
2238 : inner_rel);
2239 : else
2240 242 : selec = eqjoinsel_semi(get_commutator(operator),
2241 : &vardata2, &vardata1,
2242 : inner_rel);
2243 306 : break;
2244 : default:
2245 : /* other values not expected here */
2246 0 : elog(ERROR, "unrecognized join type: %d",
2247 : (int) sjinfo->jointype);
2248 : selec = 0; /* keep compiler quiet */
2249 : break;
2250 : }
2251 :
2252 6061 : ReleaseVariableStats(vardata1);
2253 6061 : ReleaseVariableStats(vardata2);
2254 :
2255 6061 : CLAMP_PROBABILITY(selec);
2256 :
2257 6061 : PG_RETURN_FLOAT8((float8) selec);
2258 : }
2259 :
2260 : /*
2261 : * eqjoinsel_inner --- eqjoinsel for normal inner join
2262 : *
2263 : * We also use this for LEFT/FULL outer joins; it's not presently clear
2264 : * that it's worth trying to distinguish them here.
2265 : */
2266 : static double
2267 5755 : eqjoinsel_inner(Oid operator,
2268 : VariableStatData *vardata1, VariableStatData *vardata2)
2269 : {
2270 : double selec;
2271 : double nd1;
2272 : double nd2;
2273 : bool isdefault1;
2274 : bool isdefault2;
2275 : Oid opfuncoid;
2276 5755 : Form_pg_statistic stats1 = NULL;
2277 5755 : Form_pg_statistic stats2 = NULL;
2278 5755 : bool have_mcvs1 = false;
2279 5755 : bool have_mcvs2 = false;
2280 : AttStatsSlot sslot1;
2281 : AttStatsSlot sslot2;
2282 :
2283 5755 : nd1 = get_variable_numdistinct(vardata1, &isdefault1);
2284 5755 : nd2 = get_variable_numdistinct(vardata2, &isdefault2);
2285 :
2286 5755 : opfuncoid = get_opcode(operator);
2287 :
2288 5755 : memset(&sslot1, 0, sizeof(sslot1));
2289 5755 : memset(&sslot2, 0, sizeof(sslot2));
2290 :
2291 5755 : if (HeapTupleIsValid(vardata1->statsTuple))
2292 : {
2293 : /* note we allow use of nullfrac regardless of security check */
2294 1877 : stats1 = (Form_pg_statistic) GETSTRUCT(vardata1->statsTuple);
2295 1877 : if (statistic_proc_security_check(vardata1, opfuncoid))
2296 1877 : have_mcvs1 = get_attstatsslot(&sslot1, vardata1->statsTuple,
2297 : STATISTIC_KIND_MCV, InvalidOid,
2298 : ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS);
2299 : }
2300 :
2301 5755 : if (HeapTupleIsValid(vardata2->statsTuple))
2302 : {
2303 : /* note we allow use of nullfrac regardless of security check */
2304 2177 : stats2 = (Form_pg_statistic) GETSTRUCT(vardata2->statsTuple);
2305 2177 : if (statistic_proc_security_check(vardata2, opfuncoid))
2306 2177 : have_mcvs2 = get_attstatsslot(&sslot2, vardata2->statsTuple,
2307 : STATISTIC_KIND_MCV, InvalidOid,
2308 : ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS);
2309 : }
2310 :
2311 5755 : if (have_mcvs1 && have_mcvs2)
2312 158 : {
2313 : /*
2314 : * We have most-common-value lists for both relations. Run through
2315 : * the lists to see which MCVs actually join to each other with the
2316 : * given operator. This allows us to determine the exact join
2317 : * selectivity for the portion of the relations represented by the MCV
2318 : * lists. We still have to estimate for the remaining population, but
2319 : * in a skewed distribution this gives us a big leg up in accuracy.
2320 : * For motivation see the analysis in Y. Ioannidis and S.
2321 : * Christodoulakis, "On the propagation of errors in the size of join
2322 : * results", Technical Report 1018, Computer Science Dept., University
2323 : * of Wisconsin, Madison, March 1991 (available from ftp.cs.wisc.edu).
2324 : */
2325 : FmgrInfo eqproc;
2326 : bool *hasmatch1;
2327 : bool *hasmatch2;
2328 158 : double nullfrac1 = stats1->stanullfrac;
2329 158 : double nullfrac2 = stats2->stanullfrac;
2330 : double matchprodfreq,
2331 : matchfreq1,
2332 : matchfreq2,
2333 : unmatchfreq1,
2334 : unmatchfreq2,
2335 : otherfreq1,
2336 : otherfreq2,
2337 : totalsel1,
2338 : totalsel2;
2339 : int i,
2340 : nmatches;
2341 :
2342 158 : fmgr_info(opfuncoid, &eqproc);
2343 158 : hasmatch1 = (bool *) palloc0(sslot1.nvalues * sizeof(bool));
2344 158 : hasmatch2 = (bool *) palloc0(sslot2.nvalues * sizeof(bool));
2345 :
2346 : /*
2347 : * Note we assume that each MCV will match at most one member of the
2348 : * other MCV list. If the operator isn't really equality, there could
2349 : * be multiple matches --- but we don't look for them, both for speed
2350 : * and because the math wouldn't add up...
2351 : */
2352 158 : matchprodfreq = 0.0;
2353 158 : nmatches = 0;
2354 4096 : for (i = 0; i < sslot1.nvalues; i++)
2355 : {
2356 : int j;
2357 :
2358 145988 : for (j = 0; j < sslot2.nvalues; j++)
2359 : {
2360 145554 : if (hasmatch2[j])
2361 131606 : continue;
2362 13948 : if (DatumGetBool(FunctionCall2Coll(&eqproc,
2363 : DEFAULT_COLLATION_OID,
2364 : sslot1.values[i],
2365 : sslot2.values[j])))
2366 : {
2367 3504 : hasmatch1[i] = hasmatch2[j] = true;
2368 3504 : matchprodfreq += sslot1.numbers[i] * sslot2.numbers[j];
2369 3504 : nmatches++;
2370 3504 : break;
2371 : }
2372 : }
2373 : }
2374 158 : CLAMP_PROBABILITY(matchprodfreq);
2375 : /* Sum up frequencies of matched and unmatched MCVs */
2376 158 : matchfreq1 = unmatchfreq1 = 0.0;
2377 4096 : for (i = 0; i < sslot1.nvalues; i++)
2378 : {
2379 3938 : if (hasmatch1[i])
2380 3504 : matchfreq1 += sslot1.numbers[i];
2381 : else
2382 434 : unmatchfreq1 += sslot1.numbers[i];
2383 : }
2384 158 : CLAMP_PROBABILITY(matchfreq1);
2385 158 : CLAMP_PROBABILITY(unmatchfreq1);
2386 158 : matchfreq2 = unmatchfreq2 = 0.0;
2387 4994 : for (i = 0; i < sslot2.nvalues; i++)
2388 : {
2389 4836 : if (hasmatch2[i])
2390 3504 : matchfreq2 += sslot2.numbers[i];
2391 : else
2392 1332 : unmatchfreq2 += sslot2.numbers[i];
2393 : }
2394 158 : CLAMP_PROBABILITY(matchfreq2);
2395 158 : CLAMP_PROBABILITY(unmatchfreq2);
2396 158 : pfree(hasmatch1);
2397 158 : pfree(hasmatch2);
2398 :
2399 : /*
2400 : * Compute total frequency of non-null values that are not in the MCV
2401 : * lists.
2402 : */
2403 158 : otherfreq1 = 1.0 - nullfrac1 - matchfreq1 - unmatchfreq1;
2404 158 : otherfreq2 = 1.0 - nullfrac2 - matchfreq2 - unmatchfreq2;
2405 158 : CLAMP_PROBABILITY(otherfreq1);
2406 158 : CLAMP_PROBABILITY(otherfreq2);
2407 :
2408 : /*
2409 : * We can estimate the total selectivity from the point of view of
2410 : * relation 1 as: the known selectivity for matched MCVs, plus
2411 : * unmatched MCVs that are assumed to match against random members of
2412 : * relation 2's non-MCV population, plus non-MCV values that are
2413 : * assumed to match against random members of relation 2's unmatched
2414 : * MCVs plus non-MCV values.
2415 : */
2416 158 : totalsel1 = matchprodfreq;
2417 158 : if (nd2 > sslot2.nvalues)
2418 105 : totalsel1 += unmatchfreq1 * otherfreq2 / (nd2 - sslot2.nvalues);
2419 158 : if (nd2 > nmatches)
2420 105 : totalsel1 += otherfreq1 * (otherfreq2 + unmatchfreq2) /
2421 : (nd2 - nmatches);
2422 : /* Same estimate from the point of view of relation 2. */
2423 158 : totalsel2 = matchprodfreq;
2424 158 : if (nd1 > sslot1.nvalues)
2425 103 : totalsel2 += unmatchfreq2 * otherfreq1 / (nd1 - sslot1.nvalues);
2426 158 : if (nd1 > nmatches)
2427 105 : totalsel2 += otherfreq2 * (otherfreq1 + unmatchfreq1) /
2428 : (nd1 - nmatches);
2429 :
2430 : /*
2431 : * Use the smaller of the two estimates. This can be justified in
2432 : * essentially the same terms as given below for the no-stats case: to
2433 : * a first approximation, we are estimating from the point of view of
2434 : * the relation with smaller nd.
2435 : */
2436 158 : selec = (totalsel1 < totalsel2) ? totalsel1 : totalsel2;
2437 : }
2438 : else
2439 : {
2440 : /*
2441 : * We do not have MCV lists for both sides. Estimate the join
2442 : * selectivity as MIN(1/nd1,1/nd2)*(1-nullfrac1)*(1-nullfrac2). This
2443 : * is plausible if we assume that the join operator is strict and the
2444 : * non-null values are about equally distributed: a given non-null
2445 : * tuple of rel1 will join to either zero or N2*(1-nullfrac2)/nd2 rows
2446 : * of rel2, so total join rows are at most
2447 : * N1*(1-nullfrac1)*N2*(1-nullfrac2)/nd2 giving a join selectivity of
2448 : * not more than (1-nullfrac1)*(1-nullfrac2)/nd2. By the same logic it
2449 : * is not more than (1-nullfrac1)*(1-nullfrac2)/nd1, so the expression
2450 : * with MIN() is an upper bound. Using the MIN() means we estimate
2451 : * from the point of view of the relation with smaller nd (since the
2452 : * larger nd is determining the MIN). It is reasonable to assume that
2453 : * most tuples in this rel will have join partners, so the bound is
2454 : * probably reasonably tight and should be taken as-is.
2455 : *
2456 : * XXX Can we be smarter if we have an MCV list for just one side? It
2457 : * seems that if we assume equal distribution for the other side, we
2458 : * end up with the same answer anyway.
2459 : */
2460 5597 : double nullfrac1 = stats1 ? stats1->stanullfrac : 0.0;
2461 5597 : double nullfrac2 = stats2 ? stats2->stanullfrac : 0.0;
2462 :
2463 5597 : selec = (1.0 - nullfrac1) * (1.0 - nullfrac2);
2464 5597 : if (nd1 > nd2)
2465 2947 : selec /= nd1;
2466 : else
2467 2650 : selec /= nd2;
2468 : }
2469 :
2470 5755 : free_attstatsslot(&sslot1);
2471 5755 : free_attstatsslot(&sslot2);
2472 :
2473 5755 : return selec;
2474 : }
2475 :
2476 : /*
2477 : * eqjoinsel_semi --- eqjoinsel for semi join
2478 : *
2479 : * (Also used for anti join, which we are supposed to estimate the same way.)
2480 : * Caller has ensured that vardata1 is the LHS variable.
2481 : * Unlike eqjoinsel_inner, we have to cope with operator being InvalidOid.
2482 : */
2483 : static double
2484 306 : eqjoinsel_semi(Oid operator,
2485 : VariableStatData *vardata1, VariableStatData *vardata2,
2486 : RelOptInfo *inner_rel)
2487 : {
2488 : double selec;
2489 : double nd1;
2490 : double nd2;
2491 : bool isdefault1;
2492 : bool isdefault2;
2493 : Oid opfuncoid;
2494 306 : Form_pg_statistic stats1 = NULL;
2495 306 : bool have_mcvs1 = false;
2496 306 : bool have_mcvs2 = false;
2497 : AttStatsSlot sslot1;
2498 : AttStatsSlot sslot2;
2499 :
2500 306 : nd1 = get_variable_numdistinct(vardata1, &isdefault1);
2501 306 : nd2 = get_variable_numdistinct(vardata2, &isdefault2);
2502 :
2503 306 : opfuncoid = OidIsValid(operator) ? get_opcode(operator) : InvalidOid;
2504 :
2505 306 : memset(&sslot1, 0, sizeof(sslot1));
2506 306 : memset(&sslot2, 0, sizeof(sslot2));
2507 :
2508 : /*
2509 : * We clamp nd2 to be not more than what we estimate the inner relation's
2510 : * size to be. This is intuitively somewhat reasonable since obviously
2511 : * there can't be more than that many distinct values coming from the
2512 : * inner rel. The reason for the asymmetry (ie, that we don't clamp nd1
2513 : * likewise) is that this is the only pathway by which restriction clauses
2514 : * applied to the inner rel will affect the join result size estimate,
2515 : * since set_joinrel_size_estimates will multiply SEMI/ANTI selectivity by
2516 : * only the outer rel's size. If we clamped nd1 we'd be double-counting
2517 : * the selectivity of outer-rel restrictions.
2518 : *
2519 : * We can apply this clamping both with respect to the base relation from
2520 : * which the join variable comes (if there is just one), and to the
2521 : * immediate inner input relation of the current join.
2522 : *
2523 : * If we clamp, we can treat nd2 as being a non-default estimate; it's not
2524 : * great, maybe, but it didn't come out of nowhere either. This is most
2525 : * helpful when the inner relation is empty and consequently has no stats.
2526 : */
2527 306 : if (vardata2->rel)
2528 : {
2529 306 : if (nd2 >= vardata2->rel->rows)
2530 : {
2531 256 : nd2 = vardata2->rel->rows;
2532 256 : isdefault2 = false;
2533 : }
2534 : }
2535 306 : if (nd2 >= inner_rel->rows)
2536 : {
2537 254 : nd2 = inner_rel->rows;
2538 254 : isdefault2 = false;
2539 : }
2540 :
2541 306 : if (HeapTupleIsValid(vardata1->statsTuple))
2542 : {
2543 : /* note we allow use of nullfrac regardless of security check */
2544 155 : stats1 = (Form_pg_statistic) GETSTRUCT(vardata1->statsTuple);
2545 155 : if (statistic_proc_security_check(vardata1, opfuncoid))
2546 155 : have_mcvs1 = get_attstatsslot(&sslot1, vardata1->statsTuple,
2547 : STATISTIC_KIND_MCV, InvalidOid,
2548 : ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS);
2549 : }
2550 :
2551 353 : if (HeapTupleIsValid(vardata2->statsTuple) &&
2552 47 : statistic_proc_security_check(vardata2, opfuncoid))
2553 : {
2554 47 : have_mcvs2 = get_attstatsslot(&sslot2, vardata2->statsTuple,
2555 : STATISTIC_KIND_MCV, InvalidOid,
2556 : ATTSTATSSLOT_VALUES);
2557 : /* note: currently don't need stanumbers from RHS */
2558 : }
2559 :
2560 306 : if (have_mcvs1 && have_mcvs2 && OidIsValid(operator))
2561 7 : {
2562 : /*
2563 : * We have most-common-value lists for both relations. Run through
2564 : * the lists to see which MCVs actually join to each other with the
2565 : * given operator. This allows us to determine the exact join
2566 : * selectivity for the portion of the relations represented by the MCV
2567 : * lists. We still have to estimate for the remaining population, but
2568 : * in a skewed distribution this gives us a big leg up in accuracy.
2569 : */
2570 : FmgrInfo eqproc;
2571 : bool *hasmatch1;
2572 : bool *hasmatch2;
2573 7 : double nullfrac1 = stats1->stanullfrac;
2574 : double matchfreq1,
2575 : uncertainfrac,
2576 : uncertain;
2577 : int i,
2578 : nmatches,
2579 : clamped_nvalues2;
2580 :
2581 : /*
2582 : * The clamping above could have resulted in nd2 being less than
2583 : * sslot2.nvalues; in which case, we assume that precisely the nd2
2584 : * most common values in the relation will appear in the join input,
2585 : * and so compare to only the first nd2 members of the MCV list. Of
2586 : * course this is frequently wrong, but it's the best bet we can make.
2587 : */
2588 7 : clamped_nvalues2 = Min(sslot2.nvalues, nd2);
2589 :
2590 7 : fmgr_info(opfuncoid, &eqproc);
2591 7 : hasmatch1 = (bool *) palloc0(sslot1.nvalues * sizeof(bool));
2592 7 : hasmatch2 = (bool *) palloc0(clamped_nvalues2 * sizeof(bool));
2593 :
2594 : /*
2595 : * Note we assume that each MCV will match at most one member of the
2596 : * other MCV list. If the operator isn't really equality, there could
2597 : * be multiple matches --- but we don't look for them, both for speed
2598 : * and because the math wouldn't add up...
2599 : */
2600 7 : nmatches = 0;
2601 283 : for (i = 0; i < sslot1.nvalues; i++)
2602 : {
2603 : int j;
2604 :
2605 8352 : for (j = 0; j < clamped_nvalues2; j++)
2606 : {
2607 8311 : if (hasmatch2[j])
2608 6832 : continue;
2609 1479 : if (DatumGetBool(FunctionCall2Coll(&eqproc,
2610 : DEFAULT_COLLATION_OID,
2611 : sslot1.values[i],
2612 : sslot2.values[j])))
2613 : {
2614 235 : hasmatch1[i] = hasmatch2[j] = true;
2615 235 : nmatches++;
2616 235 : break;
2617 : }
2618 : }
2619 : }
2620 : /* Sum up frequencies of matched MCVs */
2621 7 : matchfreq1 = 0.0;
2622 283 : for (i = 0; i < sslot1.nvalues; i++)
2623 : {
2624 276 : if (hasmatch1[i])
2625 235 : matchfreq1 += sslot1.numbers[i];
2626 : }
2627 7 : CLAMP_PROBABILITY(matchfreq1);
2628 7 : pfree(hasmatch1);
2629 7 : pfree(hasmatch2);
2630 :
2631 : /*
2632 : * Now we need to estimate the fraction of relation 1 that has at
2633 : * least one join partner. We know for certain that the matched MCVs
2634 : * do, so that gives us a lower bound, but we're really in the dark
2635 : * about everything else. Our crude approach is: if nd1 <= nd2 then
2636 : * assume all non-null rel1 rows have join partners, else assume for
2637 : * the uncertain rows that a fraction nd2/nd1 have join partners. We
2638 : * can discount the known-matched MCVs from the distinct-values counts
2639 : * before doing the division.
2640 : *
2641 : * Crude as the above is, it's completely useless if we don't have
2642 : * reliable ndistinct values for both sides. Hence, if either nd1 or
2643 : * nd2 is default, punt and assume half of the uncertain rows have
2644 : * join partners.
2645 : */
2646 7 : if (!isdefault1 && !isdefault2)
2647 : {
2648 7 : nd1 -= nmatches;
2649 7 : nd2 -= nmatches;
2650 14 : if (nd1 <= nd2 || nd2 < 0)
2651 4 : uncertainfrac = 1.0;
2652 : else
2653 3 : uncertainfrac = nd2 / nd1;
2654 : }
2655 : else
2656 0 : uncertainfrac = 0.5;
2657 7 : uncertain = 1.0 - matchfreq1 - nullfrac1;
2658 7 : CLAMP_PROBABILITY(uncertain);
2659 7 : selec = matchfreq1 + uncertainfrac * uncertain;
2660 : }
2661 : else
2662 : {
2663 : /*
2664 : * Without MCV lists for both sides, we can only use the heuristic
2665 : * about nd1 vs nd2.
2666 : */
2667 299 : double nullfrac1 = stats1 ? stats1->stanullfrac : 0.0;
2668 :
2669 299 : if (!isdefault1 && !isdefault2)
2670 : {
2671 394 : if (nd1 <= nd2 || nd2 < 0)
2672 166 : selec = 1.0 - nullfrac1;
2673 : else
2674 31 : selec = (nd2 / nd1) * (1.0 - nullfrac1);
2675 : }
2676 : else
2677 102 : selec = 0.5 * (1.0 - nullfrac1);
2678 : }
2679 :
2680 306 : free_attstatsslot(&sslot1);
2681 306 : free_attstatsslot(&sslot2);
2682 :
2683 306 : return selec;
2684 : }
2685 :
2686 : /*
2687 : * neqjoinsel - Join selectivity of "!="
2688 : */
2689 : Datum
2690 153 : neqjoinsel(PG_FUNCTION_ARGS)
2691 : {
2692 153 : PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
2693 153 : Oid operator = PG_GETARG_OID(1);
2694 153 : List *args = (List *) PG_GETARG_POINTER(2);
2695 153 : JoinType jointype = (JoinType) PG_GETARG_INT16(3);
2696 153 : SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) PG_GETARG_POINTER(4);
2697 : Oid eqop;
2698 : float8 result;
2699 :
2700 : /*
2701 : * We want 1 - eqjoinsel() where the equality operator is the one
2702 : * associated with this != operator, that is, its negator.
2703 : */
2704 153 : eqop = get_negator(operator);
2705 153 : if (eqop)
2706 : {
2707 153 : result = DatumGetFloat8(DirectFunctionCall5(eqjoinsel,
2708 : PointerGetDatum(root),
2709 : ObjectIdGetDatum(eqop),
2710 : PointerGetDatum(args),
2711 : Int16GetDatum(jointype),
2712 : PointerGetDatum(sjinfo)));
2713 : }
2714 : else
2715 : {
2716 : /* Use default selectivity (should we raise an error instead?) */
2717 0 : result = DEFAULT_EQ_SEL;
2718 : }
2719 153 : result = 1.0 - result;
2720 153 : PG_RETURN_FLOAT8(result);
2721 : }
2722 :
2723 : /*
2724 : * scalarltjoinsel - Join selectivity of "<" and "<=" for scalars
2725 : */
2726 : Datum
2727 38 : scalarltjoinsel(PG_FUNCTION_ARGS)
2728 : {
2729 38 : PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
2730 : }
2731 :
2732 : /*
2733 : * scalargtjoinsel - Join selectivity of ">" and ">=" for scalars
2734 : */
2735 : Datum
2736 20 : scalargtjoinsel(PG_FUNCTION_ARGS)
2737 : {
2738 20 : PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
2739 : }
2740 :
2741 : /*
2742 : * patternjoinsel - Generic code for pattern-match join selectivity.
2743 : */
2744 : static double
2745 0 : patternjoinsel(PG_FUNCTION_ARGS, Pattern_Type ptype, bool negate)
2746 : {
2747 : /* For the moment we just punt. */
2748 0 : return negate ? (1.0 - DEFAULT_MATCH_SEL) : DEFAULT_MATCH_SEL;
2749 : }
2750 :
2751 : /*
2752 : * regexeqjoinsel - Join selectivity of regular-expression pattern match.
2753 : */
2754 : Datum
2755 0 : regexeqjoinsel(PG_FUNCTION_ARGS)
2756 : {
2757 0 : PG_RETURN_FLOAT8(patternjoinsel(fcinfo, Pattern_Type_Regex, false));
2758 : }
2759 :
2760 : /*
2761 : * icregexeqjoinsel - Join selectivity of case-insensitive regex match.
2762 : */
2763 : Datum
2764 0 : icregexeqjoinsel(PG_FUNCTION_ARGS)
2765 : {
2766 0 : PG_RETURN_FLOAT8(patternjoinsel(fcinfo, Pattern_Type_Regex_IC, false));
2767 : }
2768 :
2769 : /*
2770 : * likejoinsel - Join selectivity of LIKE pattern match.
2771 : */
2772 : Datum
2773 0 : likejoinsel(PG_FUNCTION_ARGS)
2774 : {
2775 0 : PG_RETURN_FLOAT8(patternjoinsel(fcinfo, Pattern_Type_Like, false));
2776 : }
2777 :
2778 : /*
2779 : * iclikejoinsel - Join selectivity of ILIKE pattern match.
2780 : */
2781 : Datum
2782 0 : iclikejoinsel(PG_FUNCTION_ARGS)
2783 : {
2784 0 : PG_RETURN_FLOAT8(patternjoinsel(fcinfo, Pattern_Type_Like_IC, false));
2785 : }
2786 :
2787 : /*
2788 : * regexnejoinsel - Join selectivity of regex non-match.
2789 : */
2790 : Datum
2791 0 : regexnejoinsel(PG_FUNCTION_ARGS)
2792 : {
2793 0 : PG_RETURN_FLOAT8(patternjoinsel(fcinfo, Pattern_Type_Regex, true));
2794 : }
2795 :
2796 : /*
2797 : * icregexnejoinsel - Join selectivity of case-insensitive regex non-match.
2798 : */
2799 : Datum
2800 0 : icregexnejoinsel(PG_FUNCTION_ARGS)
2801 : {
2802 0 : PG_RETURN_FLOAT8(patternjoinsel(fcinfo, Pattern_Type_Regex_IC, true));
2803 : }
2804 :
2805 : /*
2806 : * nlikejoinsel - Join selectivity of LIKE pattern non-match.
2807 : */
2808 : Datum
2809 0 : nlikejoinsel(PG_FUNCTION_ARGS)
2810 : {
2811 0 : PG_RETURN_FLOAT8(patternjoinsel(fcinfo, Pattern_Type_Like, true));
2812 : }
2813 :
2814 : /*
2815 : * icnlikejoinsel - Join selectivity of ILIKE pattern non-match.
2816 : */
2817 : Datum
2818 0 : icnlikejoinsel(PG_FUNCTION_ARGS)
2819 : {
2820 0 : PG_RETURN_FLOAT8(patternjoinsel(fcinfo, Pattern_Type_Like_IC, true));
2821 : }
2822 :
2823 : /*
2824 : * mergejoinscansel - Scan selectivity of merge join.
2825 : *
2826 : * A merge join will stop as soon as it exhausts either input stream.
2827 : * Therefore, if we can estimate the ranges of both input variables,
2828 : * we can estimate how much of the input will actually be read. This
2829 : * can have a considerable impact on the cost when using indexscans.
2830 : *
2831 : * Also, we can estimate how much of each input has to be read before the
2832 : * first join pair is found, which will affect the join's startup time.
2833 : *
2834 : * clause should be a clause already known to be mergejoinable. opfamily,
2835 : * strategy, and nulls_first specify the sort ordering being used.
2836 : *
2837 : * The outputs are:
2838 : * *leftstart is set to the fraction of the left-hand variable expected
2839 : * to be scanned before the first join pair is found (0 to 1).
2840 : * *leftend is set to the fraction of the left-hand variable expected
2841 : * to be scanned before the join terminates (0 to 1).
2842 : * *rightstart, *rightend similarly for the right-hand variable.
2843 : */
2844 : void
2845 3186 : mergejoinscansel(PlannerInfo *root, Node *clause,
2846 : Oid opfamily, int strategy, bool nulls_first,
2847 : Selectivity *leftstart, Selectivity *leftend,
2848 : Selectivity *rightstart, Selectivity *rightend)
2849 : {
2850 : Node *left,
2851 : *right;
2852 : VariableStatData leftvar,
2853 : rightvar;
2854 : int op_strategy;
2855 : Oid op_lefttype;
2856 : Oid op_righttype;
2857 : Oid opno,
2858 : lsortop,
2859 : rsortop,
2860 : lstatop,
2861 : rstatop,
2862 : ltop,
2863 : leop,
2864 : revltop,
2865 : revleop;
2866 : bool isgt;
2867 : Datum leftmin,
2868 : leftmax,
2869 : rightmin,
2870 : rightmax;
2871 : double selec;
2872 :
2873 : /* Set default results if we can't figure anything out. */
2874 : /* XXX should default "start" fraction be a bit more than 0? */
2875 3186 : *leftstart = *rightstart = 0.0;
2876 3186 : *leftend = *rightend = 1.0;
2877 :
2878 : /* Deconstruct the merge clause */
2879 3186 : if (!is_opclause(clause))
2880 0 : return; /* shouldn't happen */
2881 3186 : opno = ((OpExpr *) clause)->opno;
2882 3186 : left = get_leftop((Expr *) clause);
2883 3186 : right = get_rightop((Expr *) clause);
2884 3186 : if (!right)
2885 0 : return; /* shouldn't happen */
2886 :
2887 : /* Look for stats for the inputs */
2888 3186 : examine_variable(root, left, 0, &leftvar);
2889 3186 : examine_variable(root, right, 0, &rightvar);
2890 :
2891 : /* Extract the operator's declared left/right datatypes */
2892 3186 : get_op_opfamily_properties(opno, opfamily, false,
2893 : &op_strategy,
2894 : &op_lefttype,
2895 : &op_righttype);
2896 3186 : Assert(op_strategy == BTEqualStrategyNumber);
2897 :
2898 : /*
2899 : * Look up the various operators we need. If we don't find them all, it
2900 : * probably means the opfamily is broken, but we just fail silently.
2901 : *
2902 : * Note: we expect that pg_statistic histograms will be sorted by the '<'
2903 : * operator, regardless of which sort direction we are considering.
