LCOV - code coverage report
Current view: top level - src/backend/utils/mmgr - dsa.c (source / functions) Hit Total Coverage
Test: PostgreSQL Lines: 389 676 57.5 %
Date: 2017-09-29 13:40:31 Functions: 20 33 60.6 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * dsa.c
       4             :  *    Dynamic shared memory areas.
       5             :  *
       6             :  * This module provides dynamic shared memory areas which are built on top of
       7             :  * DSM segments.  While dsm.c allows segments of memory of shared memory to be
       8             :  * created and shared between backends, it isn't designed to deal with small
       9             :  * objects.  A DSA area is a shared memory heap usually backed by one or more
      10             :  * DSM segments which can allocate memory using dsa_allocate() and dsa_free().
      11             :  * Alternatively, it can be created in pre-existing shared memory, including a
      12             :  * DSM segment, and then create extra DSM segments as required.  Unlike the
      13             :  * regular system heap, it deals in pseudo-pointers which must be converted to
      14             :  * backend-local pointers before they are dereferenced.  These pseudo-pointers
      15             :  * can however be shared with other backends, and can be used to construct
      16             :  * shared data structures.
      17             :  *
      18             :  * Each DSA area manages a set of DSM segments, adding new segments as
      19             :  * required and detaching them when they are no longer needed.  Each segment
      20             :  * contains a number of 4KB pages, a free page manager for tracking
      21             :  * consecutive runs of free pages, and a page map for tracking the source of
      22             :  * objects allocated on each page.  Allocation requests above 8KB are handled
      23             :  * by choosing a segment and finding consecutive free pages in its free page
      24             :  * manager.  Allocation requests for smaller sizes are handled using pools of
      25             :  * objects of a selection of sizes.  Each pool consists of a number of 16 page
      26             :  * (64KB) superblocks allocated in the same way as large objects.  Allocation
      27             :  * of large objects and new superblocks is serialized by a single LWLock, but
      28             :  * allocation of small objects from pre-existing superblocks uses one LWLock
      29             :  * per pool.  Currently there is one pool, and therefore one lock, per size
      30             :  * class.  Per-core pools to increase concurrency and strategies for reducing
      31             :  * the resulting fragmentation are areas for future research.  Each superblock
      32             :  * is managed with a 'span', which tracks the superblock's freelist.  Free
      33             :  * requests are handled by looking in the page map to find which span an
      34             :  * address was allocated from, so that small objects can be returned to the
      35             :  * appropriate free list, and large object pages can be returned directly to
      36             :  * the free page map.  When allocating, simple heuristics for selecting
      37             :  * segments and superblocks try to encourage occupied memory to be
      38             :  * concentrated, increasing the likelihood that whole superblocks can become
      39             :  * empty and be returned to the free page manager, and whole segments can
      40             :  * become empty and be returned to the operating system.
      41             :  *
      42             :  * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
      43             :  * Portions Copyright (c) 1994, Regents of the University of California
      44             :  *
      45             :  * IDENTIFICATION
      46             :  *    src/backend/utils/mmgr/dsa.c
      47             :  *
      48             :  *-------------------------------------------------------------------------
      49             :  */
      50             : 
      51             : #include "postgres.h"
      52             : 
      53             : #include "port/atomics.h"
      54             : #include "storage/dsm.h"
      55             : #include "storage/ipc.h"
      56             : #include "storage/lwlock.h"
      57             : #include "storage/shmem.h"
      58             : #include "utils/dsa.h"
      59             : #include "utils/freepage.h"
      60             : #include "utils/memutils.h"
      61             : 
      62             : /*
      63             :  * The size of the initial DSM segment that backs a dsa_area created by
      64             :  * dsa_create.  After creating some number of segments of this size we'll
      65             :  * double this size, and so on.  Larger segments may be created if necessary
      66             :  * to satisfy large requests.
      67             :  */
      68             : #define DSA_INITIAL_SEGMENT_SIZE ((Size) (1 * 1024 * 1024))
      69             : 
      70             : /*
      71             :  * How many segments to create before we double the segment size.  If this is
      72             :  * low, then there is likely to be a lot of wasted space in the largest
      73             :  * segment.  If it is high, then we risk running out of segment slots (see
      74             :  * dsm.c's limits on total number of segments), or limiting the total size
      75             :  * an area can manage when using small pointers.