2904 : */
2905 3186 : switch (strategy)
2906 : {
2907 : case BTLessStrategyNumber:
2908 3186 : isgt = false;
2909 3186 : if (op_lefttype == op_righttype)
2910 : {
2911 : /* easy case */
2912 3111 : ltop = get_opfamily_member(opfamily,
2913 : op_lefttype, op_righttype,
2914 : BTLessStrategyNumber);
2915 3111 : leop = get_opfamily_member(opfamily,
2916 : op_lefttype, op_righttype,
2917 : BTLessEqualStrategyNumber);
2918 3111 : lsortop = ltop;
2919 3111 : rsortop = ltop;
2920 3111 : lstatop = lsortop;
2921 3111 : rstatop = rsortop;
2922 3111 : revltop = ltop;
2923 3111 : revleop = leop;
2924 : }
2925 : else
2926 : {
2927 75 : ltop = get_opfamily_member(opfamily,
2928 : op_lefttype, op_righttype,
2929 : BTLessStrategyNumber);
2930 75 : leop = get_opfamily_member(opfamily,
2931 : op_lefttype, op_righttype,
2932 : BTLessEqualStrategyNumber);
2933 75 : lsortop = get_opfamily_member(opfamily,
2934 : op_lefttype, op_lefttype,
2935 : BTLessStrategyNumber);
2936 75 : rsortop = get_opfamily_member(opfamily,
2937 : op_righttype, op_righttype,
2938 : BTLessStrategyNumber);
2939 75 : lstatop = lsortop;
2940 75 : rstatop = rsortop;
2941 75 : revltop = get_opfamily_member(opfamily,
2942 : op_righttype, op_lefttype,
2943 : BTLessStrategyNumber);
2944 75 : revleop = get_opfamily_member(opfamily,
2945 : op_righttype, op_lefttype,
2946 : BTLessEqualStrategyNumber);
2947 : }
2948 3186 : break;
2949 : case BTGreaterStrategyNumber:
2950 : /* descending-order case */
2951 0 : isgt = true;
2952 0 : if (op_lefttype == op_righttype)
2953 : {
2954 : /* easy case */
2955 0 : ltop = get_opfamily_member(opfamily,
2956 : op_lefttype, op_righttype,
2957 : BTGreaterStrategyNumber);
2958 0 : leop = get_opfamily_member(opfamily,
2959 : op_lefttype, op_righttype,
2960 : BTGreaterEqualStrategyNumber);
2961 0 : lsortop = ltop;
2962 0 : rsortop = ltop;
2963 0 : lstatop = get_opfamily_member(opfamily,
2964 : op_lefttype, op_lefttype,
2965 : BTLessStrategyNumber);
2966 0 : rstatop = lstatop;
2967 0 : revltop = ltop;
2968 0 : revleop = leop;
2969 : }
2970 : else
2971 : {
2972 0 : ltop = get_opfamily_member(opfamily,
2973 : op_lefttype, op_righttype,
2974 : BTGreaterStrategyNumber);
2975 0 : leop = get_opfamily_member(opfamily,
2976 : op_lefttype, op_righttype,
2977 : BTGreaterEqualStrategyNumber);
2978 0 : lsortop = get_opfamily_member(opfamily,
2979 : op_lefttype, op_lefttype,
2980 : BTGreaterStrategyNumber);
2981 0 : rsortop = get_opfamily_member(opfamily,
2982 : op_righttype, op_righttype,
2983 : BTGreaterStrategyNumber);
2984 0 : lstatop = get_opfamily_member(opfamily,
2985 : op_lefttype, op_lefttype,
2986 : BTLessStrategyNumber);
2987 0 : rstatop = get_opfamily_member(opfamily,
2988 : op_righttype, op_righttype,
2989 : BTLessStrategyNumber);
2990 0 : revltop = get_opfamily_member(opfamily,
2991 : op_righttype, op_lefttype,
2992 : BTGreaterStrategyNumber);
2993 0 : revleop = get_opfamily_member(opfamily,
2994 : op_righttype, op_lefttype,
2995 : BTGreaterEqualStrategyNumber);
2996 : }
2997 0 : break;
2998 : default:
2999 0 : goto fail; /* shouldn't get here */
3000 : }
3001 :
3002 3186 : if (!OidIsValid(lsortop) ||
3003 3186 : !OidIsValid(rsortop) ||
3004 3186 : !OidIsValid(lstatop) ||
3005 3186 : !OidIsValid(rstatop) ||
3006 3184 : !OidIsValid(ltop) ||
3007 3184 : !OidIsValid(leop) ||
3008 3184 : !OidIsValid(revltop) ||
3009 : !OidIsValid(revleop))
3010 : goto fail; /* insufficient info in catalogs */
3011 :
3012 : /* Try to get ranges of both inputs */
3013 3184 : if (!isgt)
3014 : {
3015 3184 : if (!get_variable_range(root, &leftvar, lstatop,
3016 : &leftmin, &leftmax))
3017 2214 : goto fail; /* no range available from stats */
3018 970 : if (!get_variable_range(root, &rightvar, rstatop,
3019 : &rightmin, &rightmax))
3020 802 : goto fail; /* no range available from stats */
3021 : }
3022 : else
3023 : {
3024 : /* need to swap the max and min */
3025 0 : if (!get_variable_range(root, &leftvar, lstatop,
3026 : &leftmax, &leftmin))
3027 0 : goto fail; /* no range available from stats */
3028 0 : if (!get_variable_range(root, &rightvar, rstatop,
3029 : &rightmax, &rightmin))
3030 0 : goto fail; /* no range available from stats */
3031 : }
3032 :
3033 : /*
3034 : * Now, the fraction of the left variable that will be scanned is the
3035 : * fraction that's <= the right-side maximum value. But only believe
3036 : * non-default estimates, else stick with our 1.0.
3037 : */
3038 168 : selec = scalarineqsel(root, leop, isgt, &leftvar,
3039 : rightmax, op_righttype);
3040 168 : if (selec != DEFAULT_INEQ_SEL)
3041 168 : *leftend = selec;
3042 :
3043 : /* And similarly for the right variable. */
3044 168 : selec = scalarineqsel(root, revleop, isgt, &rightvar,
3045 : leftmax, op_lefttype);
3046 168 : if (selec != DEFAULT_INEQ_SEL)
3047 168 : *rightend = selec;
3048 :
3049 : /*
3050 : * Only one of the two "end" fractions can really be less than 1.0;
3051 : * believe the smaller estimate and reset the other one to exactly 1.0. If
3052 : * we get exactly equal estimates (as can easily happen with self-joins),
3053 : * believe neither.
3054 : */
3055 168 : if (*leftend > *rightend)
3056 76 : *leftend = 1.0;
3057 92 : else if (*leftend < *rightend)
3058 19 : *rightend = 1.0;
3059 : else
3060 73 : *leftend = *rightend = 1.0;
3061 :
3062 : /*
3063 : * Also, the fraction of the left variable that will be scanned before the
3064 : * first join pair is found is the fraction that's < the right-side
3065 : * minimum value. But only believe non-default estimates, else stick with
3066 : * our own default.
3067 : */
3068 168 : selec = scalarineqsel(root, ltop, isgt, &leftvar,
3069 : rightmin, op_righttype);
3070 168 : if (selec != DEFAULT_INEQ_SEL)
3071 168 : *leftstart = selec;
3072 :
3073 : /* And similarly for the right variable. */
3074 168 : selec = scalarineqsel(root, revltop, isgt, &rightvar,
3075 : leftmin, op_lefttype);
3076 168 : if (selec != DEFAULT_INEQ_SEL)
3077 168 : *rightstart = selec;
3078 :
3079 : /*
3080 : * Only one of the two "start" fractions can really be more than zero;
3081 : * believe the larger estimate and reset the other one to exactly 0.0. If
3082 : * we get exactly equal estimates (as can easily happen with self-joins),
3083 : * believe neither.
3084 : */
3085 168 : if (*leftstart < *rightstart)
3086 40 : *leftstart = 0.0;
3087 128 : else if (*leftstart > *rightstart)
3088 46 : *rightstart = 0.0;
3089 : else
3090 82 : *leftstart = *rightstart = 0.0;
3091 :
3092 : /*
3093 : * If the sort order is nulls-first, we're going to have to skip over any
3094 : * nulls too. These would not have been counted by scalarineqsel, and we
3095 : * can safely add in this fraction regardless of whether we believe
3096 : * scalarineqsel's results or not. But be sure to clamp the sum to 1.0!
3097 : */
3098 168 : if (nulls_first)
3099 : {
3100 : Form_pg_statistic stats;
3101 :
3102 0 : if (HeapTupleIsValid(leftvar.statsTuple))
3103 : {
3104 0 : stats = (Form_pg_statistic) GETSTRUCT(leftvar.statsTuple);
3105 0 : *leftstart += stats->stanullfrac;
3106 0 : CLAMP_PROBABILITY(*leftstart);
3107 0 : *leftend += stats->stanullfrac;
3108 0 : CLAMP_PROBABILITY(*leftend);
3109 : }
3110 0 : if (HeapTupleIsValid(rightvar.statsTuple))
3111 : {
3112 0 : stats = (Form_pg_statistic) GETSTRUCT(rightvar.statsTuple);
3113 0 : *rightstart += stats->stanullfrac;
3114 0 : CLAMP_PROBABILITY(*rightstart);
3115 0 : *rightend += stats->stanullfrac;
3116 0 : CLAMP_PROBABILITY(*rightend);
3117 : }
3118 : }
3119 :
3120 : /* Disbelieve start >= end, just in case that can happen */
3121 168 : if (*leftstart >= *leftend)
3122 : {
3123 16 : *leftstart = 0.0;
3124 16 : *leftend = 1.0;
3125 : }
3126 168 : if (*rightstart >= *rightend)
3127 : {
3128 15 : *rightstart = 0.0;
3129 15 : *rightend = 1.0;
3130 : }
3131 :
3132 : fail:
3133 3186 : ReleaseVariableStats(leftvar);
3134 3186 : ReleaseVariableStats(rightvar);
3135 : }
3136 :
3137 :
3138 : /*
3139 : * Helper routine for estimate_num_groups: add an item to a list of
3140 : * GroupVarInfos, but only if it's not known equal to any of the existing
3141 : * entries.
3142 : */
3143 : typedef struct
3144 : {
3145 : Node *var; /* might be an expression, not just a Var */
3146 : RelOptInfo *rel; /* relation it belongs to */
3147 : double ndistinct; /* # distinct values */
3148 : } GroupVarInfo;
3149 :
3150 : static List *
3151 1111 : add_unique_group_var(PlannerInfo *root, List *varinfos,
3152 : Node *var, VariableStatData *vardata)
3153 : {
3154 : GroupVarInfo *varinfo;
3155 : double ndistinct;
3156 : bool isdefault;
3157 : ListCell *lc;
3158 :
3159 1111 : ndistinct = get_variable_numdistinct(vardata, &isdefault);
3160 :
3161 : /* cannot use foreach here because of possible list_delete */
3162 1111 : lc = list_head(varinfos);
3163 2516 : while (lc)
3164 : {
3165 303 : varinfo = (GroupVarInfo *) lfirst(lc);
3166 :
3167 : /* must advance lc before list_delete possibly pfree's it */
3168 303 : lc = lnext(lc);
3169 :
3170 : /* Drop exact duplicates */
3171 303 : if (equal(var, varinfo->var))
3172 6 : return varinfos;
3173 :
3174 : /*
3175 : * Drop known-equal vars, but only if they belong to different
3176 : * relations (see comments for estimate_num_groups)
3177 : */
3178 355 : if (vardata->rel != varinfo->rel &&
3179 58 : exprs_known_equal(root, var, varinfo->var))
3180 : {
3181 3 : if (varinfo->ndistinct <= ndistinct)
3182 : {
3183 : /* Keep older item, forget new one */
3184 3 : return varinfos;
3185 : }
3186 : else
3187 : {
3188 : /* Delete the older item */
3189 0 : varinfos = list_delete_ptr(varinfos, varinfo);
3190 : }
3191 : }
3192 : }
3193 :
3194 1102 : varinfo = (GroupVarInfo *) palloc(sizeof(GroupVarInfo));
3195 :
3196 1102 : varinfo->var = var;
3197 1102 : varinfo->rel = vardata->rel;
3198 1102 : varinfo->ndistinct = ndistinct;
3199 1102 : varinfos = lappend(varinfos, varinfo);
3200 1102 : return varinfos;
3201 : }
3202 :
3203 : /*
3204 : * estimate_num_groups - Estimate number of groups in a grouped query
3205 : *
3206 : * Given a query having a GROUP BY clause, estimate how many groups there
3207 : * will be --- ie, the number of distinct combinations of the GROUP BY
3208 : * expressions.
3209 : *
3210 : * This routine is also used to estimate the number of rows emitted by
3211 : * a DISTINCT filtering step; that is an isomorphic problem. (Note:
3212 : * actually, we only use it for DISTINCT when there's no grouping or
3213 : * aggregation ahead of the DISTINCT.)
3214 : *
3215 : * Inputs:
3216 : * root - the query
3217 : * groupExprs - list of expressions being grouped by
3218 : * input_rows - number of rows estimated to arrive at the group/unique
3219 : * filter step
3220 : * pgset - NULL, or a List** pointing to a grouping set to filter the
3221 : * groupExprs against
3222 : *
3223 : * Given the lack of any cross-correlation statistics in the system, it's
3224 : * impossible to do anything really trustworthy with GROUP BY conditions
3225 : * involving multiple Vars. We should however avoid assuming the worst
3226 : * case (all possible cross-product terms actually appear as groups) since
3227 : * very often the grouped-by Vars are highly correlated. Our current approach
3228 : * is as follows:
3229 : * 1. Expressions yielding boolean are assumed to contribute two groups,
3230 : * independently of their content, and are ignored in the subsequent
3231 : * steps. This is mainly because tests like "col IS NULL" break the
3232 : * heuristic used in step 2 especially badly.
3233 : * 2. Reduce the given expressions to a list of unique Vars used. For
3234 : * example, GROUP BY a, a + b is treated the same as GROUP BY a, b.
3235 : * It is clearly correct not to count the same Var more than once.
3236 : * It is also reasonable to treat f(x) the same as x: f() cannot
3237 : * increase the number of distinct values (unless it is volatile,
3238 : * which we consider unlikely for grouping), but it probably won't
3239 : * reduce the number of distinct values much either.
3240 : * As a special case, if a GROUP BY expression can be matched to an
3241 : * expressional index for which we have statistics, then we treat the
3242 : * whole expression as though it were just a Var.
3243 : * 3. If the list contains Vars of different relations that are known equal
3244 : * due to equivalence classes, then drop all but one of the Vars from each
3245 : * known-equal set, keeping the one with smallest estimated # of values
3246 : * (since the extra values of the others can't appear in joined rows).
3247 : * Note the reason we only consider Vars of different relations is that
3248 : * if we considered ones of the same rel, we'd be double-counting the
3249 : * restriction selectivity of the equality in the next step.
3250 : * 4. For Vars within a single source rel, we multiply together the numbers
3251 : * of values, clamp to the number of rows in the rel (divided by 10 if
3252 : * more than one Var), and then multiply by a factor based on the
3253 : * selectivity of the restriction clauses for that rel. When there's
3254 : * more than one Var, the initial product is probably too high (it's the
3255 : * worst case) but clamping to a fraction of the rel's rows seems to be a
3256 : * helpful heuristic for not letting the estimate get out of hand. (The
3257 : * factor of 10 is derived from pre-Postgres-7.4 practice.) The factor
3258 : * we multiply by to adjust for the restriction selectivity assumes that
3259 : * the restriction clauses are independent of the grouping, which may not
3260 : * be a valid assumption, but it's hard to do better.
3261 : * 5. If there are Vars from multiple rels, we repeat step 4 for each such
3262 : * rel, and multiply the results together.
3263 : * Note that rels not containing grouped Vars are ignored completely, as are
3264 : * join clauses. Such rels cannot increase the number of groups, and we
3265 : * assume such clauses do not reduce the number either (somewhat bogus,
3266 : * but we don't have the info to do better).
3267 : */
3268 : double
3269 959 : estimate_num_groups(PlannerInfo *root, List *groupExprs, double input_rows,
3270 : List **pgset)
3271 : {
3272 959 : List *varinfos = NIL;
3273 : double numdistinct;
3274 : ListCell *l;
3275 : int i;
3276 :
3277 : /*
3278 : * We don't ever want to return an estimate of zero groups, as that tends
3279 : * to lead to division-by-zero and other unpleasantness. The input_rows
3280 : * estimate is usually already at least 1, but clamp it just in case it
3281 : * isn't.
3282 : */
3283 959 : input_rows = clamp_row_est(input_rows);
3284 :
3285 : /*
3286 : * If no grouping columns, there's exactly one group. (This can't happen
3287 : * for normal cases with GROUP BY or DISTINCT, but it is possible for
3288 : * corner cases with set operations.)
3289 : */
3290 959 : if (groupExprs == NIL || (pgset && list_length(*pgset) < 1))
3291 63 : return 1.0;
3292 :
3293 : /*
3294 : * Count groups derived from boolean grouping expressions. For other
3295 : * expressions, find the unique Vars used, treating an expression as a Var
3296 : * if we can find stats for it. For each one, record the statistical
3297 : * estimate of number of distinct values (total in its table, without
3298 : * regard for filtering).
3299 : */
3300 896 : numdistinct = 1.0;
3301 :
3302 896 : i = 0;
3303 2132 : foreach(l, groupExprs)
3304 : {
3305 1237 : Node *groupexpr = (Node *) lfirst(l);
3306 : VariableStatData vardata;
3307 : List *varshere;
3308 : ListCell *l2;
3309 :
3310 : /* is expression in this grouping set? */
3311 1237 : if (pgset && !list_member_int(*pgset, i++))
3312 510 : continue;
3313 :
3314 : /* Short-circuit for expressions returning boolean */
3315 1174 : if (exprType(groupexpr) == BOOLOID)
3316 : {
3317 6 : numdistinct *= 2.0;
3318 6 : continue;
3319 : }
3320 :
3321 : /*
3322 : * If examine_variable is able to deduce anything about the GROUP BY
3323 : * expression, treat it as a single variable even if it's really more
3324 : * complicated.
3325 : */
3326 1168 : examine_variable(root, groupexpr, 0, &vardata);
3327 1168 : if (HeapTupleIsValid(vardata.statsTuple) || vardata.isunique)
3328 : {
3329 319 : varinfos = add_unique_group_var(root, varinfos,
3330 : groupexpr, &vardata);
3331 319 : ReleaseVariableStats(vardata);
3332 319 : continue;
3333 : }
3334 849 : ReleaseVariableStats(vardata);
3335 :
3336 : /*
3337 : * Else pull out the component Vars. Handle PlaceHolderVars by
3338 : * recursing into their arguments (effectively assuming that the
3339 : * PlaceHolderVar doesn't change the number of groups, which boils
3340 : * down to ignoring the possible addition of nulls to the result set).
3341 : */
3342 849 : varshere = pull_var_clause(groupexpr,
3343 : PVC_RECURSE_AGGREGATES |
3344 : PVC_RECURSE_WINDOWFUNCS |
3345 : PVC_RECURSE_PLACEHOLDERS);
3346 :
3347 : /*
3348 : * If we find any variable-free GROUP BY item, then either it is a
3349 : * constant (and we can ignore it) or it contains a volatile function;
3350 : * in the latter case we punt and assume that each input row will
3351 : * yield a distinct group.
3352 : */
3353 849 : if (varshere == NIL)
3354 : {
3355 60 : if (contain_volatile_functions(groupexpr))
3356 1 : return input_rows;
3357 59 : continue;
3358 : }
3359 :
3360 : /*
3361 : * Else add variables to varinfos list
3362 : */
3363 1581 : foreach(l2, varshere)
3364 : {
3365 792 : Node *var = (Node *) lfirst(l2);
3366 :
3367 792 : examine_variable(root, var, 0, &vardata);
3368 792 : varinfos = add_unique_group_var(root, varinfos, var, &vardata);
3369 792 : ReleaseVariableStats(vardata);
3370 : }
3371 : }
3372 :
3373 : /*
3374 : * If now no Vars, we must have an all-constant or all-boolean GROUP BY
3375 : * list.
3376 : */
3377 895 : if (varinfos == NIL)
3378 : {
3379 : /* Guard against out-of-range answers */
3380 31 : if (numdistinct > input_rows)
3381 0 : numdistinct = input_rows;
3382 31 : return numdistinct;
3383 : }
3384 :
3385 : /*
3386 : * Group Vars by relation and estimate total numdistinct.
3387 : *
3388 : * For each iteration of the outer loop, we process the frontmost Var in
3389 : * varinfos, plus all other Vars in the same relation. We remove these
3390 : * Vars from the newvarinfos list for the next iteration. This is the
3391 : * easiest way to group Vars of same rel together.
3392 : */
3393 : do
3394 : {
3395 897 : GroupVarInfo *varinfo1 = (GroupVarInfo *) linitial(varinfos);
3396 897 : RelOptInfo *rel = varinfo1->rel;
3397 897 : double reldistinct = 1;
3398 897 : double relmaxndistinct = reldistinct;
3399 897 : int relvarcount = 0;
3400 897 : List *newvarinfos = NIL;
3401 897 : List *relvarinfos = NIL;
3402 :
3403 : /*
3404 : * Split the list of varinfos in two - one for the current rel, one
3405 : * for remaining Vars on other rels.
3406 : */
3407 897 : relvarinfos = lcons(varinfo1, relvarinfos);
3408 1142 : for_each_cell(l, lnext(list_head(varinfos)))
3409 : {
3410 245 : GroupVarInfo *varinfo2 = (GroupVarInfo *) lfirst(l);
3411 :
3412 245 : if (varinfo2->rel == varinfo1->rel)
3413 : {
3414 : /* varinfos on current rel */
3415 205 : relvarinfos = lcons(varinfo2, relvarinfos);
3416 : }
3417 : else
3418 : {
3419 : /* not time to process varinfo2 yet */
3420 40 : newvarinfos = lcons(varinfo2, newvarinfos);
3421 : }
3422 : }
3423 :
3424 : /*
3425 : * Get the numdistinct estimate for the Vars of this rel. We
3426 : * iteratively search for multivariate n-distinct with maximum number
3427 : * of vars; assuming that each var group is independent of the others,
3428 : * we multiply them together. Any remaining relvarinfos after no more
3429 : * multivariate matches are found are assumed independent too, so
3430 : * their individual ndistinct estimates are multiplied also.
3431 : *
3432 : * While iterating, count how many separate numdistinct values we
3433 : * apply. We apply a fudge factor below, but only if we multiplied
3434 : * more than one such values.
3435 : */
3436 2695 : while (relvarinfos)
3437 : {
3438 : double mvndistinct;
3439 :
3440 901 : if (estimate_multivariate_ndistinct(root, rel, &relvarinfos,
3441 : &mvndistinct))
3442 : {
3443 9 : reldistinct *= mvndistinct;
3444 9 : if (relmaxndistinct < mvndistinct)
3445 9 : relmaxndistinct = mvndistinct;
3446 9 : relvarcount++;
3447 : }
3448 : else
3449 : {
3450 1972 : foreach(l, relvarinfos)
3451 : {
3452 1080 : GroupVarInfo *varinfo2 = (GroupVarInfo *) lfirst(l);
3453 :
3454 1080 : reldistinct *= varinfo2->ndistinct;
3455 1080 : if (relmaxndistinct < varinfo2->ndistinct)
3456 894 : relmaxndistinct = varinfo2->ndistinct;
3457 1080 : relvarcount++;
3458 : }
3459 :
3460 : /* we're done with this relation */
3461 892 : relvarinfos = NIL;
3462 : }
3463 : }
3464 :
3465 : /*
3466 : * Sanity check --- don't divide by zero if empty relation.
3467 : */
3468 897 : Assert(IS_SIMPLE_REL(rel));
3469 897 : if (rel->tuples > 0)
3470 : {
3471 : /*
3472 : * Clamp to size of rel, or size of rel / 10 if multiple Vars. The
3473 : * fudge factor is because the Vars are probably correlated but we
3474 : * don't know by how much. We should never clamp to less than the
3475 : * largest ndistinct value for any of the Vars, though, since
3476 : * there will surely be at least that many groups.
3477 : */
3478 897 : double clamp = rel->tuples;
3479 :
3480 897 : if (relvarcount > 1)
3481 : {
3482 171 : clamp *= 0.1;
3483 171 : if (clamp < relmaxndistinct)
3484 : {
3485 121 : clamp = relmaxndistinct;
3486 : /* for sanity in case some ndistinct is too large: */
3487 121 : if (clamp > rel->tuples)
3488 0 : clamp = rel->tuples;
3489 : }
3490 : }
3491 897 : if (reldistinct > clamp)
3492 149 : reldistinct = clamp;
3493 :
3494 : /*
3495 : * Update the estimate based on the restriction selectivity,
3496 : * guarding against division by zero when reldistinct is zero.
3497 : * Also skip this if we know that we are returning all rows.
3498 : */
3499 897 : if (reldistinct > 0 && rel->rows < rel->tuples)
3500 : {
3501 : /*
3502 : * Given a table containing N rows with n distinct values in a
3503 : * uniform distribution, if we select p rows at random then
3504 : * the expected number of distinct values selected is
3505 : *
3506 : * n * (1 - product((N-N/n-i)/(N-i), i=0..p-1))
3507 : *
3508 : * = n * (1 - (N-N/n)! / (N-N/n-p)! * (N-p)! / N!)
3509 : *
3510 : * See "Approximating block accesses in database
3511 : * organizations", S. B. Yao, Communications of the ACM,
3512 : * Volume 20 Issue 4, April 1977 Pages 260-261.
3513 : *
3514 : * Alternatively, re-arranging the terms from the factorials,
3515 : * this may be written as
3516 : *
3517 : * n * (1 - product((N-p-i)/(N-i), i=0..N/n-1))
3518 : *
3519 : * This form of the formula is more efficient to compute in
3520 : * the common case where p is larger than N/n. Additionally,
3521 : * as pointed out by Dell'Era, if i << N for all terms in the
3522 : * product, it can be approximated by
3523 : *
3524 : * n * (1 - ((N-p)/N)^(N/n))
3525 : *
3526 : * See "Expected distinct values when selecting from a bag
3527 : * without replacement", Alberto Dell'Era,
3528 : * http://www.adellera.it/investigations/distinct_balls/.
3529 : *
3530 : * The condition i << N is equivalent to n >> 1, so this is a
3531 : * good approximation when the number of distinct values in
3532 : * the table is large. It turns out that this formula also
3533 : * works well even when n is small.
3534 : */
3535 358 : reldistinct *=
3536 358 : (1 - pow((rel->tuples - rel->rows) / rel->tuples,
3537 716 : rel->tuples / reldistinct));
3538 : }
3539 897 : reldistinct = clamp_row_est(reldistinct);
3540 :
3541 : /*
3542 : * Update estimate of total distinct groups.
3543 : */
3544 897 : numdistinct *= reldistinct;
3545 : }
3546 :
3547 897 : varinfos = newvarinfos;
3548 897 : } while (varinfos != NIL);
3549 :
3550 864 : numdistinct = ceil(numdistinct);
3551 :
3552 : /* Guard against out-of-range answers */
3553 864 : if (numdistinct > input_rows)
3554 52 : numdistinct = input_rows;
3555 864 : if (numdistinct < 1.0)
3556 0 : numdistinct = 1.0;
3557 :
3558 864 : return numdistinct;
3559 : }
3560 :
3561 : /*
3562 : * Estimate hash bucket statistics when the specified expression is used
3563 : * as a hash key for the given number of buckets.
3564 : *
3565 : * This attempts to determine two values:
3566 : *
3567 : * 1. The frequency of the most common value of the expression (returns
3568 : * zero into *mcv_freq if we can't get that).
3569 : *
3570 : * 2. The "bucketsize fraction", ie, average number of entries in a bucket
3571 : * divided by total tuples in relation.
3572 : *
3573 : * XXX This is really pretty bogus since we're effectively assuming that the
3574 : * distribution of hash keys will be the same after applying restriction
3575 : * clauses as it was in the underlying relation. However, we are not nearly
3576 : * smart enough to figure out how the restrict clauses might change the
3577 : * distribution, so this will have to do for now.
3578 : *
3579 : * We are passed the number of buckets the executor will use for the given
3580 : * input relation. If the data were perfectly distributed, with the same
3581 : * number of tuples going into each available bucket, then the bucketsize
3582 : * fraction would be 1/nbuckets. But this happy state of affairs will occur
3583 : * only if (a) there are at least nbuckets distinct data values, and (b)
3584 : * we have a not-too-skewed data distribution. Otherwise the buckets will
3585 : * be nonuniformly occupied. If the other relation in the join has a key
3586 : * distribution similar to this one's, then the most-loaded buckets are
3587 : * exactly those that will be probed most often. Therefore, the "average"
3588 : * bucket size for costing purposes should really be taken as something close
3589 : * to the "worst case" bucket size. We try to estimate this by adjusting the
3590 : * fraction if there are too few distinct data values, and then scaling up
3591 : * by the ratio of the most common value's frequency to the average frequency.
3592 : *
3593 : * If no statistics are available, use a default estimate of 0.1. This will
3594 : * discourage use of a hash rather strongly if the inner relation is large,
3595 : * which is what we want. We do not want to hash unless we know that the
3596 : * inner rel is well-dispersed (or the alternatives seem much worse).
3597 : *
3598 : * The caller should also check that the mcv_freq is not so large that the
3599 : * most common value would by itself require an impractically large bucket.
3600 : * In a hash join, the executor can split buckets if they get too big, but
3601 : * obviously that doesn't help for a bucket that contains many duplicates of
3602 : * the same value.