      76             :  */
      77             : #define DSA_NUM_SEGMENTS_AT_EACH_SIZE 4
      78             : 
      79             : /*
      80             :  * The number of bits used to represent the offset part of a dsa_pointer.
      81             :  * This controls the maximum size of a segment, the maximum possible
      82             :  * allocation size and also the maximum number of segments per area.
      83             :  */
      84             : #if SIZEOF_DSA_POINTER == 4
      85             : #define DSA_OFFSET_WIDTH 27     /* 32 segments of size up to 128MB */
      86             : #else
      87             : #define DSA_OFFSET_WIDTH 40     /* 1024 segments of size up to 1TB */
      88             : #endif
      89             : 
      90             : /*
      91             :  * The maximum number of DSM segments that an area can own, determined by
      92             :  * the number of bits remaining (but capped at 1024).
      93             :  */
      94             : #define DSA_MAX_SEGMENTS \
      95             :     Min(1024, (1 << ((SIZEOF_DSA_POINTER * 8) - DSA_OFFSET_WIDTH)))
      96             : 
      97             : /* The bitmask for extracting the offset from a dsa_pointer. */
      98             : #define DSA_OFFSET_BITMASK (((dsa_pointer) 1 << DSA_OFFSET_WIDTH) - 1)
      99             : 
     100             : /* The maximum size of a DSM segment. */
     101             : #define DSA_MAX_SEGMENT_SIZE ((Size) 1 << DSA_OFFSET_WIDTH)
     102             : 
     103             : /* Number of pages (see FPM_PAGE_SIZE) per regular superblock. */
     104             : #define DSA_PAGES_PER_SUPERBLOCK        16
     105             : 
     106             : /*
     107             :  * A magic number used as a sanity check for following DSM segments belonging
     108             :  * to a DSA area (this number will be XORed with the area handle and
     109             :  * the segment index).
     110             :  */
     111             : #define DSA_SEGMENT_HEADER_MAGIC 0x0ce26608
     112             : 
     113             : /* Build a dsa_pointer given a segment number and offset. */
     114             : #define DSA_MAKE_POINTER(segment_number, offset) \
     115             :     (((dsa_pointer) (segment_number) << DSA_OFFSET_WIDTH) | (offset))
     116             : 
     117             : /* Extract the segment number from a dsa_pointer. */
     118             : #define DSA_EXTRACT_SEGMENT_NUMBER(dp) ((dp) >> DSA_OFFSET_WIDTH)
     119             : 
     120             : /* Extract the offset from a dsa_pointer. */
     121             : #define DSA_EXTRACT_OFFSET(dp) ((dp) & DSA_OFFSET_BITMASK)
     122             : 
     123             : /* The type used for index segment indexes (zero based). */
     124             : typedef Size dsa_segment_index;
     125             : 
     126             : /* Sentinel value for dsa_segment_index indicating 'none' or 'end'. */
     127             : #define DSA_SEGMENT_INDEX_NONE (~(dsa_segment_index)0)
     128             : 
     129             : /*
     130             :  * How many bins of segments do we have?  The bins are used to categorize
     131             :  * segments by their largest contiguous run of free pages.
     132             :  */
     133             : #define DSA_NUM_SEGMENT_BINS 16
     134             : 
     135             : /*
     136             :  * What is the lowest bin that holds segments that *might* have n contiguous
     137             :  * free pages?  There is no point in looking in segments in lower bins; they
     138             :  * definitely can't service a request for n free pages.
     139             :  */
     140             : #define contiguous_pages_to_segment_bin(n) Min(fls(n), DSA_NUM_SEGMENT_BINS - 1)
     141             : 
     142             : /* Macros for access to locks. */
     143             : #define DSA_AREA_LOCK(area) (&area->control->lock)
     144             : #define DSA_SCLASS_LOCK(area, sclass) (&area->control->pools[sclass].lock)
     145             : 
     146             : /*
     147             :  * The header for an individual segment.  This lives at the start of each DSM
     148             :  * segment owned by a DSA area including the first segment (where it appears
     149             :  * as part of the dsa_area_control struct).
     150             :  */
     151             : typedef struct
     152             : {
     153             :     /* Sanity check magic value. */
     154             :     uint32      magic;
     155             :     /* Total number of pages in this segment (excluding metadata area). */
     156             :     Size        usable_pages;
     157             :     /* Total size of this segment in bytes. */
     158             :     Size        size;
     159             : 
     160             :     /*
     161             :      * Index of the segment that precedes this one in the same segment bin, or
     162             :      * DSA_SEGMENT_INDEX_NONE if this is the first one.
     163             :      */
     164             :     dsa_segment_index prev;
     165             : 
     166             :     /*
     167             :      * Index of the segment that follows this one in the same segment bin, or
     168             :      * DSA_SEGMENT_INDEX_NONE if this is the last one.
     169             :      */
     170             :     dsa_segment_index next;
     171             :     /* The index of the bin that contains this segment. */
     172             :     Size        bin;
     173             : 
     174             :     /*
     175             :      * A flag raised to indicate that this segment is being returned to the
     176             :      * operating system and has been unpinned.
     177             :      */
     178             :     bool        freed;
     179             : } dsa_segment_header;
     180             : 
     181             : /*
     182             :  * Metadata for one superblock.
     183             :  *
     184             :  * For most blocks, span objects are stored out-of-line; that is, the span
     185             :  * object is not stored within the block itself.  But, as an exception, for a
     186             :  * "span of spans", the span object is stored "inline".  The allocation is
     187             :  * always exactly one page, and the dsa_area_span object is located at
     188             :  * the beginning of that page.  The size class is DSA_SCLASS_BLOCK_OF_SPANS,
     189             :  * and the remaining fields are used just as they would be in an ordinary
     190             :  * block.  We can't allocate spans out of ordinary superblocks because
     191             :  * creating an ordinary superblock requires us to be able to allocate a span
     192             :  * *first*.  Doing it this way avoids that circularity.
     193             :  */
     194             : typedef struct
     195             : {
     196             :     dsa_pointer pool;           /* Containing pool. */
     197             :     dsa_pointer prevspan;       /* Previous span. */
     198             :     dsa_pointer nextspan;       /* Next span. */
     199             :     dsa_pointer start;          /* Starting address. */
     200             :     Size        npages;         /* Length of span in pages. */
     201             :     uint16      size_class;     /* Size class. */
     202             :     uint16      ninitialized;   /* Maximum number of objects ever allocated. */
     203             :     uint16      nallocatable;   /* Number of objects currently allocatable. */
     204             :     uint16      firstfree;      /* First object on free list. */
     205             :     uint16      nmax;           /* Maximum number of objects ever possible. */
     206             :     uint16      fclass;         /* Current fullness class. */
     207             : } dsa_area_span;
     208             : 
     209             : /*
     210             :  * Given a pointer to an object in a span, access the index of the next free
     211             :  * object in the same span (ie in the span's freelist) as an L-value.
     212             :  */
     213             : #define NextFreeObjectIndex(object) (* (uint16 *) (object))
     214             : 
     215             : /*
     216             :  * Small allocations are handled by dividing a single block of memory into
     217             :  * many small objects of equal size.  The possible allocation sizes are
     218             :  * defined by the following array.  Larger size classes are spaced more widely
     219             :  * than smaller size classes.  We fudge the spacing for size classes >1kB to
     220             :  * avoid space wastage: based on the knowledge that we plan to allocate 64kB
     221             :  * blocks, we bump the maximum object size up to the largest multiple of
     222             :  * 8 bytes that still lets us fit the same number of objects into one block.
     223             :  *
     224             :  * NB: Because of this fudging, if we were ever to use differently-sized blocks
     225             :  * for small allocations, these size classes would need to be reworked to be
     226             :  * optimal for the new size.