3603 : */
3604 : void
3605 4540 : estimate_hash_bucket_stats(PlannerInfo *root, Node *hashkey, double nbuckets,
3606 : Selectivity *mcv_freq,
3607 : Selectivity *bucketsize_frac)
3608 : {
3609 : VariableStatData vardata;
3610 : double estfract,
3611 : ndistinct,
3612 : stanullfrac,
3613 : avgfreq;
3614 : bool isdefault;
3615 : AttStatsSlot sslot;
3616 :
3617 4540 : examine_variable(root, hashkey, 0, &vardata);
3618 :
3619 : /* Look up the frequency of the most common value, if available */
3620 4540 : *mcv_freq = 0.0;
3621 :
3622 4540 : if (HeapTupleIsValid(vardata.statsTuple))
3623 : {
3624 1543 : if (get_attstatsslot(&sslot, vardata.statsTuple,
3625 : STATISTIC_KIND_MCV, InvalidOid,
3626 : ATTSTATSSLOT_NUMBERS))
3627 : {
3628 : /*
3629 : * The first MCV stat is for the most common value.
3630 : */
3631 1289 : if (sslot.nnumbers > 0)
3632 1289 : *mcv_freq = sslot.numbers[0];
3633 1289 : free_attstatsslot(&sslot);
3634 : }
3635 : }
3636 :
3637 : /* Get number of distinct values */
3638 4540 : ndistinct = get_variable_numdistinct(&vardata, &isdefault);
3639 :
3640 : /*
3641 : * If ndistinct isn't real, punt. We normally return 0.1, but if the
3642 : * mcv_freq is known to be even higher than that, use it instead.
3643 : */
3644 4540 : if (isdefault)
3645 : {
3646 1004 : *bucketsize_frac = (Selectivity) Max(0.1, *mcv_freq);
3647 1004 : ReleaseVariableStats(vardata);
3648 5544 : return;
3649 : }
3650 :
3651 : /* Get fraction that are null */
3652 3536 : if (HeapTupleIsValid(vardata.statsTuple))
3653 : {
3654 : Form_pg_statistic stats;
3655 :
3656 1543 : stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple);
3657 1543 : stanullfrac = stats->stanullfrac;
3658 : }
3659 : else
3660 1993 : stanullfrac = 0.0;
3661 :
3662 : /* Compute avg freq of all distinct data values in raw relation */
3663 3536 : avgfreq = (1.0 - stanullfrac) / ndistinct;
3664 :
3665 : /*
3666 : * Adjust ndistinct to account for restriction clauses. Observe we are
3667 : * assuming that the data distribution is affected uniformly by the
3668 : * restriction clauses!
3669 : *
3670 : * XXX Possibly better way, but much more expensive: multiply by
3671 : * selectivity of rel's restriction clauses that mention the target Var.
3672 : */
3673 3536 : if (vardata.rel && vardata.rel->tuples > 0)
3674 : {
3675 3536 : ndistinct *= vardata.rel->rows / vardata.rel->tuples;
3676 3536 : ndistinct = clamp_row_est(ndistinct);
3677 : }
3678 :
3679 : /*
3680 : * Initial estimate of bucketsize fraction is 1/nbuckets as long as the
3681 : * number of buckets is less than the expected number of distinct values;
3682 : * otherwise it is 1/ndistinct.
3683 : */
3684 3536 : if (ndistinct > nbuckets)
3685 8 : estfract = 1.0 / nbuckets;
3686 : else
3687 3528 : estfract = 1.0 / ndistinct;
3688 :
3689 : /*
3690 : * Adjust estimated bucketsize upward to account for skewed distribution.
3691 : */
3692 3536 : if (avgfreq > 0.0 && *mcv_freq > avgfreq)
3693 1222 : estfract *= *mcv_freq / avgfreq;
3694 :
3695 : /*
3696 : * Clamp bucketsize to sane range (the above adjustment could easily
3697 : * produce an out-of-range result). We set the lower bound a little above
3698 : * zero, since zero isn't a very sane result.
3699 : */
3700 3536 : if (estfract < 1.0e-6)
3701 0 : estfract = 1.0e-6;
3702 3536 : else if (estfract > 1.0)
3703 895 : estfract = 1.0;
3704 :
3705 3536 : *bucketsize_frac = (Selectivity) estfract;
3706 :
3707 3536 : ReleaseVariableStats(vardata);
3708 : }
3709 :
3710 :
3711 : /*-------------------------------------------------------------------------
3712 : *
3713 : * Support routines
3714 : *
3715 : *-------------------------------------------------------------------------
3716 : */
3717 :
3718 : /*
3719 : * Find applicable ndistinct statistics for the given list of VarInfos (which
3720 : * must all belong to the given rel), and update *ndistinct to the estimate of
3721 : * the MVNDistinctItem that best matches. If a match it found, *varinfos is
3722 : * updated to remove the list of matched varinfos.
3723 : *
3724 : * Varinfos that aren't for simple Vars are ignored.
3725 : *
3726 : * Return TRUE if we're able to find a match, FALSE otherwise.
3727 : */
3728 : static bool
3729 901 : estimate_multivariate_ndistinct(PlannerInfo *root, RelOptInfo *rel,
3730 : List **varinfos, double *ndistinct)
3731 : {
3732 : ListCell *lc;
3733 901 : Bitmapset *attnums = NULL;
3734 : int nmatches;
3735 901 : Oid statOid = InvalidOid;
3736 : MVNDistinct *stats;
3737 901 : Bitmapset *matched = NULL;
3738 :
3739 : /* bail out immediately if the table has no extended statistics */
3740 901 : if (!rel->statlist)
3741 887 : return false;
3742 :
3743 : /* Determine the attnums we're looking for */
3744 46 : foreach(lc, *varinfos)
3745 : {
3746 32 : GroupVarInfo *varinfo = (GroupVarInfo *) lfirst(lc);
3747 :
3748 32 : Assert(varinfo->rel == rel);
3749 :
3750 32 : if (IsA(varinfo->var, Var))
3751 : {
3752 32 : attnums = bms_add_member(attnums,
3753 32 : ((Var *) varinfo->var)->varattno);
3754 : }
3755 : }
3756 :
3757 : /* look for the ndistinct statistics matching the most vars */
3758 14 : nmatches = 1; /* we require at least two matches */
3759 35 : foreach(lc, rel->statlist)
3760 : {
3761 21 : StatisticExtInfo *info = (StatisticExtInfo *) lfirst(lc);
3762 : Bitmapset *shared;
3763 : int nshared;
3764 :
3765 : /* skip statistics of other kinds */
3766 21 : if (info->kind != STATS_EXT_NDISTINCT)
3767 7 : continue;
3768 :
3769 : /* compute attnums shared by the vars and the statistics object */
3770 14 : shared = bms_intersect(info->keys, attnums);
3771 14 : nshared = bms_num_members(shared);
3772 :
3773 : /*
3774 : * Does this statistics object match more columns than the currently
3775 : * best object? If so, use this one instead.
3776 : *
3777 : * XXX This should break ties using name of the object, or something
3778 : * like that, to make the outcome stable.
3779 : */
3780 14 : if (nshared > nmatches)
3781 : {
3782 9 : statOid = info->statOid;
3783 9 : nmatches = nshared;
3784 9 : matched = shared;
3785 : }
3786 : }
3787 :
3788 : /* No match? */
3789 14 : if (statOid == InvalidOid)
3790 5 : return false;
3791 9 : Assert(nmatches > 1 && matched != NULL);
3792 :
3793 9 : stats = statext_ndistinct_load(statOid);
3794 :
3795 : /*
3796 : * If we have a match, search it for the specific item that matches (there
3797 : * must be one), and construct the output values.
3798 : */
3799 9 : if (stats)
3800 : {
3801 : int i;
3802 9 : List *newlist = NIL;
3803 9 : MVNDistinctItem *item = NULL;
3804 :
3805 : /* Find the specific item that exactly matches the combination */
3806 27 : for (i = 0; i < stats->nitems; i++)
3807 : {
3808 27 : MVNDistinctItem *tmpitem = &stats->items[i];
3809 :
3810 27 : if (bms_subset_compare(tmpitem->attrs, matched) == BMS_EQUAL)
3811 : {
3812 9 : item = tmpitem;
3813 9 : break;
3814 : }
3815 : }
3816 :
3817 : /* make sure we found an item */
3818 9 : if (!item)
3819 0 : elog(ERROR, "corrupt MVNDistinct entry");
3820 :
3821 : /* Form the output varinfo list, keeping only unmatched ones */
3822 35 : foreach(lc, *varinfos)
3823 : {
3824 26 : GroupVarInfo *varinfo = (GroupVarInfo *) lfirst(lc);
3825 : AttrNumber attnum;
3826 :
3827 26 : if (!IsA(varinfo->var, Var))
3828 : {
3829 0 : newlist = lappend(newlist, varinfo);
3830 0 : continue;
3831 : }
3832 :
3833 26 : attnum = ((Var *) varinfo->var)->varattno;
3834 26 : if (!bms_is_member(attnum, matched))
3835 4 : newlist = lappend(newlist, varinfo);
3836 : }
3837 :
3838 9 : *varinfos = newlist;
3839 9 : *ndistinct = item->ndistinct;
3840 9 : return true;
3841 : }
3842 :
3843 0 : return false;
3844 : }
3845 :
3846 : /*
3847 : * convert_to_scalar
3848 : * Convert non-NULL values of the indicated types to the comparison
3849 : * scale needed by scalarineqsel().
3850 : * Returns "true" if successful.
3851 : *
3852 : * XXX this routine is a hack: ideally we should look up the conversion
3853 : * subroutines in pg_type.
3854 : *
3855 : * All numeric datatypes are simply converted to their equivalent
3856 : * "double" values. (NUMERIC values that are outside the range of "double"
3857 : * are clamped to +/- HUGE_VAL.)
3858 : *
3859 : * String datatypes are converted by convert_string_to_scalar(),
3860 : * which is explained below. The reason why this routine deals with
3861 : * three values at a time, not just one, is that we need it for strings.
3862 : *
3863 : * The bytea datatype is just enough different from strings that it has
3864 : * to be treated separately.
3865 : *
3866 : * The several datatypes representing absolute times are all converted
3867 : * to Timestamp, which is actually a double, and then we just use that
3868 : * double value. Note this will give correct results even for the "special"
3869 : * values of Timestamp, since those are chosen to compare correctly;
3870 : * see timestamp_cmp.
3871 : *
3872 : * The several datatypes representing relative times (intervals) are all
3873 : * converted to measurements expressed in seconds.
3874 : */
3875 : static bool
3876 733 : convert_to_scalar(Datum value, Oid valuetypid, double *scaledvalue,
3877 : Datum lobound, Datum hibound, Oid boundstypid,
3878 : double *scaledlobound, double *scaledhibound)
3879 : {
3880 : /*
3881 : * Both the valuetypid and the boundstypid should exactly match the
3882 : * declared input type(s) of the operator we are invoked for, so we just
3883 : * error out if either is not recognized.
3884 : *
3885 : * XXX The histogram we are interpolating between points of could belong
3886 : * to a column that's only binary-compatible with the declared type. In
3887 : * essence we are assuming that the semantics of binary-compatible types
3888 : * are enough alike that we can use a histogram generated with one type's
3889 : * operators to estimate selectivity for the other's. This is outright
3890 : * wrong in some cases --- in particular signed versus unsigned
3891 : * interpretation could trip us up. But it's useful enough in the
3892 : * majority of cases that we do it anyway. Should think about more
3893 : * rigorous ways to do it.
3894 : */
3895 733 : switch (valuetypid)
3896 : {
3897 : /*
3898 : * Built-in numeric types
3899 : */
3900 : case BOOLOID:
3901 : case INT2OID:
3902 : case INT4OID:
3903 : case INT8OID:
3904 : case FLOAT4OID:
3905 : case FLOAT8OID:
3906 : case NUMERICOID:
3907 : case OIDOID:
3908 : case REGPROCOID:
3909 : case REGPROCEDUREOID:
3910 : case REGOPEROID:
3911 : case REGOPERATOROID:
3912 : case REGCLASSOID:
3913 : case REGTYPEOID:
3914 : case REGCONFIGOID:
3915 : case REGDICTIONARYOID:
3916 : case REGROLEOID:
3917 : case REGNAMESPACEOID:
3918 387 : *scaledvalue = convert_numeric_to_scalar(value, valuetypid);
3919 387 : *scaledlobound = convert_numeric_to_scalar(lobound, boundstypid);
3920 387 : *scaledhibound = convert_numeric_to_scalar(hibound, boundstypid);
3921 387 : return true;
3922 :
3923 : /*
3924 : * Built-in string types
3925 : */
3926 : case CHAROID:
3927 : case BPCHAROID:
3928 : case VARCHAROID:
3929 : case TEXTOID:
3930 : case NAMEOID:
3931 : {
3932 345 : char *valstr = convert_string_datum(value, valuetypid);
3933 345 : char *lostr = convert_string_datum(lobound, boundstypid);
3934 345 : char *histr = convert_string_datum(hibound, boundstypid);
3935 :
3936 345 : convert_string_to_scalar(valstr, scaledvalue,
3937 : lostr, scaledlobound,
3938 : histr, scaledhibound);
3939 345 : pfree(valstr);
3940 345 : pfree(lostr);
3941 345 : pfree(histr);
3942 345 : return true;
3943 : }
3944 :
3945 : /*
3946 : * Built-in bytea type
3947 : */
3948 : case BYTEAOID:
3949 : {
3950 0 : convert_bytea_to_scalar(value, scaledvalue,
3951 : lobound, scaledlobound,
3952 : hibound, scaledhibound);
3953 0 : return true;
3954 : }
3955 :
3956 : /*
3957 : * Built-in time types
3958 : */
3959 : case TIMESTAMPOID:
3960 : case TIMESTAMPTZOID:
3961 : case ABSTIMEOID:
3962 : case DATEOID:
3963 : case INTERVALOID:
3964 : case RELTIMEOID:
3965 : case TINTERVALOID:
3966 : case TIMEOID:
3967 : case TIMETZOID:
3968 0 : *scaledvalue = convert_timevalue_to_scalar(value, valuetypid);
3969 0 : *scaledlobound = convert_timevalue_to_scalar(lobound, boundstypid);
3970 0 : *scaledhibound = convert_timevalue_to_scalar(hibound, boundstypid);
3971 0 : return true;
3972 :
3973 : /*
3974 : * Built-in network types
3975 : */
3976 : case INETOID:
3977 : case CIDROID:
3978 : case MACADDROID:
3979 : case MACADDR8OID:
3980 0 : *scaledvalue = convert_network_to_scalar(value, valuetypid);
3981 0 : *scaledlobound = convert_network_to_scalar(lobound, boundstypid);
3982 0 : *scaledhibound = convert_network_to_scalar(hibound, boundstypid);
3983 0 : return true;
3984 : }
3985 : /* Don't know how to convert */
3986 1 : *scaledvalue = *scaledlobound = *scaledhibound = 0;
3987 1 : return false;
3988 : }
3989 :
3990 : /*
3991 : * Do convert_to_scalar()'s work for any numeric data type.
3992 : */
3993 : static double
3994 1161 : convert_numeric_to_scalar(Datum value, Oid typid)
3995 : {
3996 1161 : switch (typid)
3997 : {
3998 : case BOOLOID:
3999 0 : return (double) DatumGetBool(value);
4000 : case INT2OID:
4001 338 : return (double) DatumGetInt16(value);
4002 : case INT4OID:
4003 667 : return (double) DatumGetInt32(value);
4004 : case INT8OID:
4005 0 : return (double) DatumGetInt64(value);
4006 : case FLOAT4OID:
4007 0 : return (double) DatumGetFloat4(value);
4008 : case FLOAT8OID:
4009 6 : return (double) DatumGetFloat8(value);
4010 : case NUMERICOID:
4011 : /* Note: out-of-range values will be clamped to +-HUGE_VAL */
4012 0 : return (double)
4013 0 : DatumGetFloat8(DirectFunctionCall1(numeric_float8_no_overflow,
4014 : value));
4015 : case OIDOID:
4016 : case REGPROCOID:
4017 : case REGPROCEDUREOID:
4018 : case REGOPEROID:
4019 : case REGOPERATOROID:
4020 : case REGCLASSOID:
4021 : case REGTYPEOID:
4022 : case REGCONFIGOID:
4023 : case REGDICTIONARYOID:
4024 : case REGROLEOID:
4025 : case REGNAMESPACEOID:
4026 : /* we can treat OIDs as integers... */
4027 150 : return (double) DatumGetObjectId(value);
4028 : }
4029 :
4030 : /*
4031 : * Can't get here unless someone tries to use scalarltsel/scalargtsel on
4032 : * an operator with one numeric and one non-numeric operand.
4033 : */
4034 0 : elog(ERROR, "unsupported type: %u", typid);
4035 : return 0;
4036 : }
4037 :
4038 : /*
4039 : * Do convert_to_scalar()'s work for any character-string data type.
4040 : *
4041 : * String datatypes are converted to a scale that ranges from 0 to 1,
4042 : * where we visualize the bytes of the string as fractional digits.
4043 : *
4044 : * We do not want the base to be 256, however, since that tends to
4045 : * generate inflated selectivity estimates; few databases will have
4046 : * occurrences of all 256 possible byte values at each position.
4047 : * Instead, use the smallest and largest byte values seen in the bounds
4048 : * as the estimated range for each byte, after some fudging to deal with
4049 : * the fact that we probably aren't going to see the full range that way.
4050 : *
4051 : * An additional refinement is that we discard any common prefix of the
4052 : * three strings before computing the scaled values. This allows us to
4053 : * "zoom in" when we encounter a narrow data range. An example is a phone
4054 : * number database where all the values begin with the same area code.
4055 : * (Actually, the bounds will be adjacent histogram-bin-boundary values,
4056 : * so this is more likely to happen than you might think.)
4057 : */
4058 : static void
4059 345 : convert_string_to_scalar(char *value,
4060 : double *scaledvalue,
4061 : char *lobound,
4062 : double *scaledlobound,
4063 : char *hibound,
4064 : double *scaledhibound)
4065 : {
4066 : int rangelo,
4067 : rangehi;
4068 : char *sptr;
4069 :
4070 345 : rangelo = rangehi = (unsigned char) hibound[0];
4071 13189 : for (sptr = lobound; *sptr; sptr++)
4072 : {
4073 12844 : if (rangelo > (unsigned char) *sptr)
4074 1012 : rangelo = (unsigned char) *sptr;
4075 12844 : if (rangehi < (unsigned char) *sptr)
4076 543 : rangehi = (unsigned char) *sptr;
4077 : }
4078 10914 : for (sptr = hibound; *sptr; sptr++)
4079 : {
4080 10569 : if (rangelo > (unsigned char) *sptr)
4081 0 : rangelo = (unsigned char) *sptr;
4082 10569 : if (rangehi < (unsigned char) *sptr)
4083 78 : rangehi = (unsigned char) *sptr;
4084 : }
4085 : /* If range includes any upper-case ASCII chars, make it include all */
4086 345 : if (rangelo <= 'Z' && rangehi >= 'A')
4087 : {
4088 0 : if (rangelo > 'A')
4089 0 : rangelo = 'A';
4090 0 : if (rangehi < 'Z')
4091 0 : rangehi = 'Z';
4092 : }
4093 : /* Ditto lower-case */
4094 345 : if (rangelo <= 'z' && rangehi >= 'a')
4095 : {
4096 0 : if (rangelo > 'a')
4097 0 : rangelo = 'a';
4098 0 : if (rangehi < 'z')
4099 0 : rangehi = 'z';
4100 : }
4101 : /* Ditto digits */
4102 345 : if (rangelo <= '9' && rangehi >= '0')
4103 : {
4104 229 : if (rangelo > '0')
4105 0 : rangelo = '0';
4106 229 : if (rangehi < '9')
4107 229 : rangehi = '9';
4108 : }
4109 :
4110 : /*
4111 : * If range includes less than 10 chars, assume we have not got enough
4112 : * data, and make it include regular ASCII set.
4113 : */
4114 345 : if (rangehi - rangelo < 9)
4115 : {
4116 0 : rangelo = ' ';
4117 0 : rangehi = 127;
4118 : }
4119 :
4120 : /*
4121 : * Now strip any common prefix of the three strings.
4122 : */
4123 812 : while (*lobound)
4124 : {
4125 467 : if (*lobound != *hibound || *lobound != *value)
4126 : break;
4127 122 : lobound++, hibound++, value++;
4128 : }
4129 :
4130 : /*
4131 : * Now we can do the conversions.
4132 : */
4133 345 : *scaledvalue = convert_one_string_to_scalar(value, rangelo, rangehi);
4134 345 : *scaledlobound = convert_one_string_to_scalar(lobound, rangelo, rangehi);
4135 345 : *scaledhibound = convert_one_string_to_scalar(hibound, rangelo, rangehi);
4136 345 : }
4137 :
4138 : static double
4139 1035 : convert_one_string_to_scalar(char *value, int rangelo, int rangehi)
4140 : {
4141 1035 : int slen = strlen(value);
4142 : double num,
4143 : denom,
4144 : base;
4145 :
4146 1035 : if (slen <= 0)
4147 0 : return 0.0; /* empty string has scalar value 0 */
4148 :
4149 : /*
4150 : * There seems little point in considering more than a dozen bytes from
4151 : * the string. Since base is at least 10, that will give us nominal
4152 : * resolution of at least 12 decimal digits, which is surely far more
4153 : * precision than this estimation technique has got anyway (especially in
4154 : * non-C locales). Also, even with the maximum possible base of 256, this
4155 : * ensures denom cannot grow larger than 256^13 = 2.03e31, which will not
4156 : * overflow on any known machine.
4157 : */
4158 1035 : if (slen > 12)
4159 838 : slen = 12;
4160 :
4161 : /* Convert initial characters to fraction */
4162 1035 : base = rangehi - rangelo + 1;
4163 1035 : num = 0.0;
4164 1035 : denom = base;
4165 13697 : while (slen-- > 0)
4166 : {
4167 11627 : int ch = (unsigned char) *value++;
4168 :
4169 11627 : if (ch < rangelo)
4170 0 : ch = rangelo - 1;
4171 11627 : else if (ch > rangehi)
4172 0 : ch = rangehi + 1;
4173 11627 : num += ((double) (ch - rangelo)) / denom;
4174 11627 : denom *= base;
4175 : }
4176 :
4177 1035 : return num;
4178 : }
4179 :
4180 : /*
4181 : * Convert a string-type Datum into a palloc'd, null-terminated string.
4182 : *
4183 : * When using a non-C locale, we must pass the string through strxfrm()
4184 : * before continuing, so as to generate correct locale-specific results.
4185 : */
4186 : static char *
4187 1035 : convert_string_datum(Datum value, Oid typid)
4188 : {
4189 : char *val;
4190 :
4191 1035 : switch (typid)
4192 : {
4193 : case CHAROID:
4194 0 : val = (char *) palloc(2);
4195 0 : val[0] = DatumGetChar(value);
4196 0 : val[1] = '\0';
4197 0 : break;
4198 : case BPCHAROID:
4199 : case VARCHAROID:
4200 : case TEXTOID:
4201 18 : val = TextDatumGetCString(value);
4202 18 : break;
4203 : case NAMEOID:
4204 : {
4205 1017 : NameData *nm = (NameData *) DatumGetPointer(value);
4206 :
4207 1017 : val = pstrdup(NameStr(*nm));
4208 1017 : break;
4209 : }
4210 : default:
4211 :
4212 : /*
4213 : * Can't get here unless someone tries to use scalarltsel on an
4214 : * operator with one string and one non-string operand.
4215 : */
4216 0 : elog(ERROR, "unsupported type: %u", typid);
4217 : return NULL;
4218 : }
4219 :
4220 1035 : if (!lc_collate_is_c(DEFAULT_COLLATION_OID))
4221 : {
4222 : char *xfrmstr;
4223 : size_t xfrmlen;
4224 : size_t xfrmlen2 PG_USED_FOR_ASSERTS_ONLY;
4225 :
4226 : /*
4227 : * XXX: We could guess at a suitable output buffer size and only call
4228 : * strxfrm twice if our guess is too small.
4229 : *
4230 : * XXX: strxfrm doesn't support UTF-8 encoding on Win32, it can return
4231 : * bogus data or set an error. This is not really a problem unless it
4232 : * crashes since it will only give an estimation error and nothing
4233 : * fatal.
4234 : */
4235 : #if _MSC_VER == 1400 /* VS.Net 2005 */
4236 :
4237 : /*
4238 : *
4239 : * http://connect.microsoft.com/VisualStudio/feedback/ViewFeedback.aspx?FeedbackID=99694
4240 : */
4241 : {
4242 : char x[1];
4243 :
4244 : xfrmlen = strxfrm(x, val, 0);
4245 : }
4246 : #else
4247 1035 : xfrmlen = strxfrm(NULL, val, 0);
4248 : #endif
4249 : #ifdef WIN32
4250 :
4251 : /*
4252 : * On Windows, strxfrm returns INT_MAX when an error occurs. Instead
4253 : * of trying to allocate this much memory (and fail), just return the
4254 : * original string unmodified as if we were in the C locale.
4255 : */
4256 : if (xfrmlen == INT_MAX)
4257 : return val;
4258 : #endif
4259 1035 : xfrmstr = (char *) palloc(xfrmlen + 1);
4260 1035 : xfrmlen2 = strxfrm(xfrmstr, val, xfrmlen + 1);
4261 :
4262 : /*
4263 : * Some systems (e.g., glibc) can return a smaller value from the
4264 : * second call than the first; thus the Assert must be <= not ==.
4265 : */
4266 1035 : Assert(xfrmlen2 <= xfrmlen);
4267 1035 : pfree(val);
4268 1035 : val = xfrmstr;
4269 : }
4270 :
4271 1035 : return val;
4272 : }
4273 :
4274 : /*
4275 : * Do convert_to_scalar()'s work for any bytea data type.
4276 : *
4277 : * Very similar to convert_string_to_scalar except we can't assume
4278 : * null-termination and therefore pass explicit lengths around.
4279 : *
4280 : * Also, assumptions about likely "normal" ranges of characters have been
4281 : * removed - a data range of 0..255 is always used, for now. (Perhaps
4282 : * someday we will add information about actual byte data range to
4283 : * pg_statistic.)
4284 : */
4285 : static void
4286 0 : convert_bytea_to_scalar(Datum value,
4287 : double *scaledvalue,
4288 : Datum lobound,
4289 : double *scaledlobound,
4290 : Datum hibound,
4291 : double *scaledhibound)
4292 : {
4293 : int rangelo,
4294 : rangehi,
4295 0 : valuelen = VARSIZE(DatumGetPointer(value)) - VARHDRSZ,
4296 0 : loboundlen = VARSIZE(DatumGetPointer(lobound)) - VARHDRSZ,
4297 0 : hiboundlen = VARSIZE(DatumGetPointer(hibound)) - VARHDRSZ,
4298 : i,
4299 : minlen;
4300 0 : unsigned char *valstr = (unsigned char *) VARDATA(DatumGetPointer(value)),
4301 0 : *lostr = (unsigned char *) VARDATA(DatumGetPointer(lobound)),
4302 0 : *histr = (unsigned char *) VARDATA(DatumGetPointer(hibound));
4303 :
4304 : /*
4305 : * Assume bytea data is uniformly distributed across all byte values.
4306 : */
4307 0 : rangelo = 0;
4308 0 : rangehi = 255;
4309 :
4310 : /*
4311 : * Now strip any common prefix of the three strings.
4312 : */
4313 0 : minlen = Min(Min(valuelen, loboundlen), hiboundlen);
4314 0 : for (i = 0; i < minlen; i++)
4315 : {
4316 0 : if (*lostr != *histr || *lostr != *valstr)
4317 : break;
4318 0 : lostr++, histr++, valstr++;
4319 0 : loboundlen--, hiboundlen--, valuelen--;
4320 : }
4321 :
4322 : /*
4323 : * Now we can do the conversions.
4324 : */
4325 0 : *scaledvalue = convert_one_bytea_to_scalar(valstr, valuelen, rangelo, rangehi);
4326 0 : *scaledlobound = convert_one_bytea_to_scalar(lostr, loboundlen, rangelo, rangehi);
4327 0 : *scaledhibound = convert_one_bytea_to_scalar(histr, hiboundlen, rangelo, rangehi);
4328 0 : }
4329 :
4330 : static double
4331 0 : convert_one_bytea_to_scalar(unsigned char *value, int valuelen,
4332 : int rangelo, int rangehi)
4333 : {
4334 : double num,
4335 : denom,
4336 : base;
4337 :
4338 0 : if (valuelen <= 0)
4339 0 : return 0.0; /* empty string has scalar value 0 */
4340 :
4341 : /*
4342 : * Since base is 256, need not consider more than about 10 chars (even
4343 : * this many seems like overkill)
4344 : */
4345 0 : if (valuelen > 10)
4346 0 : valuelen = 10;
4347 :
4348 : /* Convert initial characters to fraction */
4349 0 : base = rangehi - rangelo + 1;
4350 0 : num = 0.0;
4351 0 : denom = base;
4352 0 : while (valuelen-- > 0)
4353 : {
4354 0 : int ch = *value++;
4355 :
4356 0 : if (ch < rangelo)
4357 0 : ch = rangelo - 1;
4358 0 : else if (ch > rangehi)
4359 0 : ch = rangehi + 1;
4360 0 : num += ((double) (ch - rangelo)) / denom;
4361 0 : denom *= base;
4362 : }
4363 :
4364 0 : return num;
4365 : }
4366 :
4367 : /*
4368 : * Do convert_to_scalar()'s work for any timevalue data type.
4369 : */
4370 : static double
4371 0 : convert_timevalue_to_scalar(Datum value, Oid typid)
4372 : {
4373 0 : switch (typid)
4374 : {
4375 : case TIMESTAMPOID:
4376 0 : return DatumGetTimestamp(value);
4377 : case TIMESTAMPTZOID:
4378 0 : return DatumGetTimestampTz(value);
4379 : case ABSTIMEOID:
4380 0 : return DatumGetTimestamp(DirectFunctionCall1(abstime_timestamp,
4381 : value));
4382 : case DATEOID:
4383 0 : return date2timestamp_no_overflow(DatumGetDateADT(value));
4384 : case INTERVALOID:
4385 : {
4386 0 : Interval *interval = DatumGetIntervalP(value);
4387 :
4388 : /*
4389 : * Convert the month part of Interval to days using assumed
4390 : * average month length of 365.25/12.0 days. Not too
4391 : * accurate, but plenty good enough for our purposes.
4392 : */
4393 0 : return interval->time + interval->day * (double) USECS_PER_DAY +
4394 0 : interval->month * ((DAYS_PER_YEAR / (double) MONTHS_PER_YEAR) * USECS_PER_DAY);
4395 : }
4396 : case RELTIMEOID:
4397 0 : return (DatumGetRelativeTime(value) * 1000000.0);
4398 : case TINTERVALOID:
4399 : {
4400 0 : TimeInterval tinterval = DatumGetTimeInterval(value);
4401 :
4402 0 : if (tinterval->status != 0)
4403 0 : return ((tinterval->data[1] - tinterval->data[0]) * 1000000.0);
4404 0 : return 0; /* for lack of a better idea */
4405 : }
4406 : case TIMEOID:
4407 0 : return DatumGetTimeADT(value);
4408 : case TIMETZOID:
4409 : {
4410 0 : TimeTzADT *timetz = DatumGetTimeTzADTP(value);
4411 :
4412 : /* use GMT-equivalent time */
4413 0 : return (double) (timetz->time + (timetz->zone * 1000000.0));
4414 : }
4415 : }
4416 :
4417 : /*
4418 : * Can't get here unless someone tries to use scalarltsel/scalargtsel on
4419 : * an operator with one timevalue and one non-timevalue operand.
4420 : */
4421 0 : elog(ERROR, "unsupported type: %u", typid);
4422 : return 0;
4423 : }
4424 :
4425 :
4426 : /*
4427 : * get_restriction_variable
4428 : * Examine the args of a restriction clause to see if it's of the
4429 : * form (variable op pseudoconstant) or (pseudoconstant op variable),
4430 : * where "variable" could be either a Var or an expression in vars of a
4431 : * single relation. If so, extract information about the variable,
4432 : * and also indicate which side it was on and the other argument.
4433 : *
4434 : * Inputs:
4435 : * root: the planner info
4436 : * args: clause argument list
4437 : * varRelid: see specs for restriction selectivity functions
4438 : *
4439 : * Outputs: (these are valid only if TRUE is returned)
4440 : * *vardata: gets information about variable (see examine_variable)
4441 : * *other: gets other clause argument, aggressively reduced to a constant
4442 : * *varonleft: set TRUE if variable is on the left, FALSE if on the right
4443 : *
4444 : * Returns TRUE if a variable is identified, otherwise FALSE.
4445 : *
4446 : * Note: if there are Vars on both sides of the clause, we must fail, because
4447 : * callers are expecting that the other side will act like a pseudoconstant.
4448 : */
4449 : bool
4450 21628 : get_restriction_variable(PlannerInfo *root, List *args, int varRelid,
4451 : VariableStatData *vardata, Node **other,
4452 : bool *varonleft)
4453 : {
4454 : Node *left,
4455 : *right;
4456 : VariableStatData rdata;
4457 :
4458 : /* Fail if not a binary opclause (probably shouldn't happen) */
4459 21628 : if (list_length(args) != 2)
4460 0 : return false;
4461 :
4462 21628 : left = (Node *) linitial(args);
4463 21628 : right = (Node *) lsecond(args);
4464 :
4465 : /*
4466 : * Examine both sides. Note that when varRelid is nonzero, Vars of other
4467 : * relations will be treated as pseudoconstants.
4468 : */
4469 21628 : examine_variable(root, left, varRelid, vardata);
4470 21628 : examine_variable(root, right, varRelid, &rdata);
4471 :
4472 : /*
4473 : * If one side is a variable and the other not, we win.
4474 : */
4475 21628 : if (vardata->rel && rdata.rel == NULL)
4476 : {
4477 17528 : *varonleft = true;
4478 17528 : *other = estimate_expression_value(root, rdata.var);
4479 : /* Assume we need no ReleaseVariableStats(rdata) here */
4480 17528 : return true;
4481 : }
4482 :
4483 4100 : if (vardata->rel == NULL && rdata.rel)
4484 : {
4485 3936 : *varonleft = false;
4486 3936 : *other = estimate_expression_value(root, vardata->var);
4487 : /* Assume we need no ReleaseVariableStats(*vardata) here */
4488 3936 : *vardata = rdata;
4489 3936 : return true;
4490 : }
4491 :
4492 : /* Oops, clause has wrong structure (probably var op var) */
4493 164 : ReleaseVariableStats(*vardata);
4494 164 : ReleaseVariableStats(rdata);
4495 :
4496 164 : return false;
4497 : }
4498 :
4499 : /*
4500 : * get_join_variables
4501 : * Apply examine_variable() to each side of a join clause.
4502 : * Also, attempt to identify whether the join clause has the same
4503 : * or reversed sense compared to the SpecialJoinInfo.
4504 : *
4505 : * We consider the join clause "normal" if it is "lhs_var OP rhs_var",
4506 : * or "reversed" if it is "rhs_var OP lhs_var". In complicated cases
4507 : * where we can't tell for sure, we default to assuming it's normal.
4508 : */
4509 : void
4510 6061 : get_join_variables(PlannerInfo *root, List *args, SpecialJoinInfo *sjinfo,
4511 : VariableStatData *vardata1, VariableStatData *vardata2,
4512 : bool *join_is_reversed)
4513 : {
4514 : Node *left,
4515 : *right;
4516 :
4517 6061 : if (list_length(args) != 2)
4518 0 : elog(ERROR, "join operator should take two arguments");
4519 :
4520 6061 : left = (Node *) linitial(args);
4521 6061 : right = (Node *) lsecond(args);
4522 :
4523 6061 : examine_variable(root, left, 0, vardata1);
4524 6061 : examine_variable(root, right, 0, vardata2);
4525 :
4526 12109 : if (vardata1->rel &&
4527 6048 : bms_is_subset(vardata1->rel->relids, sjinfo->syn_righthand))
4528 1425 : *join_is_reversed = true; /* var1 is on RHS */
4529 9264 : else if (vardata2->rel &&
4530 4628 : bms_is_subset(vardata2->rel->relids, sjinfo->syn_lefthand))
4531 20 : *join_is_reversed = true; /* var2 is on LHS */
4532 : else
4533 4616 : *join_is_reversed = false;
4534 6061 : }
4535 :
4536 : /*
4537 : * examine_variable
4538 : * Try to look up statistical data about an expression.
4539 : * Fill in a VariableStatData struct to describe the expression.
4540 : *
4541 : * Inputs:
4542 : * root: the planner info
4543 : * node: the expression tree to examine
4544 : * varRelid: see specs for restriction selectivity functions
4545 : *
4546 : * Outputs: *vardata is filled as follows:
4547 : * var: the input expression (with any binary relabeling stripped, if
4548 : * it is or contains a variable; but otherwise the type is preserved)
4549 : * rel: RelOptInfo for relation containing variable; NULL if expression
4550 : * contains no Vars (NOTE this could point to a RelOptInfo of a
4551 : * subquery, not one in the current query).
4552 : * statsTuple: the pg_statistic entry for the variable, if one exists;
4553 : * otherwise NULL.
4554 : * freefunc: pointer to a function to release statsTuple with.
4555 : * vartype: exposed type of the expression; this should always match
4556 : * the declared input type of the operator we are estimating for.
4557 : * atttype, atttypmod: actual type/typmod of the "var" expression. This is
4558 : * commonly the same as the exposed type of the variable argument,
4559 : * but can be different in binary-compatible-type cases.
4560 : * isunique: TRUE if we were able to match the var to a unique index or a
4561 : * single-column DISTINCT clause, implying its values are unique for
4562 : * this query. (Caution: this should be trusted for statistical
4563 : * purposes only, since we do not check indimmediate nor verify that
4564 : * the exact same definition of equality applies.)
4565 : * acl_ok: TRUE if current user has permission to read the column(s)
4566 : * underlying the pg_statistic entry. This is consulted by
4567 : * statistic_proc_security_check().
4568 : *
4569 : * Caller is responsible for doing ReleaseVariableStats() before exiting.
4570 : */
4571 : void
4572 71904 : examine_variable(PlannerInfo *root, Node *node, int varRelid,
4573 : VariableStatData *vardata)
4574 : {
4575 : Node *basenode;
4576 : Relids varnos;
4577 : RelOptInfo *onerel;
4578 :
4579 : /* Make sure we don't return dangling pointers in vardata */
4580 71904 : MemSet(vardata, 0, sizeof(VariableStatData));
4581 :
4582 : /* Save the exposed type of the expression */
4583 71904 : vardata->vartype = exprType(node);
4584 :
4585 : /* Look inside any binary-compatible relabeling */
4586 :
4587 71904 : if (IsA(node, RelabelType))
4588 1197 : basenode = (Node *) ((RelabelType *) node)->arg;
4589 : else
4590 70707 : basenode = node;
4591 :
4592 : /* Fast path for a simple Var */
4593 :
4594 71904 : if (IsA(basenode, Var) &&
4595 17633 : (varRelid == 0 || varRelid == ((Var *) basenode)->varno))
4596 : {
4597 47370 : Var *var = (Var *) basenode;
4598 :
4599 : /* Set up result fields other than the stats tuple */
4600 47370 : vardata->var = basenode; /* return Var without relabeling */
4601 47370 : vardata->rel = find_base_rel(root, var->varno);
4602 47370 : vardata->atttype = var->vartype;
4603 47370 : vardata->atttypmod = var->vartypmod;
4604 47370 : vardata->isunique = has_unique_index(vardata->rel, var->varattno);
4605 :
4606 : /* Try to locate some stats */
4607 47370 : examine_simple_variable(root, var, vardata);
4608 :
4609 119274 : return;
4610 : }
4611 :
4612 : /*
4613 : * Okay, it's a more complicated expression. Determine variable
4614 : * membership. Note that when varRelid isn't zero, only vars of that
4615 : * relation are considered "real" vars.
4616 : */
4617 24534 : varnos = pull_varnos(basenode);
4618 :
4619 24534 : onerel = NULL;
4620 :
4621 24534 : switch (bms_membership(varnos))
4622 : {
4623 : case BMS_EMPTY_SET:
4624 : /* No Vars at all ... must be pseudo-constant clause */
4625 13877 : break;
4626 : case BMS_SINGLETON:
4627 10343 : if (varRelid == 0 || bms_is_member(varRelid, varnos))
4628 : {
4629 2097 : onerel = find_base_rel(root,
4630 : (varRelid ? varRelid : bms_singleton_member(varnos)));
4631 2097 : vardata->rel = onerel;
4632 2097 : node = basenode; /* strip any relabeling */
4633 : }
4634 : /* else treat it as a constant */
4635 10343 : break;
4636 : case BMS_MULTIPLE:
4637 314 : if (varRelid == 0)
4638 : {
4639 : /* treat it as a variable of a join relation */
4640 224 : vardata->rel = find_join_rel(root, varnos);
4641 224 : node = basenode; /* strip any relabeling */
4642 : }
4643 90 : else if (bms_is_member(varRelid, varnos))
4644 : {
4645 : /* ignore the vars belonging to other relations */
4646 67 : vardata->rel = find_base_rel(root, varRelid);
4647 67 : node = basenode; /* strip any relabeling */
4648 : /* note: no point in expressional-index search here */
4649 : }
4650 : /* else treat it as a constant */
4651 314 : break;
4652 : }
4653 :
4654 24534 : bms_free(varnos);
4655 :
4656 24534 : vardata->var = node;
4657 24534 : vardata->atttype = exprType(node);
4658 24534 : vardata->atttypmod = exprTypmod(node);
4659 :
4660 24534 : if (onerel)
4661 : {
4662 : /*
4663 : * We have an expression in vars of a single relation. Try to match
4664 : * it to expressional index columns, in hopes of finding some
4665 : * statistics.
4666 : *
4667 : * XXX it's conceivable that there are multiple matches with different
4668 : * index opfamilies; if so, we need to pick one that matches the
4669 : * operator we are estimating for. FIXME later.
4670 : */
4671 : ListCell *ilist;
4672 :
4673 4994 : foreach(ilist, onerel->indexlist)
4674 : {
4675 2911 : IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
4676 : ListCell *indexpr_item;
4677 : int pos;
4678 :
4679 2911 : indexpr_item = list_head(index->indexprs);
4680 2911 : if (indexpr_item == NULL)
4681 2625 : continue; /* no expressions here... */
4682 :
4683 558 : for (pos = 0; pos < index->ncolumns; pos++)
4684 : {
4685 286 : if (index->indexkeys[pos] == 0)
4686 : {
4687 : Node *indexkey;
4688 :
4689 286 : if (indexpr_item == NULL)
4690 0 : elog(ERROR, "too few entries in indexprs list");
4691 286 : indexkey = (Node *) lfirst(indexpr_item);
4692 286 : if (indexkey && IsA(indexkey, RelabelType))
4693 0 : indexkey = (Node *) ((RelabelType *) indexkey)->arg;
4694 286 : if (equal(node, indexkey))
4695 : {
4696 : /*
4697 : * Found a match ... is it a unique index? Tests here
4698 : * should match has_unique_index().
4699 : */
4700 158 : if (index->unique &&
4701 130 : index->ncolumns == 1 &&
4702 65 : (index->indpred == NIL || index->predOK))
4703 65 : vardata->isunique = true;
4704 :
4705 : /*
4706 : * Has it got stats? We only consider stats for
4707 : * non-partial indexes, since partial indexes probably
4708 : * don't reflect whole-relation statistics; the above
4709 : * check for uniqueness is the only info we take from
4710 : * a partial index.
4711 : *
4712 : * An index stats hook, however, must make its own
4713 : * decisions about what to do with partial indexes.
4714 : */
4715 93 : if (get_index_stats_hook &&
4716 0 : (*get_index_stats_hook) (root, index->indexoid,
4717 : pos + 1, vardata))
4718 : {
4719 : /*
4720 : * The hook took control of acquiring a stats
4721 : * tuple. If it did supply a tuple, it'd better
4722 : * have supplied a freefunc.
4723 : */
4724 0 : if (HeapTupleIsValid(vardata->statsTuple) &&
4725 0 : !vardata->freefunc)
4726 0 : elog(ERROR, "no function provided to release variable stats with");
4727 : }
4728 93 : else if (index->indpred == NIL)
4729 : {
4730 93 : vardata->statsTuple =
4731 93 : SearchSysCache3(STATRELATTINH,
4732 : ObjectIdGetDatum(index->indexoid),
4733 : Int16GetDatum(pos + 1),
4734 : BoolGetDatum(false));
4735 93 : vardata->freefunc = ReleaseSysCache;
4736 :
4737 93 : if (HeapTupleIsValid(vardata->statsTuple))
4738 : {
4739 : /* Get index's table for permission check */
4740 : RangeTblEntry *rte;
4741 :
4742 14 : rte = planner_rt_fetch(index->rel->relid, root);
4743 14 : Assert(rte->rtekind == RTE_RELATION);
4744 :
4745 : /*
4746 : * For simplicity, we insist on the whole
4747 : * table being selectable, rather than trying
4748 : * to identify which column(s) the index
4749 : * depends on.
4750 : */
4751 14 : vardata->acl_ok =
4752 14 : (pg_class_aclcheck(rte->relid, GetUserId(),
4753 14 : ACL_SELECT) == ACLCHECK_OK);
4754 : }
4755 : else
4756 : {
4757 : /* suppress leakproofness checks later */
4758 79 : vardata->acl_ok = true;
4759 : }
4760 : }
4761 93 : if (vardata->statsTuple)
4762 14 : break;
4763 : }
4764 272 : indexpr_item = lnext(indexpr_item);
4765 : }
4766 : }
4767 286 : if (vardata->statsTuple)
4768 14 : break;
4769 : }
4770 : }
4771 : }
4772 :
4773 : /*
4774 : * examine_simple_variable
4775 : * Handle a simple Var for examine_variable
4776 : *
4777 : * This is split out as a subroutine so that we can recurse to deal with
4778 : * Vars referencing subqueries.
4779 : *
4780 : * We already filled in all the fields of *vardata except for the stats tuple.
4781 : */
4782 : static void
4783 47482 : examine_simple_variable(PlannerInfo *root, Var *var,
4784 : VariableStatData *vardata)
4785 : {
4786 47482 : RangeTblEntry *rte = root->simple_rte_array[var->varno];
4787 :
4788 47482 : Assert(IsA(rte, RangeTblEntry));
4789 :
4790 47482 : if (get_relation_stats_hook &&
4791 0 : (*get_relation_stats_hook) (root, rte, var->varattno, vardata))
4792 : {
4793 : /*
4794 : * The hook took control of acquiring a stats tuple. If it did supply
4795 : * a tuple, it'd better have supplied a freefunc.
4796 : */
4797 0 : if (HeapTupleIsValid(vardata->statsTuple) &&
4798 0 : !vardata->freefunc)
4799 0 : elog(ERROR, "no function provided to release variable stats with");
4800 : }
4801 47482 : else if (rte->rtekind == RTE_RELATION)
4802 : {
4803 : /*
4804 : * Plain table or parent of an inheritance appendrel, so look up the
4805 : * column in pg_statistic
4806 : */
4807 45238 : vardata->statsTuple = SearchSysCache3(STATRELATTINH,
4808 : ObjectIdGetDatum(rte->relid),
4809 : Int16GetDatum(var->varattno),
4810 : BoolGetDatum(rte->inh));
4811 45238 : vardata->freefunc = ReleaseSysCache;
4812 :
4813 45238 : if (HeapTupleIsValid(vardata->statsTuple))
4814 : {
4815 : /* check if user has permission to read this column */
4816 19024 : vardata->acl_ok =
4817 19024 : (pg_class_aclcheck(rte->relid, GetUserId(),
4818 19069 : ACL_SELECT) == ACLCHECK_OK) ||
4819 45 : (pg_attribute_aclcheck(rte->relid, var->varattno, GetUserId(),
4820 : ACL_SELECT) == ACLCHECK_OK);
4821 : }
4822 : else
4823 : {
4824 : /* suppress any possible leakproofness checks later */
4825 26214 : vardata->acl_ok = true;
4826 : }
4827 : }
4828 2244 : else if (rte->rtekind == RTE_SUBQUERY && !rte->inh)
4829 : {
4830 : /*
4831 : * Plain subquery (not one that was converted to an appendrel).
4832 : */
4833 661 : Query *subquery = rte->subquery;
4834 : RelOptInfo *rel;
4835 : TargetEntry *ste;
4836 :
4837 : /*
4838 : * Punt if it's a whole-row var rather than a plain column reference.
4839 : */
4840 661 : if (var->varattno == InvalidAttrNumber)
4841 0 : return;
4842 :
4843 : /*
4844 : * Punt if subquery uses set operations or GROUP BY, as these will
4845 : * mash underlying columns' stats beyond recognition. (Set ops are
4846 : * particularly nasty; if we forged ahead, we would return stats
4847 : * relevant to only the leftmost subselect...) DISTINCT is also
4848 : * problematic, but we check that later because there is a possibility
4849 : * of learning something even with it.
4850 : */
4851 1308 : if (subquery->setOperations ||
4852 647 : subquery->groupClause)
4853 64 : return;
4854 :
4855 : /*
4856 : * OK, fetch RelOptInfo for subquery. Note that we don't change the
4857 : * rel returned in vardata, since caller expects it to be a rel of the
4858 : * caller's query level. Because we might already be recursing, we
4859 : * can't use that rel pointer either, but have to look up the Var's
4860 : * rel afresh.
4861 : */
4862 597 : rel = find_base_rel(root, var->varno);
4863 :
4864 : /* If the subquery hasn't been planned yet, we have to punt */
4865 597 : if (rel->subroot == NULL)
4866 0 : return;
4867 597 : Assert(IsA(rel->subroot, PlannerInfo));
4868 :
4869 : /*
4870 : * Switch our attention to the subquery as mangled by the planner. It
4871 : * was okay to look at the pre-planning version for the tests above,
4872 : * but now we need a Var that will refer to the subroot's live
4873 : * RelOptInfos. For instance, if any subquery pullup happened during
4874 : * planning, Vars in the targetlist might have gotten replaced, and we
4875 : * need to see the replacement expressions.
4876 : */
4877 597 : subquery = rel->subroot->parse;
4878 597 : Assert(IsA(subquery, Query));
4879 :
4880 : /* Get the subquery output expression referenced by the upper Var */
4881 597 : ste = get_tle_by_resno(subquery->targetList, var->varattno);
4882 597 : if (ste == NULL || ste->resjunk)
4883 0 : elog(ERROR, "subquery %s does not have attribute %d",
4884 : rte->eref->aliasname, var->varattno);
4885 597 : var = (Var *) ste->expr;
4886 :
4887 : /*
4888 : * If subquery uses DISTINCT, we can't make use of any stats for the
4889 : * variable ... but, if it's the only DISTINCT column, we are entitled
4890 : * to consider it unique. We do the test this way so that it works
4891 : * for cases involving DISTINCT ON.
4892 : */
4893 597 : if (subquery->distinctClause)
4894 : {
4895 50 : if (list_length(subquery->distinctClause) == 1 &&
4896 17 : targetIsInSortList(ste, InvalidOid, subquery->distinctClause))
4897 17 : vardata->isunique = true;
4898 : /* cannot go further */
4899 33 : return;
4900 : }
4901 :
4902 : /*
4903 : * If the sub-query originated from a view with the security_barrier
4904 : * attribute, we must not look at the variable's statistics, though it
4905 : * seems all right to notice the existence of a DISTINCT clause. So
4906 : * stop here.
4907 : *
4908 : * This is probably a harsher restriction than necessary; it's
4909 : * certainly OK for the selectivity estimator (which is a C function,
4910 : * and therefore omnipotent anyway) to look at the statistics. But
4911 : * many selectivity estimators will happily *invoke the operator
4912 : * function* to try to work out a good estimate - and that's not OK.
4913 : * So for now, don't dig down for stats.
4914 : */
4915 564 : if (rte->security_barrier)
4916 17 : return;
4917 :
4918 : /* Can only handle a simple Var of subquery's query level */
4919 659 : if (var && IsA(var, Var) &&
4920 112 : var->varlevelsup == 0)
4921 : {
4922 : /*
4923 : * OK, recurse into the subquery. Note that the original setting
4924 : * of vardata->isunique (which will surely be false) is left
4925 : * unchanged in this situation. That's what we want, since even
4926 : * if the underlying column is unique, the subquery may have
4927 : * joined to other tables in a way that creates duplicates.
4928 : */
4929 112 : examine_simple_variable(rel->subroot, var, vardata);
4930 : }
4931 : }
4932 : else
4933 : {
4934 : /*
4935 : * Otherwise, the Var comes from a FUNCTION, VALUES, or CTE RTE. (We
4936 : * won't see RTE_JOIN here because join alias Vars have already been
4937 : * flattened.) There's not much we can do with function outputs, but
4938 : * maybe someday try to be smarter about VALUES and/or CTEs.
4939 : */
4940 : }
4941 : }
4942 :
4943 : /*
4944 : * Check whether it is permitted to call func_oid passing some of the
4945 : * pg_statistic data in vardata. We allow this either if the user has SELECT
4946 : * privileges on the table or column underlying the pg_statistic data or if
4947 : * the function is marked leak-proof.
4948 : */
4949 : bool
4950 13597 : statistic_proc_security_check(VariableStatData *vardata, Oid func_oid)
4951 : {
4952 13597 : if (vardata->acl_ok)
4953 13577 : return true;
4954 :
4955 20 : if (!OidIsValid(func_oid))
4956 0 : return false;
4957 :
4958 20 : if (get_func_leakproof(func_oid))
4959 12 : return true;
4960 :
4961 8 : ereport(DEBUG2,
4962 : (errmsg_internal("not using statistics because function \"%s\" is not leak-proof",
4963 : get_func_name(func_oid))));
4964 8 : return false;
4965 : }
4966 :
4967 : /*
4968 : * get_variable_numdistinct
4969 : * Estimate the number of distinct values of a variable.
4970 : *
4971 : * vardata: results of examine_variable
4972 : * *isdefault: set to TRUE if the result is a default rather than based on
4973 : * anything meaningful.
4974 : *
4975 : * NB: be careful to produce a positive integral result, since callers may
4976 : * compare the result to exact integer counts, or might divide by it.
4977 : */
4978 : double
4979 29447 : get_variable_numdistinct(VariableStatData *vardata, bool *isdefault)
4980 : {
4981 : double stadistinct;
4982 29447 : double stanullfrac = 0.0;
4983 : double ntuples;
4984 :
4985 29447 : *isdefault = false;
4986 :
4987 : /*
4988 : * Determine the stadistinct value to use. There are cases where we can
4989 : * get an estimate even without a pg_statistic entry, or can get a better
4990 : * value than is in pg_statistic. Grab stanullfrac too if we can find it
4991 : * (otherwise, assume no nulls, for lack of any better idea).
4992 : */
4993 29447 : if (HeapTupleIsValid(vardata->statsTuple))
4994 : {
4995 : /* Use the pg_statistic entry */
4996 : Form_pg_statistic stats;
4997 :
4998 13442 : stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
4999 13442 : stadistinct = stats->stadistinct;
5000 13442 : stanullfrac = stats->stanullfrac;
5001 : }
5002 16005 : else if (vardata->vartype == BOOLOID)
5003 : {
5004 : /*
5005 : * Special-case boolean columns: presumably, two distinct values.
5006 : *
5007 : * Are there any other datatypes we should wire in special estimates
5008 : * for?
5009 : */
5010 20 : stadistinct = 2.0;
5011 : }
5012 15985 : else if (vardata->rel && vardata->rel->rtekind == RTE_VALUES)
5013 : {
5014 : /*
5015 : * If the Var represents a column of a VALUES RTE, assume it's unique.
5016 : * This could of course be very wrong, but it should tend to be true
5017 : * in well-written queries. We could consider examining the VALUES'
5018 : * contents to get some real statistics; but that only works if the
5019 : * entries are all constants, and it would be pretty expensive anyway.
5020 : */
5021 171 : stadistinct = -1.0; /* unique (and all non null) */
5022 : }
5023 : else
5024 : {
5025 : /*
5026 : * We don't keep statistics for system columns, but in some cases we
5027 : * can infer distinctness anyway.
5028 : */
5029 15814 : if (vardata->var && IsA(vardata->var, Var))
5030 : {
5031 15094 : switch (((Var *) vardata->var)->varattno)
5032 : {
5033 : case ObjectIdAttributeNumber:
5034 : case SelfItemPointerAttributeNumber:
5035 5373 : stadistinct = -1.0; /* unique (and all non null) */
5036 5373 : break;
5037 : case TableOidAttributeNumber:
5038 207 : stadistinct = 1.0; /* only 1 value */
5039 207 : break;
5040 : default:
5041 9514 : stadistinct = 0.0; /* means "unknown" */
5042 9514 : break;
5043 : }
5044 15094 : }
5045 : else
5046 720 : stadistinct = 0.0; /* means "unknown" */
5047 :
5048 : /*
5049 : * XXX consider using estimate_num_groups on expressions?
5050 : */
5051 : }
5052 :
5053 : /*
5054 : * If there is a unique index or DISTINCT clause for the variable, assume
5055 : * it is unique no matter what pg_statistic says; the statistics could be
5056 : * out of date, or we might have found a partial unique index that proves
5057 : * the var is unique for this query. However, we'd better still believe
5058 : * the null-fraction statistic.
5059 : */
5060 29447 : if (vardata->isunique)
5061 6289 : stadistinct = -1.0 * (1.0 - stanullfrac);
5062 :
5063 : /*
5064 : * If we had an absolute estimate, use that.
5065 : */
5066 29447 : if (stadistinct > 0.0)
5067 5749 : return clamp_row_est(stadistinct);
5068 :
5069 : /*
5070 : * Otherwise we need to get the relation size; punt if not available.
5071 : */
5072 23698 : if (vardata->rel == NULL)
5073 : {
5074 21 : *isdefault = true;
5075 21 : return DEFAULT_NUM_DISTINCT;
5076 : }
5077 23677 : ntuples = vardata->rel->tuples;
5078 23677 : if (ntuples <= 0.0)
5079 : {
5080 79 : *isdefault = true;
5081 79 : return DEFAULT_NUM_DISTINCT;
5082 : }
5083 :
5084 : /*
5085 : * If we had a relative estimate, use that.
5086 : */
5087 23598 : if (stadistinct < 0.0)
5088 13929 : return clamp_row_est(-stadistinct * ntuples);
5089 :
5090 : /*
5091 : * With no data, estimate ndistinct = ntuples if the table is small, else
5092 : * use default. We use DEFAULT_NUM_DISTINCT as the cutoff for "small" so
5093 : * that the behavior isn't discontinuous.
5094 : */
5095 9669 : if (ntuples < DEFAULT_NUM_DISTINCT)
5096 2424 : return clamp_row_est(ntuples);
5097 :
5098 7245 : *isdefault = true;
5099 7245 : return DEFAULT_NUM_DISTINCT;
5100 : }
5101 :
5102 : /*
5103 : * get_variable_range
5104 : * Estimate the minimum and maximum value of the specified variable.
5105 : * If successful, store values in *min and *max, and return TRUE.
5106 : * If no data available, return FALSE.
5107 : *
5108 : * sortop is the "<" comparison operator to use. This should generally
5109 : * be "<" not ">", as only the former is likely to be found in pg_statistic.