     227             :  *
     228             :  * NB: The optimal spacing for size classes, as well as the size of the blocks
     229             :  * out of which small objects are allocated, is not a question that has one
     230             :  * right answer.  Some allocators (such as tcmalloc) use more closely-spaced
     231             :  * size classes than we do here, while others (like aset.c) use more
     232             :  * widely-spaced classes.  Spacing the classes more closely avoids wasting
     233             :  * memory within individual chunks, but also means a larger number of
     234             :  * potentially-unfilled blocks.
     235             :  */
     236             : static const uint16 dsa_size_classes[] = {
     237             :     sizeof(dsa_area_span), 0,   /* special size classes */
     238             :     8, 16, 24, 32, 40, 48, 56, 64,  /* 8 classes separated by 8 bytes */
     239             :     80, 96, 112, 128,           /* 4 classes separated by 16 bytes */
     240             :     160, 192, 224, 256,         /* 4 classes separated by 32 bytes */
     241             :     320, 384, 448, 512,         /* 4 classes separated by 64 bytes */
     242             :     640, 768, 896, 1024,        /* 4 classes separated by 128 bytes */
     243             :     1280, 1560, 1816, 2048,     /* 4 classes separated by ~256 bytes */
     244             :     2616, 3120, 3640, 4096,     /* 4 classes separated by ~512 bytes */
     245             :     5456, 6552, 7280, 8192      /* 4 classes separated by ~1024 bytes */
     246             : };
     247             : #define DSA_NUM_SIZE_CLASSES                lengthof(dsa_size_classes)
     248             : 
     249             : /* Special size classes. */
     250             : #define DSA_SCLASS_BLOCK_OF_SPANS       0
     251             : #define DSA_SCLASS_SPAN_LARGE           1
     252             : 
     253             : /*
     254             :  * The following lookup table is used to map the size of small objects
     255             :  * (less than 1kB) onto the corresponding size class.  To use this table,
     256             :  * round the size of the object up to the next multiple of 8 bytes, and then
     257             :  * index into this array.
     258             :  */
     259             : static char dsa_size_class_map[] = {
     260             :     2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 11, 11, 12, 12, 13, 13,
     261             :     14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17,
     262             :     18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19,
     263             :     20, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 21,
     264             :     22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
     265             :     23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
     266             :     24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
     267             :     25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25
     268             : };
     269             : #define DSA_SIZE_CLASS_MAP_QUANTUM  8
     270             : 
     271             : /*
     272             :  * Superblocks are binned by how full they are.  Generally, each fullness
     273             :  * class corresponds to one quartile, but the block being used for
     274             :  * allocations is always at the head of the list for fullness class 1,
     275             :  * regardless of how full it really is.
     276             :  */
     277             : #define DSA_FULLNESS_CLASSES        4
     278             : 
     279             : /*
     280             :  * A dsa_area_pool represents a set of objects of a given size class.
     281             :  *
     282             :  * Perhaps there should be multiple pools for the same size class for
     283             :  * contention avoidance, but for now there is just one!
     284             :  */
     285             : typedef struct
     286             : {
     287             :     /* A lock protecting access to this pool. */
     288             :     LWLock      lock;
     289             :     /* A set of linked lists of spans, arranged by fullness. */
     290             :     dsa_pointer spans[DSA_FULLNESS_CLASSES];
     291             :     /* Should we pad this out to a cacheline boundary? */
     292             : } dsa_area_pool;
     293             : 
     294             : /*
     295             :  * The control block for an area.  This lives in shared memory, at the start of
     296             :  * the first DSM segment controlled by this area.
     297             :  */
     298             : typedef struct
     299             : {
     300             :     /* The segment header for the first segment. */
     301             :     dsa_segment_header segment_header;
     302             :     /* The handle for this area. */
     303             :     dsa_handle  handle;
     304             :     /* The handles of the segments owned by this area. */
     305             :     dsm_handle  segment_handles[DSA_MAX_SEGMENTS];
     306             :     /* Lists of segments, binned by maximum contiguous run of free pages. */
     307             :     dsa_segment_index segment_bins[DSA_NUM_SEGMENT_BINS];
     308             :     /* The object pools for each size class. */
     309             :     dsa_area_pool pools[DSA_NUM_SIZE_CLASSES];
     310             :     /* The total size of all active segments. */
     311             :     Size        total_segment_size;
     312             :     /* The maximum total size of backing storage we are allowed. */
     313             :     Size        max_total_segment_size;
     314             :     /* Highest used segment index in the history of this area. */
     315             :     dsa_segment_index high_segment_index;
     316             :     /* The reference count for this area. */
     317             :     int         refcnt;
     318             :     /* A flag indicating that this area has been pinned. */
     319             :     bool        pinned;
     320             :     /* The number of times that segments have been freed. */
     321             :     Size        freed_segment_counter;
     322             :     /* The LWLock tranche ID. */
     323             :     int         lwlock_tranche_id;
     324             :     /* The general lock (protects everything except object pools). */
     325             :     LWLock      lock;
     326             : } dsa_area_control;
     327             : 
     328             : /* Given a pointer to a pool, find a dsa_pointer. */
     329             : #define DsaAreaPoolToDsaPointer(area, p)    \
     330             :     DSA_MAKE_POINTER(0, (char *) p - (char *) area->control)
     331             : 
     332             : /*
     333             :  * A dsa_segment_map is stored within the backend-private memory of each
     334             :  * individual backend.  It holds the base address of the segment within that
     335             :  * backend, plus the addresses of key objects within the segment.  Those
     336             :  * could instead be derived from the base address but it's handy to have them
     337             :  * around.
     338             :  */
     339             : typedef struct
     340             : {
     341             :     dsm_segment *segment;       /* DSM segment */
     342             :     char       *mapped_address; /* Address at which segment is mapped */
     343             :     dsa_segment_header *header; /* Header (same as mapped_address) */
     344             :     FreePageManager *fpm;       /* Free page manager within segment. */
     345             :     dsa_pointer *pagemap;       /* Page map within segment. */
     346             : } dsa_segment_map;
     347             : 
     348             : /*
     349             :  * Per-backend state for a storage area.  Backends obtain one of these by
     350             :  * creating an area or attaching to an existing one using a handle.  Each
     351             :  * process that needs to use an area uses its own object to track where the
     352             :  * segments are mapped.
     353             :  */
     354             : struct dsa_area
     355             : {
     356             :     /* Pointer to the control object in shared memory. */
     357             :     dsa_area_control *control;
     358             : 
     359             :     /* Has the mapping been pinned? */
     360             :     bool        mapping_pinned;
     361             : 
     362             :     /*
     363             :      * This backend's array of segment maps, ordered by segment index
     364             :      * corresponding to control->segment_handles.  Some of the area's segments
     365             :      * may not be mapped in in this backend yet, and some slots may have been
     366             :      * freed and need to be detached; these operations happen on demand.
     367             :      */
     368             :     dsa_segment_map segment_maps[DSA_MAX_SEGMENTS];
     369             : 
     370             :     /* The highest segment index this backend has ever mapped. */
     371             :     dsa_segment_index high_segment_index;
     372             : 
     373             :     /* The last observed freed_segment_counter. */
     374             :     Size        freed_segment_counter;
     375             : };
     376             : 
     377             : #define DSA_SPAN_NOTHING_FREE   ((uint16) -1)
     378             : #define DSA_SUPERBLOCK_SIZE (DSA_PAGES_PER_SUPERBLOCK * FPM_PAGE_SIZE)
     379             : 
     380             : /* Given a pointer to a segment_map, obtain a segment index number. */
     381             : #define get_segment_index(area, segment_map_ptr) \
     382             :     (segment_map_ptr - &area->segment_maps[0])
     383             : 
     384             : static void init_span(dsa_area *area, dsa_pointer span_pointer,
     385             :           dsa_area_pool *pool, dsa_pointer start, Size npages,
     386             :           uint16 size_class);
     387             : static bool transfer_first_span(dsa_area *area, dsa_area_pool *pool,
     388             :                     int fromclass, int toclass);
     389             : static inline dsa_pointer alloc_object(dsa_area *area, int size_class);
     390             : static bool ensure_active_superblock(dsa_area *area, dsa_area_pool *pool,
     391             :                          int size_class);
     392             : static dsa_segment_map *get_segment_by_index(dsa_area *area,
     393             :                      dsa_segment_index index);
     394             : static void destroy_superblock(dsa_area *area, dsa_pointer span_pointer);
     395             : static void unlink_span(dsa_area *area, dsa_area_span *span);
     396             : static void add_span_to_fullness_class(dsa_area *area, dsa_area_span *span,
     397             :                            dsa_pointer span_pointer, int fclass);
     398             : static void unlink_segment(dsa_area *area, dsa_segment_map *segment_map);
     399             : static dsa_segment_map *get_best_segment(dsa_area *area, Size npages);
     400             : static dsa_segment_map *make_new_segment(dsa_area *area, Size requested_pages);
     401             : static dsa_area *create_internal(void *place, size_t size,
     402             :                 int tranche_id,
     403             :                 dsm_handle control_handle,
     404             :                 dsm_segment *control_segment);
     405             : static dsa_area *attach_internal(void *place, dsm_segment *segment,
     406             :                 dsa_handle handle);
     407             : static void check_for_freed_segments(dsa_area *area);
     408             : 
     409             : /*
     410             :  * Create a new shared area in a new DSM segment.  Further DSM segments will
     411             :  * be allocated as required to extend the available space.