5110 : */
5111 : static bool
5112 4154 : get_variable_range(PlannerInfo *root, VariableStatData *vardata, Oid sortop,
5113 : Datum *min, Datum *max)
5114 : {
5115 4154 : Datum tmin = 0;
5116 4154 : Datum tmax = 0;
5117 4154 : bool have_data = false;
5118 : int16 typLen;
5119 : bool typByVal;
5120 : Oid opfuncoid;
5121 : AttStatsSlot sslot;
5122 : int i;
5123 :
5124 : /*
5125 : * XXX It's very tempting to try to use the actual column min and max, if
5126 : * we can get them relatively-cheaply with an index probe. However, since
5127 : * this function is called many times during join planning, that could
5128 : * have unpleasant effects on planning speed. Need more investigation
5129 : * before enabling this.
5130 : */
5131 : #ifdef NOT_USED
5132 : if (get_actual_variable_range(root, vardata, sortop, min, max))
5133 : return true;
5134 : #endif
5135 :
5136 4154 : if (!HeapTupleIsValid(vardata->statsTuple))
5137 : {
5138 : /* no stats available, so default result */
5139 3010 : return false;
5140 : }
5141 :
5142 : /*
5143 : * If we can't apply the sortop to the stats data, just fail. In
5144 : * principle, if there's a histogram and no MCVs, we could return the
5145 : * histogram endpoints without ever applying the sortop ... but it's
5146 : * probably not worth trying, because whatever the caller wants to do with
5147 : * the endpoints would likely fail the security check too.
5148 : */
5149 1144 : if (!statistic_proc_security_check(vardata,
5150 : (opfuncoid = get_opcode(sortop))))
5151 0 : return false;
5152 :
5153 1144 : get_typlenbyval(vardata->atttype, &typLen, &typByVal);
5154 :
5155 : /*
5156 : * If there is a histogram, grab the first and last values.
5157 : *
5158 : * If there is a histogram that is sorted with some other operator than
5159 : * the one we want, fail --- this suggests that there is data we can't
5160 : * use.
5161 : */
5162 1144 : if (get_attstatsslot(&sslot, vardata->statsTuple,
5163 : STATISTIC_KIND_HISTOGRAM, sortop,
5164 : ATTSTATSSLOT_VALUES))
5165 : {
5166 828 : if (sslot.nvalues > 0)
5167 : {
5168 828 : tmin = datumCopy(sslot.values[0], typByVal, typLen);
5169 828 : tmax = datumCopy(sslot.values[sslot.nvalues - 1], typByVal, typLen);
5170 828 : have_data = true;
5171 : }
5172 828 : free_attstatsslot(&sslot);
5173 : }
5174 316 : else if (get_attstatsslot(&sslot, vardata->statsTuple,
5175 : STATISTIC_KIND_HISTOGRAM, InvalidOid,
5176 : 0))
5177 : {
5178 0 : free_attstatsslot(&sslot);
5179 0 : return false;
5180 : }
5181 :
5182 : /*
5183 : * If we have most-common-values info, look for extreme MCVs. This is
5184 : * needed even if we also have a histogram, since the histogram excludes
5185 : * the MCVs. However, usually the MCVs will not be the extreme values, so
5186 : * avoid unnecessary data copying.
5187 : */
5188 1144 : if (get_attstatsslot(&sslot, vardata->statsTuple,
5189 : STATISTIC_KIND_MCV, InvalidOid,
5190 : ATTSTATSSLOT_VALUES))
5191 : {
5192 834 : bool tmin_is_mcv = false;
5193 834 : bool tmax_is_mcv = false;
5194 : FmgrInfo opproc;
5195 :
5196 834 : fmgr_info(opfuncoid, &opproc);
5197 :
5198 15441 : for (i = 0; i < sslot.nvalues; i++)
5199 : {
5200 14607 : if (!have_data)
5201 : {
5202 310 : tmin = tmax = sslot.values[i];
5203 310 : tmin_is_mcv = tmax_is_mcv = have_data = true;
5204 310 : continue;
5205 : }
5206 14297 : if (DatumGetBool(FunctionCall2Coll(&opproc,
5207 : DEFAULT_COLLATION_OID,
5208 : sslot.values[i], tmin)))
5209 : {
5210 459 : tmin = sslot.values[i];
5211 459 : tmin_is_mcv = true;
5212 : }
5213 14297 : if (DatumGetBool(FunctionCall2Coll(&opproc,
5214 : DEFAULT_COLLATION_OID,
5215 : tmax, sslot.values[i])))
5216 : {
5217 1740 : tmax = sslot.values[i];
5218 1740 : tmax_is_mcv = true;
5219 : }
5220 : }
5221 834 : if (tmin_is_mcv)
5222 713 : tmin = datumCopy(tmin, typByVal, typLen);
5223 834 : if (tmax_is_mcv)
5224 357 : tmax = datumCopy(tmax, typByVal, typLen);
5225 834 : free_attstatsslot(&sslot);
5226 : }
5227 :
5228 1144 : *min = tmin;
5229 1144 : *max = tmax;
5230 1144 : return have_data;
5231 : }
5232 :
5233 :
5234 : /*
5235 : * get_actual_variable_range
5236 : * Attempt to identify the current *actual* minimum and/or maximum
5237 : * of the specified variable, by looking for a suitable btree index
5238 : * and fetching its low and/or high values.
5239 : * If successful, store values in *min and *max, and return TRUE.
5240 : * (Either pointer can be NULL if that endpoint isn't needed.)
5241 : * If no data available, return FALSE.
5242 : *
5243 : * sortop is the "<" comparison operator to use.
5244 : */
5245 : static bool
5246 924 : get_actual_variable_range(PlannerInfo *root, VariableStatData *vardata,
5247 : Oid sortop,
5248 : Datum *min, Datum *max)
5249 : {
5250 924 : bool have_data = false;
5251 924 : RelOptInfo *rel = vardata->rel;
5252 : RangeTblEntry *rte;
5253 : ListCell *lc;
5254 :
5255 : /* No hope if no relation or it doesn't have indexes */
5256 924 : if (rel == NULL || rel->indexlist == NIL)
5257 11 : return false;
5258 : /* If it has indexes it must be a plain relation */
5259 913 : rte = root->simple_rte_array[rel->relid];
5260 913 : Assert(rte->rtekind == RTE_RELATION);
5261 :
5262 : /* Search through the indexes to see if any match our problem */
5263 2335 : foreach(lc, rel->indexlist)
5264 : {
5265 1988 : IndexOptInfo *index = (IndexOptInfo *) lfirst(lc);
5266 : ScanDirection indexscandir;
5267 :
5268 : /* Ignore non-btree indexes */
5269 1988 : if (index->relam != BTREE_AM_OID)
5270 0 : continue;
5271 :
5272 : /*
5273 : * Ignore partial indexes --- we only want stats that cover the entire
5274 : * relation.
5275 : */
5276 1988 : if (index->indpred != NIL)
5277 17 : continue;
5278 :
5279 : /*
5280 : * The index list might include hypothetical indexes inserted by a
5281 : * get_relation_info hook --- don't try to access them.
5282 : */
5283 1971 : if (index->hypothetical)
5284 0 : continue;
5285 :
5286 : /*
5287 : * The first index column must match the desired variable and sort
5288 : * operator --- but we can use a descending-order index.
5289 : */
5290 1971 : if (!match_index_to_operand(vardata->var, 0, index))
5291 1405 : continue;
5292 566 : switch (get_op_opfamily_strategy(sortop, index->sortopfamily[0]))
5293 : {
5294 : case BTLessStrategyNumber:
5295 566 : if (index->reverse_sort[0])
5296 0 : indexscandir = BackwardScanDirection;
5297 : else
5298 566 : indexscandir = ForwardScanDirection;
5299 566 : break;
5300 : case BTGreaterStrategyNumber:
5301 0 : if (index->reverse_sort[0])
5302 0 : indexscandir = ForwardScanDirection;
5303 : else
5304 0 : indexscandir = BackwardScanDirection;
5305 0 : break;
5306 : default:
5307 : /* index doesn't match the sortop */
5308 0 : continue;
5309 : }
5310 :
5311 : /*
5312 : * Found a suitable index to extract data from. We'll need an EState
5313 : * and a bunch of other infrastructure.
5314 : */
5315 : {
5316 : EState *estate;
5317 : ExprContext *econtext;
5318 : MemoryContext tmpcontext;
5319 : MemoryContext oldcontext;
5320 : Relation heapRel;
5321 : Relation indexRel;
5322 : IndexInfo *indexInfo;
5323 : TupleTableSlot *slot;
5324 : int16 typLen;
5325 : bool typByVal;
5326 : ScanKeyData scankeys[1];
5327 : IndexScanDesc index_scan;
5328 : HeapTuple tup;
5329 : Datum values[INDEX_MAX_KEYS];
5330 : bool isnull[INDEX_MAX_KEYS];
5331 : SnapshotData SnapshotDirty;
5332 :
5333 566 : estate = CreateExecutorState();
5334 566 : econtext = GetPerTupleExprContext(estate);
5335 : /* Make sure any cruft is generated in the econtext's memory */
5336 566 : tmpcontext = econtext->ecxt_per_tuple_memory;
5337 566 : oldcontext = MemoryContextSwitchTo(tmpcontext);
5338 :
5339 : /*
5340 : * Open the table and index so we can read from them. We should
5341 : * already have at least AccessShareLock on the table, but not
5342 : * necessarily on the index.
5343 : */
5344 566 : heapRel = heap_open(rte->relid, NoLock);
5345 566 : indexRel = index_open(index->indexoid, AccessShareLock);
5346 :
5347 : /* extract index key information from the index's pg_index info */
5348 566 : indexInfo = BuildIndexInfo(indexRel);
5349 :
5350 : /* some other stuff */
5351 566 : slot = MakeSingleTupleTableSlot(RelationGetDescr(heapRel));
5352 566 : econtext->ecxt_scantuple = slot;
5353 566 : get_typlenbyval(vardata->atttype, &typLen, &typByVal);
5354 566 : InitDirtySnapshot(SnapshotDirty);
5355 :
5356 : /* set up an IS NOT NULL scan key so that we ignore nulls */
5357 566 : ScanKeyEntryInitialize(&scankeys[0],
5358 : SK_ISNULL | SK_SEARCHNOTNULL,
5359 : 1, /* index col to scan */
5360 : InvalidStrategy, /* no strategy */
5361 : InvalidOid, /* no strategy subtype */
5362 : InvalidOid, /* no collation */
5363 : InvalidOid, /* no reg proc for this */
5364 : (Datum) 0); /* constant */
5365 :
5366 566 : have_data = true;
5367 :
5368 : /* If min is requested ... */
5369 566 : if (min)
5370 : {
5371 : /*
5372 : * In principle, we should scan the index with our current
5373 : * active snapshot, which is the best approximation we've got
5374 : * to what the query will see when executed. But that won't
5375 : * be exact if a new snap is taken before running the query,
5376 : * and it can be very expensive if a lot of uncommitted rows
5377 : * exist at the end of the index (because we'll laboriously
5378 : * fetch each one and reject it). What seems like a good
5379 : * compromise is to use SnapshotDirty. That will accept
5380 : * uncommitted rows, and thus avoid fetching multiple heap
5381 : * tuples in this scenario. On the other hand, it will reject
5382 : * known-dead rows, and thus not give a bogus answer when the
5383 : * extreme value has been deleted; that case motivates not
5384 : * using SnapshotAny here.
5385 : */
5386 334 : index_scan = index_beginscan(heapRel, indexRel, &SnapshotDirty,
5387 : 1, 0);
5388 334 : index_rescan(index_scan, scankeys, 1, NULL, 0);
5389 :
5390 : /* Fetch first tuple in sortop's direction */
5391 334 : if ((tup = index_getnext(index_scan,
5392 : indexscandir)) != NULL)
5393 : {
5394 : /* Extract the index column values from the heap tuple */
5395 334 : ExecStoreTuple(tup, slot, InvalidBuffer, false);
5396 334 : FormIndexDatum(indexInfo, slot, estate,
5397 : values, isnull);
5398 :
5399 : /* Shouldn't have got a null, but be careful */
5400 334 : if (isnull[0])
5401 0 : elog(ERROR, "found unexpected null value in index \"%s\"",
5402 : RelationGetRelationName(indexRel));
5403 :
5404 : /* Copy the index column value out to caller's context */
5405 334 : MemoryContextSwitchTo(oldcontext);
5406 334 : *min = datumCopy(values[0], typByVal, typLen);
5407 334 : MemoryContextSwitchTo(tmpcontext);
5408 : }
5409 : else
5410 0 : have_data = false;
5411 :
5412 334 : index_endscan(index_scan);
5413 : }
5414 :
5415 : /* If max is requested, and we didn't find the index is empty */
5416 566 : if (max && have_data)
5417 : {
5418 256 : index_scan = index_beginscan(heapRel, indexRel, &SnapshotDirty,
5419 : 1, 0);
5420 256 : index_rescan(index_scan, scankeys, 1, NULL, 0);
5421 :
5422 : /* Fetch first tuple in reverse direction */
5423 256 : if ((tup = index_getnext(index_scan,
5424 256 : -indexscandir)) != NULL)
5425 : {
5426 : /* Extract the index column values from the heap tuple */
5427 256 : ExecStoreTuple(tup, slot, InvalidBuffer, false);
5428 256 : FormIndexDatum(indexInfo, slot, estate,
5429 : values, isnull);
5430 :
5431 : /* Shouldn't have got a null, but be careful */
5432 256 : if (isnull[0])
5433 0 : elog(ERROR, "found unexpected null value in index \"%s\"",
5434 : RelationGetRelationName(indexRel));
5435 :
5436 : /* Copy the index column value out to caller's context */
5437 256 : MemoryContextSwitchTo(oldcontext);
5438 256 : *max = datumCopy(values[0], typByVal, typLen);
5439 256 : MemoryContextSwitchTo(tmpcontext);
5440 : }
5441 : else
5442 0 : have_data = false;
5443 :
5444 256 : index_endscan(index_scan);
5445 : }
5446 :
5447 : /* Clean everything up */
5448 566 : ExecDropSingleTupleTableSlot(slot);
5449 :
5450 566 : index_close(indexRel, AccessShareLock);
5451 566 : heap_close(heapRel, NoLock);
5452 :
5453 566 : MemoryContextSwitchTo(oldcontext);
5454 566 : FreeExecutorState(estate);
5455 :
5456 : /* And we're done */
5457 566 : break;
5458 : }
5459 : }
5460 :
5461 913 : return have_data;
5462 : }
5463 :
5464 : /*
5465 : * find_join_input_rel
5466 : * Look up the input relation for a join.
5467 : *
5468 : * We assume that the input relation's RelOptInfo must have been constructed
5469 : * already.
5470 : */
5471 : static RelOptInfo *
5472 306 : find_join_input_rel(PlannerInfo *root, Relids relids)
5473 : {
5474 306 : RelOptInfo *rel = NULL;
5475 :
5476 306 : switch (bms_membership(relids))
5477 : {
5478 : case BMS_EMPTY_SET:
5479 : /* should not happen */
5480 0 : break;
5481 : case BMS_SINGLETON:
5482 296 : rel = find_base_rel(root, bms_singleton_member(relids));
5483 296 : break;
5484 : case BMS_MULTIPLE:
5485 10 : rel = find_join_rel(root, relids);
5486 10 : break;
5487 : }
5488 :
5489 306 : if (rel == NULL)
5490 0 : elog(ERROR, "could not find RelOptInfo for given relids");
5491 :
5492 306 : return rel;
5493 : }
5494 :
5495 :
5496 : /*-------------------------------------------------------------------------
5497 : *
5498 : * Pattern analysis functions
5499 : *
5500 : * These routines support analysis of LIKE and regular-expression patterns
5501 : * by the planner/optimizer. It's important that they agree with the
5502 : * regular-expression code in backend/regex/ and the LIKE code in
5503 : * backend/utils/adt/like.c. Also, the computation of the fixed prefix
5504 : * must be conservative: if we report a string longer than the true fixed
5505 : * prefix, the query may produce actually wrong answers, rather than just
5506 : * getting a bad selectivity estimate!
5507 : *
5508 : * Note that the prefix-analysis functions are called from
5509 : * backend/optimizer/path/indxpath.c as well as from routines in this file.
5510 : *
5511 : *-------------------------------------------------------------------------
5512 : */
5513 :
5514 : /*
5515 : * Check whether char is a letter (and, hence, subject to case-folding)
5516 : *
5517 : * In multibyte character sets or with ICU, we can't use isalpha, and it does not seem
5518 : * worth trying to convert to wchar_t to use iswalpha. Instead, just assume
5519 : * any multibyte char is potentially case-varying.
5520 : */
5521 : static int
5522 0 : pattern_char_isalpha(char c, bool is_multibyte,
5523 : pg_locale_t locale, bool locale_is_c)
5524 : {
5525 0 : if (locale_is_c)
5526 0 : return (c >= 'A' && c <= 'Z') || (c >= 'a' && c <= 'z');
5527 0 : else if (is_multibyte && IS_HIGHBIT_SET(c))
5528 0 : return true;
5529 0 : else if (locale && locale->provider == COLLPROVIDER_ICU)
5530 0 : return IS_HIGHBIT_SET(c) ? true : false;
5531 : #ifdef HAVE_LOCALE_T
5532 0 : else if (locale && locale->provider == COLLPROVIDER_LIBC)
5533 0 : return isalpha_l((unsigned char) c, locale->info.lt);
5534 : #endif
5535 : else
5536 0 : return isalpha((unsigned char) c);
5537 : }
5538 :
5539 : /*
5540 : * Extract the fixed prefix, if any, for a pattern.
5541 : *
5542 : * *prefix is set to a palloc'd prefix string (in the form of a Const node),
5543 : * or to NULL if no fixed prefix exists for the pattern.
5544 : * If rest_selec is not NULL, *rest_selec is set to an estimate of the
5545 : * selectivity of the remainder of the pattern (without any fixed prefix).
5546 : * The prefix Const has the same type (TEXT or BYTEA) as the input pattern.
5547 : *
5548 : * The return value distinguishes no fixed prefix, a partial prefix,
5549 : * or an exact-match-only pattern.
5550 : */
5551 :
5552 : static Pattern_Prefix_Status
5553 241 : like_fixed_prefix(Const *patt_const, bool case_insensitive, Oid collation,
5554 : Const **prefix_const, Selectivity *rest_selec)
5555 : {
5556 : char *match;
5557 : char *patt;
5558 : int pattlen;
5559 241 : Oid typeid = patt_const->consttype;
5560 : int pos,
5561 : match_pos;
5562 241 : bool is_multibyte = (pg_database_encoding_max_length() > 1);
5563 241 : pg_locale_t locale = 0;
5564 241 : bool locale_is_c = false;
5565 :
5566 : /* the right-hand const is type text or bytea */
5567 241 : Assert(typeid == BYTEAOID || typeid == TEXTOID);
5568 :
5569 241 : if (case_insensitive)
5570 : {
5571 0 : if (typeid == BYTEAOID)
5572 0 : ereport(ERROR,
5573 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
5574 : errmsg("case insensitive matching not supported on type bytea")));
5575 :
5576 : /* If case-insensitive, we need locale info */
5577 0 : if (lc_ctype_is_c(collation))
5578 0 : locale_is_c = true;
5579 0 : else if (collation != DEFAULT_COLLATION_OID)
5580 : {
5581 0 : if (!OidIsValid(collation))
5582 : {
5583 : /*
5584 : * This typically means that the parser could not resolve a
5585 : * conflict of implicit collations, so report it that way.
5586 : */
5587 0 : ereport(ERROR,
5588 : (errcode(ERRCODE_INDETERMINATE_COLLATION),
5589 : errmsg("could not determine which collation to use for ILIKE"),
5590 : errhint("Use the COLLATE clause to set the collation explicitly.")));
5591 : }
5592 0 : locale = pg_newlocale_from_collation(collation);
5593 : }
5594 : }
5595 :
5596 241 : if (typeid != BYTEAOID)
5597 : {
5598 241 : patt = TextDatumGetCString(patt_const->constvalue);
5599 241 : pattlen = strlen(patt);
5600 : }
5601 : else
5602 : {
5603 0 : bytea *bstr = DatumGetByteaPP(patt_const->constvalue);
5604 :
5605 0 : pattlen = VARSIZE_ANY_EXHDR(bstr);
5606 0 : patt = (char *) palloc(pattlen);
5607 0 : memcpy(patt, VARDATA_ANY(bstr), pattlen);
5608 0 : Assert((Pointer) bstr == DatumGetPointer(patt_const->constvalue));
5609 : }
5610 :
5611 241 : match = palloc(pattlen + 1);
5612 241 : match_pos = 0;
5613 1486 : for (pos = 0; pos < pattlen; pos++)
5614 : {
5615 : /* % and _ are wildcard characters in LIKE */
5616 2884 : if (patt[pos] == '%' ||
5617 1403 : patt[pos] == '_')
5618 : break;
5619 :
5620 : /* Backslash escapes the next character */
5621 1245 : if (patt[pos] == '\\')
5622 : {
5623 32 : pos++;
5624 32 : if (pos >= pattlen)
5625 0 : break;
5626 : }
5627 :
5628 : /* Stop if case-varying character (it's sort of a wildcard) */
5629 1245 : if (case_insensitive &&
5630 0 : pattern_char_isalpha(patt[pos], is_multibyte, locale, locale_is_c))
5631 0 : break;
5632 :
5633 1245 : match[match_pos++] = patt[pos];
5634 : }
5635 :
5636 241 : match[match_pos] = '\0';
5637 :
5638 241 : if (typeid != BYTEAOID)
5639 241 : *prefix_const = string_to_const(match, typeid);
5640 : else
5641 0 : *prefix_const = string_to_bytea_const(match, match_pos);
5642 :
5643 241 : if (rest_selec != NULL)
5644 110 : *rest_selec = like_selectivity(&patt[pos], pattlen - pos,
5645 : case_insensitive);
5646 :
5647 241 : pfree(patt);
5648 241 : pfree(match);
5649 :
5650 : /* in LIKE, an empty pattern is an exact match! */
5651 241 : if (pos == pattlen)
5652 5 : return Pattern_Prefix_Exact; /* reached end of pattern, so exact */
5653 :
5654 236 : if (match_pos > 0)
5655 214 : return Pattern_Prefix_Partial;
5656 :
5657 22 : return Pattern_Prefix_None;
5658 : }
5659 :
5660 : static Pattern_Prefix_Status
5661 1256 : regex_fixed_prefix(Const *patt_const, bool case_insensitive, Oid collation,
5662 : Const **prefix_const, Selectivity *rest_selec)
5663 : {
5664 1256 : Oid typeid = patt_const->consttype;
5665 : char *prefix;
5666 : bool exact;
5667 :
5668 : /*
5669 : * Should be unnecessary, there are no bytea regex operators defined. As
5670 : * such, it should be noted that the rest of this function has *not* been
5671 : * made safe for binary (possibly NULL containing) strings.
5672 : */
5673 1256 : if (typeid == BYTEAOID)
5674 0 : ereport(ERROR,
5675 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
5676 : errmsg("regular-expression matching not supported on type bytea")));
5677 :
5678 : /* Use the regexp machinery to extract the prefix, if any */
5679 1256 : prefix = regexp_fixed_prefix(DatumGetTextPP(patt_const->constvalue),
5680 : case_insensitive, collation,
5681 : &exact);
5682 :
5683 1256 : if (prefix == NULL)
5684 : {
5685 46 : *prefix_const = NULL;
5686 :
5687 46 : if (rest_selec != NULL)
5688 : {
5689 38 : char *patt = TextDatumGetCString(patt_const->constvalue);
5690 :
5691 38 : *rest_selec = regex_selectivity(patt, strlen(patt),
5692 : case_insensitive,
5693 : 0);
5694 38 : pfree(patt);
5695 : }
5696 :
5697 46 : return Pattern_Prefix_None;
5698 : }
5699 :
5700 1210 : *prefix_const = string_to_const(prefix, typeid);
5701 :
5702 1210 : if (rest_selec != NULL)
5703 : {
5704 311 : if (exact)
5705 : {
5706 : /* Exact match, so there's no additional selectivity */
5707 273 : *rest_selec = 1.0;
5708 : }
5709 : else
5710 : {
5711 38 : char *patt = TextDatumGetCString(patt_const->constvalue);
5712 :
5713 38 : *rest_selec = regex_selectivity(patt, strlen(patt),
5714 : case_insensitive,
5715 38 : strlen(prefix));
5716 38 : pfree(patt);
5717 : }
5718 : }
5719 :
5720 1210 : pfree(prefix);
5721 :
5722 1210 : if (exact)
5723 1112 : return Pattern_Prefix_Exact; /* pattern specifies exact match */
5724 : else
5725 98 : return Pattern_Prefix_Partial;
5726 : }
5727 :
5728 : Pattern_Prefix_Status
5729 1497 : pattern_fixed_prefix(Const *patt, Pattern_Type ptype, Oid collation,
5730 : Const **prefix, Selectivity *rest_selec)
5731 : {
5732 : Pattern_Prefix_Status result;
5733 :
5734 1497 : switch (ptype)
5735 : {
5736 : case Pattern_Type_Like:
5737 241 : result = like_fixed_prefix(patt, false, collation,
5738 : prefix, rest_selec);
5739 241 : break;
5740 : case Pattern_Type_Like_IC:
5741 0 : result = like_fixed_prefix(patt, true, collation,
5742 : prefix, rest_selec);
5743 0 : break;
5744 : case Pattern_Type_Regex:
5745 1256 : result = regex_fixed_prefix(patt, false, collation,
5746 : prefix, rest_selec);
5747 1256 : break;
5748 : case Pattern_Type_Regex_IC:
5749 0 : result = regex_fixed_prefix(patt, true, collation,
5750 : prefix, rest_selec);
5751 0 : break;
5752 : default:
5753 0 : elog(ERROR, "unrecognized ptype: %d", (int) ptype);
5754 : result = Pattern_Prefix_None; /* keep compiler quiet */
5755 : break;
5756 : }
5757 1497 : return result;
5758 : }
5759 :
5760 : /*
5761 : * Estimate the selectivity of a fixed prefix for a pattern match.
5762 : *
5763 : * A fixed prefix "foo" is estimated as the selectivity of the expression
5764 : * "variable >= 'foo' AND variable < 'fop'" (see also indxpath.c).
5765 : *
5766 : * The selectivity estimate is with respect to the portion of the column
5767 : * population represented by the histogram --- the caller must fold this
5768 : * together with info about MCVs and NULLs.
5769 : *
5770 : * We use the >= and < operators from the specified btree opfamily to do the
5771 : * estimation. The given variable and Const must be of the associated
5772 : * datatype.
5773 : *
5774 : * XXX Note: we make use of the upper bound to estimate operator selectivity
5775 : * even if the locale is such that we cannot rely on the upper-bound string.
5776 : * The selectivity only needs to be approximately right anyway, so it seems
5777 : * more useful to use the upper-bound code than not.
5778 : */
5779 : static Selectivity
5780 82 : prefix_selectivity(PlannerInfo *root, VariableStatData *vardata,
5781 : Oid vartype, Oid opfamily, Const *prefixcon)
5782 : {
5783 : Selectivity prefixsel;
5784 : Oid cmpopr;
5785 : FmgrInfo opproc;
5786 : Const *greaterstrcon;
5787 : Selectivity eq_sel;
5788 :
5789 82 : cmpopr = get_opfamily_member(opfamily, vartype, vartype,
5790 : BTGreaterEqualStrategyNumber);
5791 82 : if (cmpopr == InvalidOid)
5792 0 : elog(ERROR, "no >= operator for opfamily %u", opfamily);
5793 82 : fmgr_info(get_opcode(cmpopr), &opproc);
5794 :
5795 82 : prefixsel = ineq_histogram_selectivity(root, vardata, &opproc, true,
5796 : prefixcon->constvalue,
5797 : prefixcon->consttype);
5798 :
5799 82 : if (prefixsel < 0.0)
5800 : {
5801 : /* No histogram is present ... return a suitable default estimate */
5802 50 : return DEFAULT_MATCH_SEL;
5803 : }
5804 :
5805 : /*-------
5806 : * If we can create a string larger than the prefix, say
5807 : * "x < greaterstr".
5808 : *-------
5809 : */
5810 32 : cmpopr = get_opfamily_member(opfamily, vartype, vartype,
5811 : BTLessStrategyNumber);
5812 32 : if (cmpopr == InvalidOid)
5813 0 : elog(ERROR, "no < operator for opfamily %u", opfamily);
5814 32 : fmgr_info(get_opcode(cmpopr), &opproc);
5815 32 : greaterstrcon = make_greater_string(prefixcon, &opproc,
5816 : DEFAULT_COLLATION_OID);
5817 32 : if (greaterstrcon)
5818 : {
5819 : Selectivity topsel;
5820 :
5821 32 : topsel = ineq_histogram_selectivity(root, vardata, &opproc, false,
5822 : greaterstrcon->constvalue,
5823 : greaterstrcon->consttype);
5824 :
5825 : /* ineq_histogram_selectivity worked before, it shouldn't fail now */
5826 32 : Assert(topsel >= 0.0);
5827 :
5828 : /*
5829 : * Merge the two selectivities in the same way as for a range query
5830 : * (see clauselist_selectivity()). Note that we don't need to worry
5831 : * about double-exclusion of nulls, since ineq_histogram_selectivity
5832 : * doesn't count those anyway.
5833 : */
5834 32 : prefixsel = topsel + prefixsel - 1.0;
5835 : }
5836 :
5837 : /*
5838 : * If the prefix is long then the two bounding values might be too close
5839 : * together for the histogram to distinguish them usefully, resulting in a
5840 : * zero estimate (plus or minus roundoff error). To avoid returning a
5841 : * ridiculously small estimate, compute the estimated selectivity for
5842 : * "variable = 'foo'", and clamp to that. (Obviously, the resultant
5843 : * estimate should be at least that.)
5844 : *
5845 : * We apply this even if we couldn't make a greater string. That case
5846 : * suggests that the prefix is near the maximum possible, and thus
5847 : * probably off the end of the histogram, and thus we probably got a very
5848 : * small estimate from the >= condition; so we still need to clamp.
5849 : */
5850 32 : cmpopr = get_opfamily_member(opfamily, vartype, vartype,
5851 : BTEqualStrategyNumber);
5852 32 : if (cmpopr == InvalidOid)
5853 0 : elog(ERROR, "no = operator for opfamily %u", opfamily);
5854 32 : eq_sel = var_eq_const(vardata, cmpopr, prefixcon->constvalue,
5855 : false, true, false);
5856 :
5857 32 : prefixsel = Max(prefixsel, eq_sel);
5858 :
5859 32 : return prefixsel;
5860 : }
5861 :
5862 :
5863 : /*
5864 : * Estimate the selectivity of a pattern of the specified type.
5865 : * Note that any fixed prefix of the pattern will have been removed already,
5866 : * so actually we may be looking at just a fragment of the pattern.
5867 : *
5868 : * For now, we use a very simplistic approach: fixed characters reduce the
5869 : * selectivity a good deal, character ranges reduce it a little,
5870 : * wildcards (such as % for LIKE or .* for regex) increase it.
5871 : */
5872 :
5873 : #define FIXED_CHAR_SEL 0.20 /* about 1/5 */
5874 : #define CHAR_RANGE_SEL 0.25
5875 : #define ANY_CHAR_SEL 0.9 /* not 1, since it won't match end-of-string */
5876 : #define FULL_WILDCARD_SEL 5.0
5877 : #define PARTIAL_WILDCARD_SEL 2.0
5878 :
5879 : static Selectivity
5880 110 : like_selectivity(const char *patt, int pattlen, bool case_insensitive)
5881 : {
5882 110 : Selectivity sel = 1.0;
5883 : int pos;
5884 :
5885 : /* Skip any leading wildcard; it's already factored into initial sel */
5886 219 : for (pos = 0; pos < pattlen; pos++)
5887 : {
5888 176 : if (patt[pos] != '%' && patt[pos] != '_')
5889 67 : break;
5890 : }
5891 :
5892 461 : for (; pos < pattlen; pos++)
5893 : {
5894 : /* % and _ are wildcard characters in LIKE */
5895 351 : if (patt[pos] == '%')
5896 65 : sel *= FULL_WILDCARD_SEL;
5897 286 : else if (patt[pos] == '_')
5898 8 : sel *= ANY_CHAR_SEL;
5899 278 : else if (patt[pos] == '\\')
5900 : {
5901 : /* Backslash quotes the next character */
5902 6 : pos++;
5903 6 : if (pos >= pattlen)
5904 0 : break;
5905 6 : sel *= FIXED_CHAR_SEL;
5906 : }
5907 : else
5908 272 : sel *= FIXED_CHAR_SEL;
5909 : }
5910 : /* Could get sel > 1 if multiple wildcards */
5911 110 : if (sel > 1.0)
5912 0 : sel = 1.0;
5913 110 : return sel;
5914 : }
5915 :
5916 : static Selectivity
5917 83 : regex_selectivity_sub(const char *patt, int pattlen, bool case_insensitive)
5918 : {
5919 83 : Selectivity sel = 1.0;
5920 83 : int paren_depth = 0;
5921 83 : int paren_pos = 0; /* dummy init to keep compiler quiet */
5922 : int pos;
5923 :
5924 659 : for (pos = 0; pos < pattlen; pos++)
5925 : {
5926 577 : if (patt[pos] == '(')
5927 : {
5928 7 : if (paren_depth == 0)
5929 6 : paren_pos = pos; /* remember start of parenthesized item */
5930 7 : paren_depth++;
5931 : }
5932 570 : else if (patt[pos] == ')' && paren_depth > 0)
5933 : {
5934 7 : paren_depth--;
5935 14 : if (paren_depth == 0)
5936 12 : sel *= regex_selectivity_sub(patt + (paren_pos + 1),
5937 6 : pos - (paren_pos + 1),
5938 : case_insensitive);
5939 : }
5940 563 : else if (patt[pos] == '|' && paren_depth == 0)
5941 : {
5942 : /*
5943 : * If unquoted | is present at paren level 0 in pattern, we have
5944 : * multiple alternatives; sum their probabilities.
5945 : */
5946 2 : sel += regex_selectivity_sub(patt + (pos + 1),
5947 1 : pattlen - (pos + 1),
5948 : case_insensitive);
5949 1 : break; /* rest of pattern is now processed */
5950 : }
5951 562 : else if (patt[pos] == '[')
5952 : {
5953 4 : bool negclass = false;
5954 :
5955 4 : if (patt[++pos] == '^')
5956 : {
5957 0 : negclass = true;
5958 0 : pos++;
5959 : }
5960 4 : if (patt[pos] == ']') /* ']' at start of class is not special */
5961 0 : pos++;
5962 20 : while (pos < pattlen && patt[pos] != ']')
5963 12 : pos++;
5964 4 : if (paren_depth == 0)
5965 4 : sel *= (negclass ? (1.0 - CHAR_RANGE_SEL) : CHAR_RANGE_SEL);
5966 : }
5967 558 : else if (patt[pos] == '.')
5968 : {
5969 27 : if (paren_depth == 0)
5970 26 : sel *= ANY_CHAR_SEL;
5971 : }
5972 1046 : else if (patt[pos] == '*' ||
5973 1026 : patt[pos] == '?' ||
5974 511 : patt[pos] == '+')
5975 : {
5976 : /* Ought to be smarter about quantifiers... */
5977 42 : if (paren_depth == 0)
5978 18 : sel *= PARTIAL_WILDCARD_SEL;
5979 : }
5980 510 : else if (patt[pos] == '{')
5981 : {
5982 0 : while (pos < pattlen && patt[pos] != '}')
5983 0 : pos++;
5984 0 : if (paren_depth == 0)
5985 0 : sel *= PARTIAL_WILDCARD_SEL;
5986 : }
5987 510 : else if (patt[pos] == '\\')
5988 : {
5989 : /* backslash quotes the next character */
5990 8 : pos++;
5991 8 : if (pos >= pattlen)
5992 0 : break;
5993 8 : if (paren_depth == 0)
5994 4 : sel *= FIXED_CHAR_SEL;
5995 : }
5996 : else
5997 : {
5998 502 : if (paren_depth == 0)
5999 483 : sel *= FIXED_CHAR_SEL;
6000 : }
6001 : }
6002 : /* Could get sel > 1 if multiple wildcards */
6003 83 : if (sel > 1.0)
6004 2 : sel = 1.0;
6005 83 : return sel;
6006 : }
6007 :
6008 : static Selectivity
6009 76 : regex_selectivity(const char *patt, int pattlen, bool case_insensitive,
6010 : int fixed_prefix_len)
6011 : {
6012 : Selectivity sel;
6013 :
6014 : /* If patt doesn't end with $, consider it to have a trailing wildcard */
6015 76 : if (pattlen > 0 && patt[pattlen - 1] == '$' &&
6016 1 : (pattlen == 1 || patt[pattlen - 2] != '\\'))
6017 : {
6018 : /* has trailing $ */
6019 1 : sel = regex_selectivity_sub(patt, pattlen - 1, case_insensitive);
6020 : }
6021 : else
6022 : {
6023 : /* no trailing $ */
6024 75 : sel = regex_selectivity_sub(patt, pattlen, case_insensitive);
6025 75 : sel *= FULL_WILDCARD_SEL;
6026 : }
6027 :
6028 : /* If there's a fixed prefix, discount its selectivity */
6029 76 : if (fixed_prefix_len > 0)
6030 38 : sel /= pow(FIXED_CHAR_SEL, fixed_prefix_len);
6031 :
6032 : /* Make sure result stays in range */
6033 76 : CLAMP_PROBABILITY(sel);
6034 76 : return sel;
6035 : }
6036 :
6037 :
6038 : /*
6039 : * For bytea, the increment function need only increment the current byte
6040 : * (there are no multibyte characters to worry about).
6041 : */
6042 : static bool
6043 0 : byte_increment(unsigned char *ptr, int len)
6044 : {
6045 0 : if (*ptr >= 255)
6046 0 : return false;
6047 0 : (*ptr)++;
6048 0 : return true;
6049 : }
6050 :
6051 : /*
6052 : * Try to generate a string greater than the given string or any
6053 : * string it is a prefix of. If successful, return a palloc'd string
6054 : * in the form of a Const node; else return NULL.
6055 : *
6056 : * The caller must provide the appropriate "less than" comparison function
6057 : * for testing the strings, along with the collation to use.
6058 : *
6059 : * The key requirement here is that given a prefix string, say "foo",
6060 : * we must be able to generate another string "fop" that is greater than
6061 : * all strings "foobar" starting with "foo". We can test that we have
6062 : * generated a string greater than the prefix string, but in non-C collations
6063 : * that is not a bulletproof guarantee that an extension of the string might
6064 : * not sort after it; an example is that "foo " is less than "foo!", but it
6065 : * is not clear that a "dictionary" sort ordering will consider "foo!" less
6066 : * than "foo bar". CAUTION: Therefore, this function should be used only for
6067 : * estimation purposes when working in a non-C collation.
6068 : *
6069 : * To try to catch most cases where an extended string might otherwise sort
6070 : * before the result value, we determine which of the strings "Z", "z", "y",
6071 : * and "9" is seen as largest by the collation, and append that to the given
6072 : * prefix before trying to find a string that compares as larger.
6073 : *
6074 : * To search for a greater string, we repeatedly "increment" the rightmost
6075 : * character, using an encoding-specific character incrementer function.
6076 : * When it's no longer possible to increment the last character, we truncate
6077 : * off that character and start incrementing the next-to-rightmost.
6078 : * For example, if "z" were the last character in the sort order, then we
6079 : * could produce "foo" as a string greater than "fonz".
6080 : *
6081 : * This could be rather slow in the worst case, but in most cases we
6082 : * won't have to try more than one or two strings before succeeding.
6083 : *
6084 : * Note that it's important for the character incrementer not to be too anal
6085 : * about producing every possible character code, since in some cases the only
6086 : * way to get a larger string is to increment a previous character position.
6087 : * So we don't want to spend too much time trying every possible character
6088 : * code at the last position. A good rule of thumb is to be sure that we
6089 : * don't try more than 256*K values for a K-byte character (and definitely
6090 : * not 256^K, which is what an exhaustive search would approach).
6091 : */
6092 : Const *
6093 151 : make_greater_string(const Const *str_const, FmgrInfo *ltproc, Oid collation)
6094 : {
6095 151 : Oid datatype = str_const->consttype;
6096 : char *workstr;
6097 : int len;
6098 : Datum cmpstr;
6099 151 : text *cmptxt = NULL;
6100 : mbcharacter_incrementer charinc;
6101 :
6102 : /*
6103 : * Get a modifiable copy of the prefix string in C-string format, and set
6104 : * up the string we will compare to as a Datum. In C locale this can just
6105 : * be the given prefix string, otherwise we need to add a suffix. Types
6106 : * NAME and BYTEA sort bytewise so they don't need a suffix either.
6107 : */
6108 151 : if (datatype == NAMEOID)
6109 : {
6110 151 : workstr = DatumGetCString(DirectFunctionCall1(nameout,
6111 : str_const->constvalue));
6112 151 : len = strlen(workstr);
6113 151 : cmpstr = str_const->constvalue;
6114 : }
6115 0 : else if (datatype == BYTEAOID)
6116 : {
6117 0 : bytea *bstr = DatumGetByteaPP(str_const->constvalue);
6118 :
6119 0 : len = VARSIZE_ANY_EXHDR(bstr);
6120 0 : workstr = (char *) palloc(len);
6121 0 : memcpy(workstr, VARDATA_ANY(bstr), len);
6122 0 : Assert((Pointer) bstr == DatumGetPointer(str_const->constvalue));
6123 0 : cmpstr = str_const->constvalue;
6124 : }
6125 : else
6126 : {
6127 0 : workstr = TextDatumGetCString(str_const->constvalue);
6128 0 : len = strlen(workstr);
6129 0 : if (lc_collate_is_c(collation) || len == 0)
6130 0 : cmpstr = str_const->constvalue;
6131 : else
6132 : {
6133 : /* If first time through, determine the suffix to use */
6134 : static char suffixchar = 0;
6135 : static Oid suffixcollation = 0;
6136 :
6137 0 : if (!suffixchar || suffixcollation != collation)
6138 : {
6139 : char *best;
6140 :
6141 0 : best = "Z";
6142 0 : if (varstr_cmp(best, 1, "z", 1, collation) < 0)
6143 0 : best = "z";
6144 0 : if (varstr_cmp(best, 1, "y", 1, collation) < 0)
6145 0 : best = "y";
6146 0 : if (varstr_cmp(best, 1, "9", 1, collation) < 0)
6147 0 : best = "9";
6148 0 : suffixchar = *best;
6149 0 : suffixcollation = collation;
6150 : }
6151 :
6152 : /* And build the string to compare to */
6153 0 : cmptxt = (text *) palloc(VARHDRSZ + len + 1);
6154 0 : SET_VARSIZE(cmptxt, VARHDRSZ + len + 1);
6155 0 : memcpy(VARDATA(cmptxt), workstr, len);
6156 0 : *(VARDATA(cmptxt) + len) = suffixchar;
6157 0 : cmpstr = PointerGetDatum(cmptxt);
6158 : }
6159 : }
6160 :
6161 : /* Select appropriate character-incrementer function */
6162 151 : if (datatype == BYTEAOID)
6163 0 : charinc = byte_increment;
6164 : else
6165 151 : charinc = pg_database_encoding_character_incrementer();
6166 :
6167 : /* And search ... */
6168 302 : while (len > 0)
6169 : {
6170 : int charlen;
6171 : unsigned char *lastchar;
6172 :
6173 : /* Identify the last character --- for bytea, just the last byte */
6174 151 : if (datatype == BYTEAOID)
6175 0 : charlen = 1;
6176 : else
6177 151 : charlen = len - pg_mbcliplen(workstr, len, len - 1);
6178 151 : lastchar = (unsigned char *) (workstr + len - charlen);
6179 :
6180 : /*
6181 : * Try to generate a larger string by incrementing the last character
6182 : * (for BYTEA, we treat each byte as a character).
6183 : *
6184 : * Note: the incrementer function is expected to return true if it's
6185 : * generated a valid-per-the-encoding new character, otherwise false.
6186 : * The contents of the character on false return are unspecified.
6187 : */
6188 302 : while (charinc(lastchar, charlen))
6189 : {
6190 : Const *workstr_const;
6191 :
6192 151 : if (datatype == BYTEAOID)
6193 0 : workstr_const = string_to_bytea_const(workstr, len);
6194 : else
6195 151 : workstr_const = string_to_const(workstr, datatype);
6196 :
6197 151 : if (DatumGetBool(FunctionCall2Coll(ltproc,
6198 : collation,
6199 : cmpstr,
6200 : workstr_const->constvalue)))
6201 : {
6202 : /* Successfully made a string larger than cmpstr */
6203 151 : if (cmptxt)
6204 0 : pfree(cmptxt);
6205 151 : pfree(workstr);
6206 151 : return workstr_const;
6207 : }
6208 :
6209 : /* No good, release unusable value and try again */
6210 0 : pfree(DatumGetPointer(workstr_const->constvalue));
6211 0 : pfree(workstr_const);
6212 : }
6213 :
6214 : /*
6215 : * No luck here, so truncate off the last character and try to
6216 : * increment the next one.
6217 : */
6218 0 : len -= charlen;
6219 0 : workstr[len] = '\0';
6220 : }
6221 :
6222 : /* Failed... */
6223 0 : if (cmptxt)
6224 0 : pfree(cmptxt);
6225 0 : pfree(workstr);
6226 :
6227 0 : return NULL;
6228 : }
6229 :
6230 : /*
6231 : * Generate a Datum of the appropriate type from a C string.
6232 : * Note that all of the supported types are pass-by-ref, so the
6233 : * returned value should be pfree'd if no longer needed.
6234 : */
6235 : static Datum
6236 1964 : string_to_datum(const char *str, Oid datatype)
6237 : {
6238 1964 : Assert(str != NULL);
6239 :
6240 : /*
6241 : * We cheat a little by assuming that CStringGetTextDatum() will do for
6242 : * bpchar and varchar constants too...
6243 : */
6244 1964 : if (datatype == NAMEOID)
6245 513 : return DirectFunctionCall1(namein, CStringGetDatum(str));
6246 1451 : else if (datatype == BYTEAOID)
6247 0 : return DirectFunctionCall1(byteain, CStringGetDatum(str));
6248 : else
6249 1451 : return CStringGetTextDatum(str);
6250 : }
6251 :
6252 : /*
6253 : * Generate a Const node of the appropriate type from a C string.
6254 : */
6255 : static Const *
6256 1964 : string_to_const(const char *str, Oid datatype)
6257 : {
6258 1964 : Datum conval = string_to_datum(str, datatype);
6259 : Oid collation;
6260 : int constlen;
6261 :
6262 : /*
6263 : * We only need to support a few datatypes here, so hard-wire properties
6264 : * instead of incurring the expense of catalog lookups.
6265 : */
6266 1964 : switch (datatype)
6267 : {
6268 : case TEXTOID:
6269 : case VARCHAROID:
6270 : case BPCHAROID:
6271 1451 : collation = DEFAULT_COLLATION_OID;
6272 1451 : constlen = -1;
6273 1451 : break;
6274 :
6275 : case NAMEOID:
6276 513 : collation = InvalidOid;
6277 513 : constlen = NAMEDATALEN;
6278 513 : break;
6279 :
6280 : case BYTEAOID:
6281 0 : collation = InvalidOid;
6282 0 : constlen = -1;
6283 0 : break;
6284 :
6285 : default:
6286 0 : elog(ERROR, "unexpected datatype in string_to_const: %u",
6287 : datatype);
6288 : return NULL;
6289 : }
6290 :
6291 1964 : return makeConst(datatype, -1, collation, constlen,
6292 : conval, false, false);
6293 : }
6294 :
6295 : /*
6296 : * Generate a Const node of bytea type from a binary C string and a length.
6297 : */
6298 : static Const *
6299 0 : string_to_bytea_const(const char *str, size_t str_len)
6300 : {
6301 0 : bytea *bstr = palloc(VARHDRSZ + str_len);
6302 : Datum conval;
6303 :
6304 0 : memcpy(VARDATA(bstr), str, str_len);
6305 0 : SET_VARSIZE(bstr, VARHDRSZ + str_len);
6306 0 : conval = PointerGetDatum(bstr);
6307 :
6308 0 : return makeConst(BYTEAOID, -1, InvalidOid, -1, conval, false, false);
6309 : }
6310 :
6311 : /*-------------------------------------------------------------------------
6312 : *
6313 : * Index cost estimation functions
6314 : *
6315 : *-------------------------------------------------------------------------
6316 : */
6317 :
6318 : List *
6319 21949 : deconstruct_indexquals(IndexPath *path)
6320 : {
6321 21949 : List *result = NIL;
6322 21949 : IndexOptInfo *index = path->indexinfo;
6323 : ListCell *lcc,
6324 : *lci;
6325 :
6326 39110 : forboth(lcc, path->indexquals, lci, path->indexqualcols)
6327 : {
6328 17161 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, lcc);
6329 17161 : int indexcol = lfirst_int(lci);
6330 : Expr *clause;
6331 : Node *leftop,
6332 : *rightop;
6333 : IndexQualInfo *qinfo;
6334 :
6335 17161 : clause = rinfo->clause;
6336 :
6337 17161 : qinfo = (IndexQualInfo *) palloc(sizeof(IndexQualInfo));
6338 17161 : qinfo->rinfo = rinfo;
6339 17161 : qinfo->indexcol = indexcol;
6340 :
6341 17161 : if (IsA(clause, OpExpr))
6342 : {
6343 16446 : qinfo->clause_op = ((OpExpr *) clause)->opno;
6344 16446 : leftop = get_leftop(clause);
6345 16446 : rightop = get_rightop(clause);
6346 16446 : if (match_index_to_operand(leftop, indexcol, index))
6347 : {
6348 15642 : qinfo->varonleft = true;
6349 15642 : qinfo->other_operand = rightop;
6350 : }
6351 : else
6352 : {
6353 804 : Assert(match_index_to_operand(rightop, indexcol, index));
6354 804 : qinfo->varonleft = false;
6355 804 : qinfo->other_operand = leftop;
6356 : }
6357 : }
6358 715 : else if (IsA(clause, RowCompareExpr))
6359 : {
6360 6 : RowCompareExpr *rc = (RowCompareExpr *) clause;
6361 :
6362 6 : qinfo->clause_op = linitial_oid(rc->opnos);
6363 : /* Examine only first columns to determine left/right sides */
6364 6 : if (match_index_to_operand((Node *) linitial(rc->largs),
6365 : indexcol, index))
6366 : {
6367 6 : qinfo->varonleft = true;
6368 6 : qinfo->other_operand = (Node *) rc->rargs;
6369 : }
6370 : else
6371 : {
6372 0 : Assert(match_index_to_operand((Node *) linitial(rc->rargs),
6373 : indexcol, index));
6374 0 : qinfo->varonleft = false;
6375 0 : qinfo->other_operand = (Node *) rc->largs;
6376 : }
6377 : }
6378 709 : else if (IsA(clause, ScalarArrayOpExpr))
6379 : {
6380 302 : ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
6381 :
6382 302 : qinfo->clause_op = saop->opno;
6383 : /* index column is always on the left in this case */
6384 302 : Assert(match_index_to_operand((Node *) linitial(saop->args),
6385 : indexcol, index));
6386 302 : qinfo->varonleft = true;
6387 302 : qinfo->other_operand = (Node *) lsecond(saop->args);
6388 : }
6389 407 : else if (IsA(clause, NullTest))
6390 : {
6391 407 : qinfo->clause_op = InvalidOid;
6392 407 : Assert(match_index_to_operand((Node *) ((NullTest *) clause)->arg,
6393 : indexcol, index));
6394 407 : qinfo->varonleft = true;
6395 407 : qinfo->other_operand = NULL;
6396 : }
6397 : else
6398 : {
6399 0 : elog(ERROR, "unsupported indexqual type: %d",
6400 : (int) nodeTag(clause));
6401 : }
6402 :
6403 17161 : result = lappend(result, qinfo);
6404 : }
6405 21949 : return result;
6406 : }
6407 :
6408 : /*
6409 : * Simple function to compute the total eval cost of the "other operands"
6410 : * in an IndexQualInfo list. Since we know these will be evaluated just
6411 : * once per scan, there's no need to distinguish startup from per-row cost.
6412 : */
6413 : static Cost
6414 21947 : other_operands_eval_cost(PlannerInfo *root, List *qinfos)
6415 : {
6416 21947 : Cost qual_arg_cost = 0;
6417 : ListCell *lc;
6418 :
6419 39106 : foreach(lc, qinfos)
6420 : {
6421 17159 : IndexQualInfo *qinfo = (IndexQualInfo *) lfirst(lc);
6422 : QualCost index_qual_cost;
6423 :
6424 17159 : cost_qual_eval_node(&index_qual_cost, qinfo->other_operand, root);
6425 17159 : qual_arg_cost += index_qual_cost.startup + index_qual_cost.per_tuple;
6426 : }
6427 21947 : return qual_arg_cost;
6428 : }
6429 :
6430 : /*
6431 : * Get other-operand eval cost for an index orderby list.
6432 : *
6433 : * Index orderby expressions aren't represented as RestrictInfos (since they
6434 : * aren't boolean, usually). So we can't apply deconstruct_indexquals to
6435 : * them. However, they are much simpler to deal with since they are always
6436 : * OpExprs and the index column is always on the left.
6437 : */
6438 : static Cost
6439 21947 : orderby_operands_eval_cost(PlannerInfo *root, IndexPath *path)
6440 : {
6441 21947 : Cost qual_arg_cost = 0;
6442 : ListCell *lc;
6443 :
6444 21970 : foreach(lc, path->indexorderbys)
6445 : {
6446 23 : Expr *clause = (Expr *) lfirst(lc);
6447 : Node *other_operand;
6448 : QualCost index_qual_cost;
6449 :
6450 23 : if (IsA(clause, OpExpr))
6451 : {
6452 23 : other_operand = get_rightop(clause);
6453 : }
6454 : else
6455 : {
6456 0 : elog(ERROR, "unsupported indexorderby type: %d",
6457 : (int) nodeTag(clause));
6458 : other_operand = NULL; /* keep compiler quiet */
6459 : }
6460 :
6461 23 : cost_qual_eval_node(&index_qual_cost, other_operand, root);
6462 23 : qual_arg_cost += index_qual_cost.startup + index_qual_cost.per_tuple;
6463 : }
6464 21947 : return qual_arg_cost;
6465 : }
6466 :
6467 : void
6468 20870 : genericcostestimate(PlannerInfo *root,
6469 : IndexPath *path,
6470 : double loop_count,
6471 : List *qinfos,
6472 : GenericCosts *costs)
6473 : {
6474 20870 : IndexOptInfo *index = path->indexinfo;
6475 20870 : List *indexQuals = path->indexquals;
6476 20870 : List *indexOrderBys = path->indexorderbys;
6477 : Cost indexStartupCost;
6478 : Cost indexTotalCost;
6479 : Selectivity indexSelectivity;
6480 : double indexCorrelation;
6481 : double numIndexPages;
6482 : double numIndexTuples;
6483 : double spc_random_page_cost;
6484 : double num_sa_scans;
6485 : double num_outer_scans;
6486 : double num_scans;
6487 : double qual_op_cost;
6488 : double qual_arg_cost;
6489 : List *selectivityQuals;
6490 : ListCell *l;
6491 :
6492 : /*
6493 : * If the index is partial, AND the index predicate with the explicitly
6494 : * given indexquals to produce a more accurate idea of the index
6495 : * selectivity.
6496 : */
6497 20870 : selectivityQuals = add_predicate_to_quals(index, indexQuals);
6498 :
6499 : /*
6500 : * Check for ScalarArrayOpExpr index quals, and estimate the number of
6501 : * index scans that will be performed.
6502 : */
6503 20870 : num_sa_scans = 1;
6504 36950 : foreach(l, indexQuals)
6505 : {
6506 16080 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
6507 :
6508 16080 : if (IsA(rinfo->clause, ScalarArrayOpExpr))
6509 : {
6510 301 : ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) rinfo->clause;
6511 301 : int alength = estimate_array_length(lsecond(saop->args));
6512 :
6513 301 : if (alength > 1)
6514 301 : num_sa_scans *= alength;
6515 : }
6516 : }
6517 :
6518 : /* Estimate the fraction of main-table tuples that will be visited */
6519 20870 : indexSelectivity = clauselist_selectivity(root, selectivityQuals,
6520 20870 : index->rel->relid,
6521 : JOIN_INNER,
6522 : NULL);
6523 :
6524 : /*
6525 : * If caller didn't give us an estimate, estimate the number of index
6526 : * tuples that will be visited. We do it in this rather peculiar-looking
6527 : * way in order to get the right answer for partial indexes.
6528 : */
6529 20870 : numIndexTuples = costs->numIndexTuples;
6530 20870 : if (numIndexTuples <= 0.0)
6531 : {
6532 851 : numIndexTuples = indexSelectivity * index->rel->tuples;
6533 :
6534 : /*
6535 : * The above calculation counts all the tuples visited across all
6536 : * scans induced by ScalarArrayOpExpr nodes. We want to consider the
6537 : * average per-indexscan number, so adjust. This is a handy place to
6538 : * round to integer, too. (If caller supplied tuple estimate, it's
6539 : * responsible for handling these considerations.)
6540 : */
6541 851 : numIndexTuples = rint(numIndexTuples / num_sa_scans);
6542 : }
6543 :
6544 : /*
6545 : * We can bound the number of tuples by the index size in any case. Also,
6546 : * always estimate at least one tuple is touched, even when
6547 : * indexSelectivity estimate is tiny.
6548 : */
6549 20870 : if (numIndexTuples > index->tuples)
6550 40 : numIndexTuples = index->tuples;
6551 20870 : if (numIndexTuples < 1.0)
6552 494 : numIndexTuples = 1.0;
6553 :
6554 : /*
6555 : * Estimate the number of index pages that will be retrieved.
6556 : *
6557 : * We use the simplistic method of taking a pro-rata fraction of the total
6558 : * number of index pages. In effect, this counts only leaf pages and not
6559 : * any overhead such as index metapage or upper tree levels.
6560 : *
6561 : * In practice access to upper index levels is often nearly free because
6562 : * those tend to stay in cache under load; moreover, the cost involved is
6563 : * highly dependent on index type. We therefore ignore such costs here
6564 : * and leave it to the caller to add a suitable charge if needed.
6565 : */
6566 20870 : if (index->pages > 1 && index->tuples > 1)
6567 19532 : numIndexPages = ceil(numIndexTuples * index->pages / index->tuples);
6568 : else
6569 1338 : numIndexPages = 1.0;
6570 :
6571 : /* fetch estimated page cost for tablespace containing index */
6572 20870 : get_tablespace_page_costs(index->reltablespace,
6573 : &spc_random_page_cost,
6574 : NULL);
6575 :
6576 : /*
6577 : * Now compute the disk access costs.
6578 : *
6579 : * The above calculations are all per-index-scan. However, if we are in a
6580 : * nestloop inner scan, we can expect the scan to be repeated (with
6581 : * different search keys) for each row of the outer relation. Likewise,
6582 : * ScalarArrayOpExpr quals result in multiple index scans. This creates
6583 : * the potential for cache effects to reduce the number of disk page
6584 : * fetches needed. We want to estimate the average per-scan I/O cost in
6585 : * the presence of caching.
6586 : *
6587 : * We use the Mackert-Lohman formula (see costsize.c for details) to
6588 : * estimate the total number of page fetches that occur. While this
6589 : * wasn't what it was designed for, it seems a reasonable model anyway.
6590 : * Note that we are counting pages not tuples anymore, so we take N = T =
6591 : * index size, as if there were one "tuple" per page.
6592 : */
6593 20870 : num_outer_scans = loop_count;
6594 20870 : num_scans = num_sa_scans * num_outer_scans;
6595 :
6596 20870 : if (num_scans > 1)
6597 : {
6598 : double pages_fetched;
6599 :
6600 : /* total page fetches ignoring cache effects */
6601 2730 : pages_fetched = numIndexPages * num_scans;
6602 :
6603 : /* use Mackert and Lohman formula to adjust for cache effects */
6604 2730 : pages_fetched = index_pages_fetched(pages_fetched,
6605 : index->pages,
6606 2730 : (double) index->pages,
6607 : root);
6608 :
6609 : /*
6610 : * Now compute the total disk access cost, and then report a pro-rated
6611 : * share for each outer scan. (Don't pro-rate for ScalarArrayOpExpr,
6612 : * since that's internal to the indexscan.)
6613 : */
6614 2730 : indexTotalCost = (pages_fetched * spc_random_page_cost)
6615 : / num_outer_scans;
6616 : }
6617 : else
6618 : {
6619 : /*
6620 : * For a single index scan, we just charge spc_random_page_cost per
6621 : * page touched.
6622 : */
6623 18140 : indexTotalCost = numIndexPages * spc_random_page_cost;
6624 : }
6625 :
6626 : /*
6627 : * CPU cost: any complex expressions in the indexquals will need to be
6628 : * evaluated once at the start of the scan to reduce them to runtime keys
6629 : * to pass to the index AM (see nodeIndexscan.c). We model the per-tuple
6630 : * CPU costs as cpu_index_tuple_cost plus one cpu_operator_cost per
6631 : * indexqual operator. Because we have numIndexTuples as a per-scan
6632 : * number, we have to multiply by num_sa_scans to get the correct result
6633 : * for ScalarArrayOpExpr cases. Similarly add in costs for any index
6634 : * ORDER BY expressions.
6635 : *
6636 : * Note: this neglects the possible costs of rechecking lossy operators.
6637 : * Detecting that that might be needed seems more expensive than it's
6638 : * worth, though, considering all the other inaccuracies here ...
6639 : */
6640 41740 : qual_arg_cost = other_operands_eval_cost(root, qinfos) +
6641 20870 : orderby_operands_eval_cost(root, path);
6642 41740 : qual_op_cost = cpu_operator_cost *
6643 20870 : (list_length(indexQuals) + list_length(indexOrderBys));
6644 :
6645 20870 : indexStartupCost = qual_arg_cost;
6646 20870 : indexTotalCost += qual_arg_cost;
6647 20870 : indexTotalCost += numIndexTuples * num_sa_scans * (cpu_index_tuple_cost + qual_op_cost);
6648 :
6649 : /*
6650 : * Generic assumption about index correlation: there isn't any.
6651 : */
6652 20870 : indexCorrelation = 0.0;
6653 :
6654 : /*
6655 : * Return everything to caller.
6656 : */
6657 20870 : costs->indexStartupCost = indexStartupCost;
6658 20870 : costs->indexTotalCost = indexTotalCost;
6659 20870 : costs->indexSelectivity = indexSelectivity;
6660 20870 : costs->indexCorrelation = indexCorrelation;
6661 20870 : costs->numIndexPages = numIndexPages;
6662 20870 : costs->numIndexTuples = numIndexTuples;
6663 20870 : costs->spc_random_page_cost = spc_random_page_cost;
6664 20870 : costs->num_sa_scans = num_sa_scans;
6665 20870 : }
6666 :
6667 : /*
6668 : * If the index is partial, add its predicate to the given qual list.
6669 : *
6670 : * ANDing the index predicate with the explicitly given indexquals produces
6671 : * a more accurate idea of the index's selectivity. However, we need to be
6672 : * careful not to insert redundant clauses, because clauselist_selectivity()
6673 : * is easily fooled into computing a too-low selectivity estimate. Our
6674 : * approach is to add only the predicate clause(s) that cannot be proven to
6675 : * be implied by the given indexquals. This successfully handles cases such
6676 : * as a qual "x = 42" used with a partial index "WHERE x >= 40 AND x < 50".
6677 : * There are many other cases where we won't detect redundancy, leading to a
6678 : * too-low selectivity estimate, which will bias the system in favor of using
6679 : * partial indexes where possible. That is not necessarily bad though.
6680 : *
6681 : * Note that indexQuals contains RestrictInfo nodes while the indpred
6682 : * does not, so the output list will be mixed. This is OK for both
6683 : * predicate_implied_by() and clauselist_selectivity(), but might be
6684 : * problematic if the result were passed to other things.
6685 : */
6686 : static List *
6687 35538 : add_predicate_to_quals(IndexOptInfo *index, List *indexQuals)
6688 : {
6689 35538 : List *predExtraQuals = NIL;
6690 : ListCell *lc;
6691 :
6692 35538 : if (index->indpred == NIL)
6693 35368 : return indexQuals;
6694 :
6695 342 : foreach(lc, index->indpred)
6696 : {
6697 172 : Node *predQual = (Node *) lfirst(lc);
6698 172 : List *oneQual = list_make1(predQual);
6699 :
6700 172 : if (!predicate_implied_by(oneQual, indexQuals, false))
6701 138 : predExtraQuals = list_concat(predExtraQuals, oneQual);
6702 : }
6703 : /* list_concat avoids modifying the passed-in indexQuals list */
6704 170 : return list_concat(predExtraQuals, indexQuals);
6705 : }
6706 :
6707 :
6708 : void
6709 20450 : btcostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
6710 : Cost *indexStartupCost, Cost *indexTotalCost,
6711 : Selectivity *indexSelectivity, double *indexCorrelation,
6712 : double *indexPages)
6713 : {
6714 20450 : IndexOptInfo *index = path->indexinfo;
6715 : List *qinfos;
6716 : GenericCosts costs;
6717 : Oid relid;
6718 : AttrNumber colnum;
6719 : VariableStatData vardata;
6720 : double numIndexTuples;
6721 : Cost descentCost;
6722 : List *indexBoundQuals;
6723 : int indexcol;
6724 : bool eqQualHere;
6725 : bool found_saop;
6726 : bool found_is_null_op;
6727 : double num_sa_scans;
6728 : ListCell *lc;
6729 :
6730 : /* Do preliminary analysis of indexquals */
6731 20450 : qinfos = deconstruct_indexquals(path);
6732 :
6733 : /*
6734 : * For a btree scan, only leading '=' quals plus inequality quals for the
6735 : * immediately next attribute contribute to index selectivity (these are
6736 : * the "boundary quals" that determine the starting and stopping points of
6737 : * the index scan). Additional quals can suppress visits to the heap, so
6738 : * it's OK to count them in indexSelectivity, but they should not count
6739 : * for estimating numIndexTuples. So we must examine the given indexquals
6740 : * to find out which ones count as boundary quals. We rely on the
6741 : * knowledge that they are given in index column order.
6742 : *
6743 : * For a RowCompareExpr, we consider only the first column, just as
6744 : * rowcomparesel() does.
6745 : *
6746 : * If there's a ScalarArrayOpExpr in the quals, we'll actually perform N
6747 : * index scans not one, but the ScalarArrayOpExpr's operator can be
6748 : * considered to act the same as it normally does.
6749 : */
6750 20450 : indexBoundQuals = NIL;
6751 20450 : indexcol = 0;
6752 20450 : eqQualHere = false;
6753 20450 : found_saop = false;
6754 20450 : found_is_null_op = false;
6755 20450 : num_sa_scans = 1;
6756 35584 : foreach(lc, qinfos)
6757 : {
6758 15653 : IndexQualInfo *qinfo = (IndexQualInfo *) lfirst(lc);
6759 15653 : RestrictInfo *rinfo = qinfo->rinfo;
6760 15653 : Expr *clause = rinfo->clause;
6761 : Oid clause_op;
6762 : int op_strategy;
6763 :
6764 15653 : if (indexcol != qinfo->indexcol)
6765 : {
6766 : /* Beginning of a new column's quals */
6767 2526 : if (!eqQualHere)
6768 496 : break; /* done if no '=' qual for indexcol */
6769 2030 : eqQualHere = false;
6770 2030 : indexcol++;
6771 2030 : if (indexcol != qinfo->indexcol)
6772 23 : break; /* no quals at all for indexcol */
6773 : }
6774 :
6775 15134 : if (IsA(clause, ScalarArrayOpExpr))
6776 : {
6777 278 : int alength = estimate_array_length(qinfo->other_operand);
6778 :
6779 278 : found_saop = true;
6780 : /* count up number of SA scans induced by indexBoundQuals only */
6781 278 : if (alength > 1)
6782 278 : num_sa_scans *= alength;
6783 : }
6784 14856 : else if (IsA(clause, NullTest))
6785 : {
6786 333 : NullTest *nt = (NullTest *) clause;
6787 :
6788 333 : if (nt->nulltesttype == IS_NULL)
6789 : {
6790 16 : found_is_null_op = true;
6791 : /* IS NULL is like = for selectivity determination purposes */
6792 16 : eqQualHere = true;
6793 : }
6794 : }
6795 :
6796 : /*
6797 : * We would need to commute the clause_op if not varonleft, except
6798 : * that we only care if it's equality or not, so that refinement is
6799 : * unnecessary.
6800 : */
6801 15134 : clause_op = qinfo->clause_op;
6802 :
6803 : /* check for equality operator */
6804 15134 : if (OidIsValid(clause_op))
6805 : {
6806 14801 : op_strategy = get_op_opfamily_strategy(clause_op,
6807 14801 : index->opfamily[indexcol]);
6808 14801 : Assert(op_strategy != 0); /* not a member of opfamily?? */
6809 14801 : if (op_strategy == BTEqualStrategyNumber)
6810 13585 : eqQualHere = true;
6811 : }
6812 :
6813 15134 : indexBoundQuals = lappend(indexBoundQuals, rinfo);
6814 : }
6815 :
6816 : /*
6817 : * If index is unique and we found an '=' clause for each column, we can
6818 : * just assume numIndexTuples = 1 and skip the expensive
6819 : * clauselist_selectivity calculations. However, a ScalarArrayOp or
6820 : * NullTest invalidates that theory, even though it sets eqQualHere.
6821 : */
6822 37138 : if (index->unique &&
6823 28465 : indexcol == index->ncolumns - 1 &&
6824 6028 : eqQualHere &&
6825 5790 : !found_saop &&
6826 : !found_is_null_op)
6827 5782 : numIndexTuples = 1.0;
6828 : else
6829 : {
6830 : List *selectivityQuals;
6831 : Selectivity btreeSelectivity;
6832 :
6833 : /*
6834 : * If the index is partial, AND the index predicate with the
6835 : * index-bound quals to produce a more accurate idea of the number of
6836 : * rows covered by the bound conditions.
6837 : */
6838 14668 : selectivityQuals = add_predicate_to_quals(index, indexBoundQuals);
6839 :
6840 14668 : btreeSelectivity = clauselist_selectivity(root, selectivityQuals,
6841 14668 : index->rel->relid,
6842 : JOIN_INNER,
6843 : NULL);
6844 14668 : numIndexTuples = btreeSelectivity * index->rel->tuples;
6845 :
6846 : /*
6847 : * As in genericcostestimate(), we have to adjust for any
6848 : * ScalarArrayOpExpr quals included in indexBoundQuals, and then round
6849 : * to integer.
6850 : */
6851 14668 : numIndexTuples = rint(numIndexTuples / num_sa_scans);
6852 : }
6853 :
6854 : /*
6855 : * Now do generic index cost estimation.
6856 : */
6857 20450 : MemSet(&costs, 0, sizeof(costs));
6858 20450 : costs.numIndexTuples = numIndexTuples;
6859 :
6860 20450 : genericcostestimate(root, path, loop_count, qinfos, &costs);
6861 :
6862 : /*
6863 : * Add a CPU-cost component to represent the costs of initial btree
6864 : * descent. We don't charge any I/O cost for touching upper btree levels,
6865 : * since they tend to stay in cache, but we still have to do about log2(N)
6866 : * comparisons to descend a btree of N leaf tuples. We charge one
6867 : * cpu_operator_cost per comparison.
6868 : *
6869 : * If there are ScalarArrayOpExprs, charge this once per SA scan. The
6870 : * ones after the first one are not startup cost so far as the overall
6871 : * plan is concerned, so add them only to "total" cost.
6872 : */
6873 20450 : if (index->tuples > 1) /* avoid computing log(0) */
6874 : {
6875 20343 : descentCost = ceil(log(index->tuples) / log(2.0)) * cpu_operator_cost;
6876 20343 : costs.indexStartupCost += descentCost;
6877 20343 : costs.indexTotalCost += costs.num_sa_scans * descentCost;
6878 : }
6879 :
6880 : /*
6881 : * Even though we're not charging I/O cost for touching upper btree pages,
6882 : * it's still reasonable to charge some CPU cost per page descended
6883 : * through. Moreover, if we had no such charge at all, bloated indexes
6884 : * would appear to have the same search cost as unbloated ones, at least
6885 : * in cases where only a single leaf page is expected to be visited. This
6886 : * cost is somewhat arbitrarily set at 50x cpu_operator_cost per page
6887 : * touched. The number of such pages is btree tree height plus one (ie,
6888 : * we charge for the leaf page too). As above, charge once per SA scan.
6889 : */
6890 20450 : descentCost = (index->tree_height + 1) * 50.0 * cpu_operator_cost;
6891 20450 : costs.indexStartupCost += descentCost;
6892 20450 : costs.indexTotalCost += costs.num_sa_scans * descentCost;
6893 :
6894 : /*
6895 : * If we can get an estimate of the first column's ordering correlation C
6896 : * from pg_statistic, estimate the index correlation as C for a
6897 : * single-column index, or C * 0.75 for multiple columns. (The idea here
6898 : * is that multiple columns dilute the importance of the first column's
6899 : * ordering, but don't negate it entirely. Before 8.0 we divided the
6900 : * correlation by the number of columns, but that seems too strong.)
6901 : */
6902 20450 : MemSet(&vardata, 0, sizeof(vardata));
6903 :
6904 20450 : if (index->indexkeys[0] != 0)
6905 : {
6906 : /* Simple variable --- look to stats for the underlying table */
6907 20323 : RangeTblEntry *rte = planner_rt_fetch(index->rel->relid, root);
6908 :
6909 20323 : Assert(rte->rtekind == RTE_RELATION);
6910 20323 : relid = rte->relid;
6911 20323 : Assert(relid != InvalidOid);
6912 20323 : colnum = index->indexkeys[0];
6913 :
6914 20323 : if (get_relation_stats_hook &&
6915 0 : (*get_relation_stats_hook) (root, rte, colnum, &vardata))
6916 : {
6917 : /*
6918 : * The hook took control of acquiring a stats tuple. If it did
6919 : * supply a tuple, it'd better have supplied a freefunc.
6920 : */
6921 0 : if (HeapTupleIsValid(vardata.statsTuple) &&
6922 0 : !vardata.freefunc)
6923 0 : elog(ERROR, "no function provided to release variable stats with");
6924 : }
6925 : else
6926 : {
6927 20323 : vardata.statsTuple = SearchSysCache3(STATRELATTINH,
6928 : ObjectIdGetDatum(relid),
6929 : Int16GetDatum(colnum),
6930 : BoolGetDatum(rte->inh));
6931 20323 : vardata.freefunc = ReleaseSysCache;
6932 : }
6933 : }
6934 : else
6935 : {
6936 : /* Expression --- maybe there are stats for the index itself */
6937 127 : relid = index->indexoid;
6938 127 : colnum = 1;
6939 :
6940 127 : if (get_index_stats_hook &&
6941 0 : (*get_index_stats_hook) (root, relid, colnum, &vardata))
6942 : {
6943 : /*
6944 : * The hook took control of acquiring a stats tuple. If it did
6945 : * supply a tuple, it'd better have supplied a freefunc.
6946 : */
6947 0 : if (HeapTupleIsValid(vardata.statsTuple) &&
6948 0 : !vardata.freefunc)
6949 0 : elog(ERROR, "no function provided to release variable stats with");
6950 : }
6951 : else
6952 : {
6953 127 : vardata.statsTuple = SearchSysCache3(STATRELATTINH,
6954 : ObjectIdGetDatum(relid),
6955 : Int16GetDatum(colnum),
6956 : BoolGetDatum(false));
6957 127 : vardata.freefunc = ReleaseSysCache;
6958 : }
6959 : }
6960 :
6961 20450 : if (HeapTupleIsValid(vardata.statsTuple))
6962 : {
6963 : Oid sortop;
6964 : AttStatsSlot sslot;
6965 :
6966 15924 : sortop = get_opfamily_member(index->opfamily[0],
6967 7962 : index->opcintype[0],
6968 7962 : index->opcintype[0],
6969 : BTLessStrategyNumber);
6970 15924 : if (OidIsValid(sortop) &&
6971 7962 : get_attstatsslot(&sslot, vardata.statsTuple,
6972 : STATISTIC_KIND_CORRELATION, sortop,
6973 : ATTSTATSSLOT_NUMBERS))
6974 : {
6975 : double varCorrelation;
6976 :
6977 7927 : Assert(sslot.nnumbers == 1);
6978 7927 : varCorrelation = sslot.numbers[0];
6979 :
6980 7927 : if (index->reverse_sort[0])
6981 0 : varCorrelation = -varCorrelation;
6982 :
6983 7927 : if (index->ncolumns > 1)
6984 5001 : costs.indexCorrelation = varCorrelation * 0.75;
6985 : else
6986 2926 : costs.indexCorrelation = varCorrelation;
6987 :
6988 7927 : free_attstatsslot(&sslot);
6989 : }
6990 : }
6991 :
6992 20450 : ReleaseVariableStats(vardata);
6993 :
6994 20450 : *indexStartupCost = costs.indexStartupCost;
6995 20450 : *indexTotalCost = costs.indexTotalCost;
6996 20450 : *indexSelectivity = costs.indexSelectivity;
6997 20450 : *indexCorrelation = costs.indexCorrelation;
6998 20450 : *indexPages = costs.numIndexPages;
6999 20450 : }
7000 :
7001 : void
7002 26 : hashcostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
7003 : Cost *indexStartupCost, Cost *indexTotalCost,
7004 : Selectivity *indexSelectivity, double *indexCorrelation,
7005 : double *indexPages)
7006 : {
7007 : List *qinfos;
7008 : GenericCosts costs;
7009 :
7010 : /* Do preliminary analysis of indexquals */
7011 26 : qinfos = deconstruct_indexquals(path);
7012 :
7013 26 : MemSet(&costs, 0, sizeof(costs));
7014 :
7015 26 : genericcostestimate(root, path, loop_count, qinfos, &costs);
7016 :
7017 : /*
7018 : * A hash index has no descent costs as such, since the index AM can go
7019 : * directly to the target bucket after computing the hash value. There
7020 : * are a couple of other hash-specific costs that we could conceivably add
7021 : * here, though:
7022 : *
7023 : * Ideally we'd charge spc_random_page_cost for each page in the target
7024 : * bucket, not just the numIndexPages pages that genericcostestimate
7025 : * thought we'd visit. However in most cases we don't know which bucket
7026 : * that will be. There's no point in considering the average bucket size
7027 : * because the hash AM makes sure that's always one page.
7028 : *
7029 : * Likewise, we could consider charging some CPU for each index tuple in
7030 : * the bucket, if we knew how many there were. But the per-tuple cost is
7031 : * just a hash value comparison, not a general datatype-dependent
7032 : * comparison, so any such charge ought to be quite a bit less than
7033 : * cpu_operator_cost; which makes it probably not worth worrying about.
7034 : *
7035 : * A bigger issue is that chance hash-value collisions will result in
7036 : * wasted probes into the heap. We don't currently attempt to model this
7037 : * cost on the grounds that it's rare, but maybe it's not rare enough.
7038 : * (Any fix for this ought to consider the generic lossy-operator problem,
7039 : * though; it's not entirely hash-specific.)
7040 : */
7041 :
7042 26 : *indexStartupCost = costs.indexStartupCost;
7043 26 : *indexTotalCost = costs.indexTotalCost;
7044 26 : *indexSelectivity = costs.indexSelectivity;
7045 26 : *indexCorrelation = costs.indexCorrelation;
7046 26 : *indexPages = costs.numIndexPages;
7047 26 : }
7048 :
7049 : void
7050 165 : gistcostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
7051 : Cost *indexStartupCost, Cost *indexTotalCost,
7052 : Selectivity *indexSelectivity, double *indexCorrelation,
7053 : double *indexPages)
7054 : {
7055 165 : IndexOptInfo *index = path->indexinfo;
7056 : List *qinfos;
7057 : GenericCosts costs;
7058 : Cost descentCost;
7059 :
7060 : /* Do preliminary analysis of indexquals */
7061 165 : qinfos = deconstruct_indexquals(path);
7062 :
7063 165 : MemSet(&costs, 0, sizeof(costs));
7064 :
7065 165 : genericcostestimate(root, path, loop_count, qinfos, &costs);
7066 :
7067 : /*
7068 : * We model index descent costs similarly to those for btree, but to do
7069 : * that we first need an idea of the tree height. We somewhat arbitrarily
7070 : * assume that the fanout is 100, meaning the tree height is at most
7071 : * log100(index->pages).
7072 : *
7073 : * Although this computation isn't really expensive enough to require
7074 : * caching, we might as well use index->tree_height to cache it.
7075 : */
7076 165 : if (index->tree_height < 0) /* unknown? */
7077 : {
7078 165 : if (index->pages > 1) /* avoid computing log(0) */
7079 100 : index->tree_height = (int) (log(index->pages) / log(100.0));
7080 : else
7081 65 : index->tree_height = 0;
7082 : }
7083 :
7084 : /*
7085 : * Add a CPU-cost component to represent the costs of initial descent. We
7086 : * just use log(N) here not log2(N) since the branching factor isn't
7087 : * necessarily two anyway. As for btree, charge once per SA scan.
7088 : */
7089 165 : if (index->tuples > 1) /* avoid computing log(0) */
7090 : {
7091 165 : descentCost = ceil(log(index->tuples)) * cpu_operator_cost;
7092 165 : costs.indexStartupCost += descentCost;
7093 165 : costs.indexTotalCost += costs.num_sa_scans * descentCost;
7094 : }
7095 :
7096 : /*
7097 : * Likewise add a per-page charge, calculated the same as for btrees.
7098 : */
7099 165 : descentCost = (index->tree_height + 1) * 50.0 * cpu_operator_cost;
7100 165 : costs.indexStartupCost += descentCost;
7101 165 : costs.indexTotalCost += costs.num_sa_scans * descentCost;
7102 :
7103 165 : *indexStartupCost = costs.indexStartupCost;
7104 165 : *indexTotalCost = costs.indexTotalCost;
7105 165 : *indexSelectivity = costs.indexSelectivity;
7106 165 : *indexCorrelation = costs.indexCorrelation;
7107 165 : *indexPages = costs.numIndexPages;
7108 165 : }
7109 :
7110 : void
7111 229 : spgcostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
7112 : Cost *indexStartupCost, Cost *indexTotalCost,
7113 : Selectivity *indexSelectivity, double *indexCorrelation,
7114 : double *indexPages)
7115 : {
7116 229 : IndexOptInfo *index = path->indexinfo;
7117 : List *qinfos;
7118 : GenericCosts costs;
7119 : Cost descentCost;
7120 :
7121 : /* Do preliminary analysis of indexquals */
7122 229 : qinfos = deconstruct_indexquals(path);
7123 :
7124 229 : MemSet(&costs, 0, sizeof(costs));
7125 :
7126 229 : genericcostestimate(root, path, loop_count, qinfos, &costs);
7127 :
7128 : /*
7129 : * We model index descent costs similarly to those for btree, but to do
7130 : * that we first need an idea of the tree height. We somewhat arbitrarily
7131 : * assume that the fanout is 100, meaning the tree height is at most
7132 : * log100(index->pages).
7133 : *
7134 : * Although this computation isn't really expensive enough to require
7135 : * caching, we might as well use index->tree_height to cache it.
7136 : */
7137 229 : if (index->tree_height < 0) /* unknown? */
7138 : {
7139 229 : if (index->pages > 1) /* avoid computing log(0) */
7140 229 : index->tree_height = (int) (log(index->pages) / log(100.0));
7141 : else
7142 0 : index->tree_height = 0;
7143 : }
7144 :
7145 : /*
7146 : * Add a CPU-cost component to represent the costs of initial descent. We
7147 : * just use log(N) here not log2(N) since the branching factor isn't
7148 : * necessarily two anyway. As for btree, charge once per SA scan.
7149 : */
7150 229 : if (index->tuples > 1) /* avoid computing log(0) */
7151 : {
7152 229 : descentCost = ceil(log(index->tuples)) * cpu_operator_cost;
7153 229 : costs.indexStartupCost += descentCost;
7154 229 : costs.indexTotalCost += costs.num_sa_scans * descentCost;
7155 : }
7156 :
7157 : /*
7158 : * Likewise add a per-page charge, calculated the same as for btrees.
7159 : */
7160 229 : descentCost = (index->tree_height + 1) * 50.0 * cpu_operator_cost;
7161 229 : costs.indexStartupCost += descentCost;
7162 229 : costs.indexTotalCost += costs.num_sa_scans * descentCost;
7163 :
7164 229 : *indexStartupCost = costs.indexStartupCost;
7165 229 : *indexTotalCost = costs.indexTotalCost;
7166 229 : *indexSelectivity = costs.indexSelectivity;
7167 229 : *indexCorrelation = costs.indexCorrelation;
7168 229 : *indexPages = costs.numIndexPages;
7169 229 : }
7170 :
7171 :
7172 : /*
7173 : * Support routines for gincostestimate
7174 : */
7175 :
7176 : typedef struct
7177 : {
7178 : bool haveFullScan;
7179 : double partialEntries;
7180 : double exactEntries;
7181 : double searchEntries;
7182 : double arrayScans;
7183 : } GinQualCounts;
7184 :
7185 : /*
7186 : * Estimate the number of index terms that need to be searched for while
7187 : * testing the given GIN query, and increment the counts in *counts
7188 : * appropriately. If the query is unsatisfiable, return false.
7189 : */
7190 : static bool
7191 87 : gincost_pattern(IndexOptInfo *index, int indexcol,
7192 : Oid clause_op, Datum query,
7193 : GinQualCounts *counts)
7194 : {
7195 : Oid extractProcOid;
7196 : Oid collation;
7197 : int strategy_op;
7198 : Oid lefttype,
7199 : righttype;
7200 87 : int32 nentries = 0;
7201 87 : bool *partial_matches = NULL;
7202 87 : Pointer *extra_data = NULL;
7203 87 : bool *nullFlags = NULL;
7204 87 : int32 searchMode = GIN_SEARCH_MODE_DEFAULT;
7205 : int32 i;
7206 :
7207 : /*
7208 : * Get the operator's strategy number and declared input data types within
7209 : * the index opfamily. (We don't need the latter, but we use
7210 : * get_op_opfamily_properties because it will throw error if it fails to
7211 : * find a matching pg_amop entry.)
7212 : */
7213 87 : get_op_opfamily_properties(clause_op, index->opfamily[indexcol], false,
7214 : &strategy_op, &lefttype, &righttype);
7215 :
7216 : /*
7217 : * GIN always uses the "default" support functions, which are those with
7218 : * lefttype == righttype == the opclass' opcintype (see
7219 : * IndexSupportInitialize in relcache.c).
7220 : */
7221 174 : extractProcOid = get_opfamily_proc(index->opfamily[indexcol],
7222 87 : index->opcintype[indexcol],
7223 87 : index->opcintype[indexcol],
7224 : GIN_EXTRACTQUERY_PROC);
7225 :
7226 87 : if (!OidIsValid(extractProcOid))
7227 : {
7228 : /* should not happen; throw same error as index_getprocinfo */
7229 0 : elog(ERROR, "missing support function %d for attribute %d of index \"%s\"",
7230 : GIN_EXTRACTQUERY_PROC, indexcol + 1,
7231 : get_rel_name(index->indexoid));
7232 : }
7233 :
7234 : /*
7235 : * Choose collation to pass to extractProc (should match initGinState).
7236 : */
7237 87 : if (OidIsValid(index->indexcollations[indexcol]))
7238 18 : collation = index->indexcollations[indexcol];
7239 : else
7240 69 : collation = DEFAULT_COLLATION_OID;
7241 :
7242 174 : OidFunctionCall7Coll(extractProcOid,
7243 : collation,
7244 : query,
7245 : PointerGetDatum(&nentries),
7246 87 : UInt16GetDatum(strategy_op),
7247 : PointerGetDatum(&partial_matches),
7248 : PointerGetDatum(&extra_data),
7249 : PointerGetDatum(&nullFlags),
7250 : PointerGetDatum(&searchMode));
7251 :
7252 87 : if (nentries <= 0 && searchMode == GIN_SEARCH_MODE_DEFAULT)
7253 : {
7254 : /* No match is possible */
7255 2 : return false;
7256 : }
7257 :
7258 204 : for (i = 0; i < nentries; i++)
7259 : {
7260 : /*
7261 : * For partial match we haven't any information to estimate number of
7262 : * matched entries in index, so, we just estimate it as 100
7263 : */
7264 119 : if (partial_matches && partial_matches[i])
7265 7 : counts->partialEntries += 100;
7266 : else
7267 112 : counts->exactEntries++;
7268 :
7269 119 : counts->searchEntries++;
7270 : }
7271 :
7272 85 : if (searchMode == GIN_SEARCH_MODE_INCLUDE_EMPTY)
7273 : {
7274 : /* Treat "include empty" like an exact-match item */
7275 7 : counts->exactEntries++;
7276 7 : counts->searchEntries++;
7277 : }
7278 78 : else if (searchMode != GIN_SEARCH_MODE_DEFAULT)
7279 : {
7280 : /* It's GIN_SEARCH_MODE_ALL */
7281 5 : counts->haveFullScan = true;
7282 : }
7283 :
7284 85 : return true;
7285 : }
7286 :
7287 : /*
7288 : * Estimate the number of index terms that need to be searched for while
7289 : * testing the given GIN index clause, and increment the counts in *counts
7290 : * appropriately. If the query is unsatisfiable, return false.
7291 : */
7292 : static bool
7293 85 : gincost_opexpr(PlannerInfo *root,
7294 : IndexOptInfo *index,
7295 : IndexQualInfo *qinfo,
7296 : GinQualCounts *counts)
7297 : {
7298 85 : int indexcol = qinfo->indexcol;
7299 85 : Oid clause_op = qinfo->clause_op;
7300 85 : Node *operand = qinfo->other_operand;
7301 :
7302 85 : if (!qinfo->varonleft)
7303 : {
7304 : /* must commute the operator */
7305 5 : clause_op = get_commutator(clause_op);
7306 : }
7307 :
7308 : /* aggressively reduce to a constant, and look through relabeling */
7309 85 : operand = estimate_expression_value(root, operand);
7310 :
7311 85 : if (IsA(operand, RelabelType))
7312 0 : operand = (Node *) ((RelabelType *) operand)->arg;
7313 :
7314 : /*
7315 : * It's impossible to call extractQuery method for unknown operand. So
7316 : * unless operand is a Const we can't do much; just assume there will be
7317 : * one ordinary search entry from the operand at runtime.
7318 : */
7319 85 : if (!IsA(operand, Const))
7320 : {
7321 0 : counts->exactEntries++;
7322 0 : counts->searchEntries++;
7323 0 : return true;
7324 : }
7325 :
7326 : /* If Const is null, there can be no matches */
7327 85 : if (((Const *) operand)->constisnull)
7328 0 : return false;
7329 :
7330 : /* Otherwise, apply extractQuery and get the actual term counts */
7331 85 : return gincost_pattern(index, indexcol, clause_op,
7332 : ((Const *) operand)->constvalue,
7333 : counts);
7334 : }
7335 :
7336 : /*
7337 : * Estimate the number of index terms that need to be searched for while
7338 : * testing the given GIN index clause, and increment the counts in *counts
7339 : * appropriately. If the query is unsatisfiable, return false.
7340 : *
7341 : * A ScalarArrayOpExpr will give rise to N separate indexscans at runtime,
7342 : * each of which involves one value from the RHS array, plus all the
7343 : * non-array quals (if any). To model this, we average the counts across
7344 : * the RHS elements, and add the averages to the counts in *counts (which
7345 : * correspond to per-indexscan costs). We also multiply counts->arrayScans
7346 : * by N, causing gincostestimate to scale up its estimates accordingly.
7347 : */
7348 : static bool
7349 1 : gincost_scalararrayopexpr(PlannerInfo *root,
7350 : IndexOptInfo *index,
7351 : IndexQualInfo *qinfo,
7352 : double numIndexEntries,
7353 : GinQualCounts *counts)
7354 : {
7355 1 : int indexcol = qinfo->indexcol;
7356 1 : Oid clause_op = qinfo->clause_op;
7357 1 : Node *rightop = qinfo->other_operand;
7358 : ArrayType *arrayval;
7359 : int16 elmlen;
7360 : bool elmbyval;
7361 : char elmalign;
7362 : int numElems;
7363 : Datum *elemValues;
7364 : bool *elemNulls;
7365 : GinQualCounts arraycounts;
7366 1 : int numPossible = 0;
7367 : int i;
7368 :
7369 1 : Assert(((ScalarArrayOpExpr *) qinfo->rinfo->clause)->useOr);
7370 :
7371 : /* aggressively reduce to a constant, and look through relabeling */
7372 1 : rightop = estimate_expression_value(root, rightop);
7373 :
7374 1 : if (IsA(rightop, RelabelType))
7375 0 : rightop = (Node *) ((RelabelType *) rightop)->arg;
7376 :
7377 : /*
7378 : * It's impossible to call extractQuery method for unknown operand. So
7379 : * unless operand is a Const we can't do much; just assume there will be
7380 : * one ordinary search entry from each array entry at runtime, and fall
7381 : * back on a probably-bad estimate of the number of array entries.
7382 : */
7383 1 : if (!IsA(rightop, Const))
7384 : {
7385 0 : counts->exactEntries++;
7386 0 : counts->searchEntries++;
7387 0 : counts->arrayScans *= estimate_array_length(rightop);
7388 0 : return true;
7389 : }
7390 :
7391 : /* If Const is null, there can be no matches */
7392 1 : if (((Const *) rightop)->constisnull)
7393 0 : return false;
7394 :
7395 : /* Otherwise, extract the array elements and iterate over them */
7396 1 : arrayval = DatumGetArrayTypeP(((Const *) rightop)->constvalue);
7397 1 : get_typlenbyvalalign(ARR_ELEMTYPE(arrayval),
7398 : &elmlen, &elmbyval, &elmalign);
7399 1 : deconstruct_array(arrayval,
7400 : ARR_ELEMTYPE(arrayval),
7401 : elmlen, elmbyval, elmalign,
7402 : &elemValues, &elemNulls, &numElems);
7403 :
7404 1 : memset(&arraycounts, 0, sizeof(arraycounts));
7405 :
7406 3 : for (i = 0; i < numElems; i++)
7407 : {
7408 : GinQualCounts elemcounts;
7409 :
7410 : /* NULL can't match anything, so ignore, as the executor will */
7411 2 : if (elemNulls[i])
7412 0 : continue;
7413 :
7414 : /* Otherwise, apply extractQuery and get the actual term counts */
7415 2 : memset(&elemcounts, 0, sizeof(elemcounts));
7416 :
7417 2 : if (gincost_pattern(index, indexcol, clause_op, elemValues[i],
7418 : &elemcounts))
7419 : {
7420 : /* We ignore array elements that are unsatisfiable patterns */
7421 2 : numPossible++;
7422 :
7423 2 : if (elemcounts.haveFullScan)
7424 : {
7425 : /*
7426 : * Full index scan will be required. We treat this as if
7427 : * every key in the index had been listed in the query; is
7428 : * that reasonable?
7429 : */
7430 0 : elemcounts.partialEntries = 0;
7431 0 : elemcounts.exactEntries = numIndexEntries;
7432 0 : elemcounts.searchEntries = numIndexEntries;
7433 : }
7434 2 : arraycounts.partialEntries += elemcounts.partialEntries;
7435 2 : arraycounts.exactEntries += elemcounts.exactEntries;
7436 2 : arraycounts.searchEntries += elemcounts.searchEntries;
7437 : }
7438 : }
7439 :
7440 1 : if (numPossible == 0)
7441 : {
7442 : /* No satisfiable patterns in the array */
7443 0 : return false;
7444 : }
7445 :
7446 : /*
7447 : * Now add the averages to the global counts. This will give us an
7448 : * estimate of the average number of terms searched for in each indexscan,
7449 : * including contributions from both array and non-array quals.
7450 : */
7451 1 : counts->partialEntries += arraycounts.partialEntries / numPossible;
7452 1 : counts->exactEntries += arraycounts.exactEntries / numPossible;
7453 1 : counts->searchEntries += arraycounts.searchEntries / numPossible;
7454 :
7455 1 : counts->arrayScans *= numPossible;
7456 :
7457 1 : return true;
7458 : }
7459 :
7460 : /*
7461 : * GIN has search behavior completely different from other index types
7462 : */
7463 : void
7464 84 : gincostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
7465 : Cost *indexStartupCost, Cost *indexTotalCost,
7466 : Selectivity *indexSelectivity, double *indexCorrelation,
7467 : double *indexPages)
7468 : {
7469 84 : IndexOptInfo *index = path->indexinfo;
7470 84 : List *indexQuals = path->indexquals;
7471 84 : List *indexOrderBys = path->indexorderbys;
7472 : List *qinfos;
7473 : ListCell *l;
7474 : List *selectivityQuals;
7475 84 : double numPages = index->pages,
7476 84 : numTuples = index->tuples;
7477 : double numEntryPages,
7478 : numDataPages,
7479 : numPendingPages,
7480 : numEntries;
7481 : GinQualCounts counts;
7482 : bool matchPossible;
7483 : double partialScale;
7484 : double entryPagesFetched,
7485 : dataPagesFetched,
7486 : dataPagesFetchedBySel;
7487 : double qual_op_cost,
7488 : qual_arg_cost,
7489 : spc_random_page_cost,
7490 : outer_scans;
7491 : Relation indexRel;
7492 : GinStatsData ginStats;
7493 :
7494 : /* Do preliminary analysis of indexquals */
7495 84 : qinfos = deconstruct_indexquals(path);
7496 :
7497 : /*
7498 : * Obtain statistical information from the meta page, if possible. Else
7499 : * set ginStats to zeroes, and we'll cope below.
7500 : */
7501 84 : if (!index->hypothetical)
7502 : {
7503 84 : indexRel = index_open(index->indexoid, AccessShareLock);
7504 84 : ginGetStats(indexRel, &ginStats);
7505 84 : index_close(indexRel, AccessShareLock);
7506 : }
7507 : else
7508 : {
7509 0 : memset(&ginStats, 0, sizeof(ginStats));
7510 : }
7511 :
7512 : /*
7513 : * Assuming we got valid (nonzero) stats at all, nPendingPages can be
7514 : * trusted, but the other fields are data as of the last VACUUM. We can
7515 : * scale them up to account for growth since then, but that method only
7516 : * goes so far; in the worst case, the stats might be for a completely
7517 : * empty index, and scaling them will produce pretty bogus numbers.
7518 : * Somewhat arbitrarily, set the cutoff for doing scaling at 4X growth; if
7519 : * it's grown more than that, fall back to estimating things only from the
7520 : * assumed-accurate index size. But we'll trust nPendingPages in any case
7521 : * so long as it's not clearly insane, ie, more than the index size.
7522 : */
7523 84 : if (ginStats.nPendingPages < numPages)
7524 84 : numPendingPages = ginStats.nPendingPages;
7525 : else
7526 0 : numPendingPages = 0;
7527 :
7528 168 : if (numPages > 0 && ginStats.nTotalPages <= numPages &&
7529 168 : ginStats.nTotalPages > numPages / 4 &&
7530 168 : ginStats.nEntryPages > 0 && ginStats.nEntries > 0)
7531 79 : {
7532 : /*
7533 : * OK, the stats seem close enough to sane to be trusted. But we
7534 : * still need to scale them by the ratio numPages / nTotalPages to
7535 : * account for growth since the last VACUUM.
7536 : */
7537 79 : double scale = numPages / ginStats.nTotalPages;
7538 :
7539 79 : numEntryPages = ceil(ginStats.nEntryPages * scale);
7540 79 : numDataPages = ceil(ginStats.nDataPages * scale);
7541 79 : numEntries = ceil(ginStats.nEntries * scale);
7542 : /* ensure we didn't round up too much */
7543 79 : numEntryPages = Min(numEntryPages, numPages - numPendingPages);
7544 79 : numDataPages = Min(numDataPages,
7545 : numPages - numPendingPages - numEntryPages);
7546 : }
7547 : else
7548 : {
7549 : /*
7550 : * We might get here because it's a hypothetical index, or an index
7551 : * created pre-9.1 and never vacuumed since upgrading (in which case
7552 : * its stats would read as zeroes), or just because it's grown too
7553 : * much since the last VACUUM for us to put our faith in scaling.
7554 : *
7555 : * Invent some plausible internal statistics based on the index page
7556 : * count (and clamp that to at least 10 pages, just in case). We
7557 : * estimate that 90% of the index is entry pages, and the rest is data
7558 : * pages. Estimate 100 entries per entry page; this is rather bogus
7559 : * since it'll depend on the size of the keys, but it's more robust
7560 : * than trying to predict the number of entries per heap tuple.
7561 : */
7562 5 : numPages = Max(numPages, 10);
7563 5 : numEntryPages = floor((numPages - numPendingPages) * 0.90);
7564 5 : numDataPages = numPages - numPendingPages - numEntryPages;
7565 5 : numEntries = floor(numEntryPages * 100);
7566 : }
7567 :
7568 : /* In an empty index, numEntries could be zero. Avoid divide-by-zero */
7569 84 : if (numEntries < 1)
7570 0 : numEntries = 1;
7571 :
7572 : /*
7573 : * Include predicate in selectivityQuals (should match
7574 : * genericcostestimate)
7575 : */
7576 84 : if (index->indpred != NIL)
7577 : {
7578 0 : List *predExtraQuals = NIL;
7579 :
7580 0 : foreach(l, index->indpred)
7581 : {
7582 0 : Node *predQual = (Node *) lfirst(l);
7583 0 : List *oneQual = list_make1(predQual);
7584 :
7585 0 : if (!predicate_implied_by(oneQual, indexQuals, false))
7586 0 : predExtraQuals = list_concat(predExtraQuals, oneQual);
7587 : }
7588 : /* list_concat avoids modifying the passed-in indexQuals list */
7589 0 : selectivityQuals = list_concat(predExtraQuals, indexQuals);
7590 : }
7591 : else
7592 84 : selectivityQuals = indexQuals;
7593 :
7594 : /* Estimate the fraction of main-table tuples that will be visited */
7595 84 : *indexSelectivity = clauselist_selectivity(root, selectivityQuals,
7596 84 : index->rel->relid,
7597 : JOIN_INNER,
7598 : NULL);
7599 :
7600 : /* fetch estimated page cost for tablespace containing index */
7601 84 : get_tablespace_page_costs(index->reltablespace,
7602 : &spc_random_page_cost,
7603 : NULL);
7604 :
7605 : /*
7606 : * Generic assumption about index correlation: there isn't any.
7607 : */
7608 84 : *indexCorrelation = 0.0;
7609 :
7610 : /*
7611 : * Examine quals to estimate number of search entries & partial matches
7612 : */
7613 84 : memset(&counts, 0, sizeof(counts));
7614 84 : counts.arrayScans = 1;
7615 84 : matchPossible = true;
7616 :
7617 168 : foreach(l, qinfos)
7618 : {
7619 86 : IndexQualInfo *qinfo = (IndexQualInfo *) lfirst(l);
7620 86 : Expr *clause = qinfo->rinfo->clause;
7621 :
7622 86 : if (IsA(clause, OpExpr))
7623 : {
7624 85 : matchPossible = gincost_opexpr(root,
7625 : index,
7626 : qinfo,
7627 : &counts);
7628 85 : if (!matchPossible)
7629 2 : break;
7630 : }
7631 1 : else if (IsA(clause, ScalarArrayOpExpr))
7632 : {
7633 1 : matchPossible = gincost_scalararrayopexpr(root,
7634 : index,
7635 : qinfo,
7636 : numEntries,
7637 : &counts);
7638 1 : if (!matchPossible)
7639 0 : break;
7640 : }
7641 : else
7642 : {
7643 : /* shouldn't be anything else for a GIN index */
7644 0 : elog(ERROR, "unsupported GIN indexqual type: %d",
7645 : (int) nodeTag(clause));
7646 : }
7647 : }
7648 :
7649 : /* Fall out if there were any provably-unsatisfiable quals */
7650 84 : if (!matchPossible)
7651 : {
7652 2 : *indexStartupCost = 0;
7653 2 : *indexTotalCost = 0;
7654 2 : *indexSelectivity = 0;
7655 86 : return;
7656 : }
7657 :
7658 82 : if (counts.haveFullScan || indexQuals == NIL)
7659 : {
7660 : /*
7661 : * Full index scan will be required. We treat this as if every key in
7662 : * the index had been listed in the query; is that reasonable?
7663 : */
7664 5 : counts.partialEntries = 0;
7665 5 : counts.exactEntries = numEntries;
7666 5 : counts.searchEntries = numEntries;
7667 : }
7668 :
7669 : /* Will we have more than one iteration of a nestloop scan? */
7670 82 : outer_scans = loop_count;
7671 :
7672 : /*
7673 : * Compute cost to begin scan, first of all, pay attention to pending
7674 : * list.
7675 : */
7676 82 : entryPagesFetched = numPendingPages;
7677 :
7678 : /*
7679 : * Estimate number of entry pages read. We need to do
7680 : * counts.searchEntries searches. Use a power function as it should be,
7681 : * but tuples on leaf pages usually is much greater. Here we include all
7682 : * searches in entry tree, including search of first entry in partial
7683 : * match algorithm
7684 : */
7685 82 : entryPagesFetched += ceil(counts.searchEntries * rint(pow(numEntryPages, 0.15)));
7686 :
7687 : /*
7688 : * Add an estimate of entry pages read by partial match algorithm. It's a
7689 : * scan over leaf pages in entry tree. We haven't any useful stats here,
7690 : * so estimate it as proportion. Because counts.partialEntries is really
7691 : * pretty bogus (see code above), it's possible that it is more than
7692 : * numEntries; clamp the proportion to ensure sanity.
7693 : */
7694 82 : partialScale = counts.partialEntries / numEntries;
7695 82 : partialScale = Min(partialScale, 1.0);
7696 :
7697 82 : entryPagesFetched += ceil(numEntryPages * partialScale);
7698 :
7699 : /*
7700 : * Partial match algorithm reads all data pages before doing actual scan,
7701 : * so it's a startup cost. Again, we haven't any useful stats here, so
7702 : * estimate it as proportion.
7703 : */
7704 82 : dataPagesFetched = ceil(numDataPages * partialScale);
7705 :
7706 : /*
7707 : * Calculate cache effects if more than one scan due to nestloops or array
7708 : * quals. The result is pro-rated per nestloop scan, but the array qual
7709 : * factor shouldn't be pro-rated (compare genericcostestimate).
7710 : */
7711 82 : if (outer_scans > 1 || counts.arrayScans > 1)
7712 : {
7713 1 : entryPagesFetched *= outer_scans * counts.arrayScans;
7714 1 : entryPagesFetched = index_pages_fetched(entryPagesFetched,
7715 : (BlockNumber) numEntryPages,
7716 : numEntryPages, root);
7717 1 : entryPagesFetched /= outer_scans;
7718 1 : dataPagesFetched *= outer_scans * counts.arrayScans;
7719 1 : dataPagesFetched = index_pages_fetched(dataPagesFetched,
7720 : (BlockNumber) numDataPages,
7721 : numDataPages, root);
7722 1 : dataPagesFetched /= outer_scans;
7723 : }
7724 :
7725 : /*
7726 : * Here we use random page cost because logically-close pages could be far
7727 : * apart on disk.
7728 : */
7729 82 : *indexStartupCost = (entryPagesFetched + dataPagesFetched) * spc_random_page_cost;
7730 :
7731 : /*
7732 : * Now compute the number of data pages fetched during the scan.
7733 : *
7734 : * We assume every entry to have the same number of items, and that there
7735 : * is no overlap between them. (XXX: tsvector and array opclasses collect
7736 : * statistics on the frequency of individual keys; it would be nice to use
7737 : * those here.)
7738 : */
7739 82 : dataPagesFetched = ceil(numDataPages * counts.exactEntries / numEntries);
7740 :
7741 : /*
7742 : * If there is a lot of overlap among the entries, in particular if one of
7743 : * the entries is very frequent, the above calculation can grossly
7744 : * under-estimate. As a simple cross-check, calculate a lower bound based
7745 : * on the overall selectivity of the quals. At a minimum, we must read
7746 : * one item pointer for each matching entry.
7747 : *
7748 : * The width of each item pointer varies, based on the level of
7749 : * compression. We don't have statistics on that, but an average of
7750 : * around 3 bytes per item is fairly typical.
7751 : */
7752 82 : dataPagesFetchedBySel = ceil(*indexSelectivity *
7753 : (numTuples / (BLCKSZ / 3)));
7754 82 : if (dataPagesFetchedBySel > dataPagesFetched)
7755 79 : dataPagesFetched = dataPagesFetchedBySel;
7756 :
7757 : /* Account for cache effects, the same as above */
7758 82 : if (outer_scans > 1 || counts.arrayScans > 1)
7759 : {
7760 1 : dataPagesFetched *= outer_scans * counts.arrayScans;
7761 1 : dataPagesFetched = index_pages_fetched(dataPagesFetched,
7762 : (BlockNumber) numDataPages,
7763 : numDataPages, root);
7764 1 : dataPagesFetched /= outer_scans;
7765 : }
7766 :
7767 : /* And apply random_page_cost as the cost per page */
7768 82 : *indexTotalCost = *indexStartupCost +
7769 : dataPagesFetched * spc_random_page_cost;
7770 :
7771 : /*
7772 : * Add on index qual eval costs, much as in genericcostestimate
7773 : */
7774 164 : qual_arg_cost = other_operands_eval_cost(root, qinfos) +
7775 82 : orderby_operands_eval_cost(root, path);
7776 164 : qual_op_cost = cpu_operator_cost *
7777 82 : (list_length(indexQuals) + list_length(indexOrderBys));
7778 :
7779 82 : *indexStartupCost += qual_arg_cost;
7780 82 : *indexTotalCost += qual_arg_cost;
7781 82 : *indexTotalCost += (numTuples * *indexSelectivity) * (cpu_index_tuple_cost + qual_op_cost);
7782 82 : *indexPages = dataPagesFetched;
7783 : }
7784 :
7785 : /*
7786 : * BRIN has search behavior completely different from other index types
7787 : */
7788 : void
7789 995 : brincostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
7790 : Cost *indexStartupCost, Cost *indexTotalCost,
7791 : Selectivity *indexSelectivity, double *indexCorrelation,
7792 : double *indexPages)
7793 : {
7794 995 : IndexOptInfo *index = path->indexinfo;
7795 995 : List *indexQuals = path->indexquals;
7796 995 : double numPages = index->pages;
7797 995 : RelOptInfo *baserel = index->rel;
7798 995 : RangeTblEntry *rte = planner_rt_fetch(baserel->relid, root);
7799 : List *qinfos;
7800 : Cost spc_seq_page_cost;
7801 : Cost spc_random_page_cost;
7802 : double qual_arg_cost;
7803 : double qualSelectivity;
7804 : BrinStatsData statsData;
7805 : double indexRanges;
7806 : double minimalRanges;
7807 : double estimatedRanges;
7808 : double selec;
7809 : Relation indexRel;
7810 : ListCell *l;
7811 : VariableStatData vardata;
7812 :
7813 995 : Assert(rte->rtekind == RTE_RELATION);
7814 :
7815 : /* fetch estimated page cost for the tablespace containing the index */
7816 995 : get_tablespace_page_costs(index->reltablespace,
7817 : &spc_random_page_cost,
7818 : &spc_seq_page_cost);
7819 :
7820 : /*
7821 : * Obtain some data from the index itself.
7822 : */
7823 995 : indexRel = index_open(index->indexoid, AccessShareLock);
7824 995 : brinGetStats(indexRel, &statsData);
7825 995 : index_close(indexRel, AccessShareLock);
7826 :
7827 : /*
7828 : * Compute index correlation
7829 : *
7830 : * Because we can use all index quals equally when scanning, we can use
7831 : * the largest correlation (in absolute value) among columns used by the
7832 : * query. Start at zero, the worst possible case. If we cannot find any
7833 : * correlation statistics, we will keep it as 0.
7834 : */
7835 995 : *indexCorrelation = 0;
7836 :
7837 995 : qinfos = deconstruct_indexquals(path);
7838 1990 : foreach(l, qinfos)
7839 : {
7840 995 : IndexQualInfo *qinfo = (IndexQualInfo *) lfirst(l);
7841 995 : AttrNumber attnum = index->indexkeys[qinfo->indexcol];
7842 :
7843 : /* attempt to lookup stats in relation for this index column */
7844 995 : if (attnum != 0)
7845 : {
7846 : /* Simple variable -- look to stats for the underlying table */
7847 995 : if (get_relation_stats_hook &&
7848 0 : (*get_relation_stats_hook) (root, rte, attnum, &vardata))
7849 : {
7850 : /*
7851 : * The hook took control of acquiring a stats tuple. If it
7852 : * did supply a tuple, it'd better have supplied a freefunc.
7853 : */
7854 0 : if (HeapTupleIsValid(vardata.statsTuple) && !vardata.freefunc)
7855 0 : elog(ERROR,
7856 : "no function provided to release variable stats with");
7857 : }
7858 : else
7859 : {
7860 995 : vardata.statsTuple =
7861 995 : SearchSysCache3(STATRELATTINH,
7862 : ObjectIdGetDatum(rte->relid),
7863 : Int16GetDatum(attnum),
7864 : BoolGetDatum(false));
7865 995 : vardata.freefunc = ReleaseSysCache;
7866 : }
7867 : }
7868 : else
7869 : {
7870 : /*
7871 : * Looks like we've found an expression column in the index. Let's
7872 : * see if there's any stats for it.
7873 : */
7874 :
7875 : /* get the attnum from the 0-based index. */
7876 0 : attnum = qinfo->indexcol + 1;
7877 :
7878 0 : if (get_index_stats_hook &&
7879 0 : (*get_index_stats_hook) (root, index->indexoid, attnum, &vardata))
7880 : {
7881 : /*
7882 : * The hook took control of acquiring a stats tuple. If it
7883 : * did supply a tuple, it'd better have supplied a freefunc.
7884 : */
7885 0 : if (HeapTupleIsValid(vardata.statsTuple) &&
7886 0 : !vardata.freefunc)
7887 0 : elog(ERROR, "no function provided to release variable stats with");
7888 : }
7889 : else
7890 : {
7891 0 : vardata.statsTuple = SearchSysCache3(STATRELATTINH,
7892 : ObjectIdGetDatum(index->indexoid),
7893 : Int16GetDatum(attnum),
7894 : BoolGetDatum(false));
7895 0 : vardata.freefunc = ReleaseSysCache;
7896 : }
7897 : }
7898 :
7899 995 : if (HeapTupleIsValid(vardata.statsTuple))
7900 : {
7901 : AttStatsSlot sslot;
7902 :
7903 2 : if (get_attstatsslot(&sslot, vardata.statsTuple,
7904 : STATISTIC_KIND_CORRELATION, InvalidOid,
7905 : ATTSTATSSLOT_NUMBERS))
7906 : {
7907 2 : double varCorrelation = 0.0;
7908 :
7909 2 : if (sslot.nnumbers > 0)
7910 2 : varCorrelation = Abs(sslot.numbers[0]);
7911 :
7912 2 : if (varCorrelation > *indexCorrelation)
7913 2 : *indexCorrelation = varCorrelation;
7914 :
7915 2 : free_attstatsslot(&sslot);
7916 : }
7917 : }
7918 :
7919 995 : ReleaseVariableStats(vardata);
7920 : }
7921 :
7922 995 : qualSelectivity = clauselist_selectivity(root, indexQuals,
7923 995 : baserel->relid,
7924 : JOIN_INNER, NULL);
7925 :
7926 : /* work out the actual number of ranges in the index */
7927 995 : indexRanges = Max(ceil((double) baserel->pages / statsData.pagesPerRange),
7928 : 1.0);
7929 :
7930 : /*
7931 : * Now calculate the minimum possible ranges we could match with if all of
7932 : * the rows were in the perfect order in the table's heap.
7933 : */
7934 995 : minimalRanges = ceil(indexRanges * qualSelectivity);
7935 :
7936 : /*
7937 : * Now estimate the number of ranges that we'll touch by using the
7938 : * indexCorrelation from the stats. Careful not to divide by zero (note
7939 : * we're using the absolute value of the correlation).
7940 : */
7941 995 : if (*indexCorrelation < 1.0e-10)
7942 993 : estimatedRanges = indexRanges;
7943 : else
7944 2 : estimatedRanges = Min(minimalRanges / *indexCorrelation, indexRanges);
7945 :
7946 : /* we expect to visit this portion of the table */
7947 995 : selec = estimatedRanges / indexRanges;
7948 :
7949 995 : CLAMP_PROBABILITY(selec);
7950 :
7951 995 : *indexSelectivity = selec;
7952 :
7953 : /*
7954 : * Compute the index qual costs, much as in genericcostestimate, to add to
7955 : * the index costs.
7956 : */
7957 1990 : qual_arg_cost = other_operands_eval_cost(root, qinfos) +
7958 995 : orderby_operands_eval_cost(root, path);
7959 :
7960 : /*
7961 : * Compute the startup cost as the cost to read the whole revmap
7962 : * sequentially, including the cost to execute the index quals.
7963 : */
7964 1990 : *indexStartupCost =
7965 995 : spc_seq_page_cost * statsData.revmapNumPages * loop_count;
7966 995 : *indexStartupCost += qual_arg_cost;
7967 :
7968 : /*
7969 : * To read a BRIN index there might be a bit of back and forth over
7970 : * regular pages, as revmap might point to them out of sequential order;
7971 : * calculate the total cost as reading the whole index in random order.
7972 : */
7973 1990 : *indexTotalCost = *indexStartupCost +
7974 995 : spc_random_page_cost * (numPages - statsData.revmapNumPages) * loop_count;
7975 :
7976 : /*
7977 : * Charge a small amount per range tuple which we expect to match to. This
7978 : * is meant to reflect the costs of manipulating the bitmap. The BRIN scan
7979 : * will set a bit for each page in the range when we find a matching
7980 : * range, so we must multiply the charge by the number of pages in the
7981 : * range.
7982 : */
7983 1990 : *indexTotalCost += 0.1 * cpu_operator_cost * estimatedRanges *
7984 995 : statsData.pagesPerRange;
7985 :
7986 995 : *indexPages = index->pages;
7987 995 : }
|