     412             :  *
     413             :  * We can't allocate a LWLock tranche_id within this function, because tranche
     414             :  * IDs are a scarce resource; there are only 64k available, using low numbers
     415             :  * when possible matters, and we have no provision for recycling them.  So,
     416             :  * we require the caller to provide one.
     417             :  */
     418             : dsa_area *
     419           0 : dsa_create(int tranche_id)
     420             : {
     421             :     dsm_segment *segment;
     422             :     dsa_area   *area;
     423             : 
     424             :     /*
     425             :      * Create the DSM segment that will hold the shared control object and the
     426             :      * first segment of usable space.
     427             :      */
     428           0 :     segment = dsm_create(DSA_INITIAL_SEGMENT_SIZE, 0);
     429             : 
     430             :     /*
     431             :      * All segments backing this area are pinned, so that DSA can explicitly
     432             :      * control their lifetime (otherwise a newly created segment belonging to
     433             :      * this area might be freed when the only backend that happens to have it
     434             :      * mapped in ends, corrupting the area).
     435             :      */
     436           0 :     dsm_pin_segment(segment);
     437             : 
     438             :     /* Create a new DSA area with the control object in this segment. */
     439           0 :     area = create_internal(dsm_segment_address(segment),
     440             :                            DSA_INITIAL_SEGMENT_SIZE,
     441             :                            tranche_id,
     442             :                            dsm_segment_handle(segment), segment);
     443             : 
     444             :     /* Clean up when the control segment detaches. */
     445           0 :     on_dsm_detach(segment, &dsa_on_dsm_detach_release_in_place,
     446           0 :                   PointerGetDatum(dsm_segment_address(segment)));
     447             : 
     448           0 :     return area;
     449             : }
     450             : 
     451             : /*
     452             :  * Create a new shared area in an existing shared memory space, which may be
     453             :  * either DSM or Postmaster-initialized memory.  DSM segments will be
     454             :  * allocated as required to extend the available space, though that can be
     455             :  * prevented with dsa_set_size_limit(area, size) using the same size provided
     456             :  * to dsa_create_in_place.
     457             :  *
     458             :  * Areas created in-place must eventually be released by the backend that
     459             :  * created them and all backends that attach to them.  This can be done
     460             :  * explicitly with dsa_release_in_place, or, in the special case that 'place'
     461             :  * happens to be in a pre-existing DSM segment, by passing in a pointer to the
     462             :  * segment so that a detach hook can be registered with the containing DSM
     463             :  * segment.
     464             :  *
     465             :  * See dsa_create() for a note about the tranche arguments.
     466             :  */
     467             : dsa_area *
     468          17 : dsa_create_in_place(void *place, size_t size,
     469             :                     int tranche_id, dsm_segment *segment)
     470             : {
     471             :     dsa_area   *area;
     472             : 
     473          17 :     area = create_internal(place, size, tranche_id,
     474             :                            DSM_HANDLE_INVALID, NULL);
     475             : 
     476             :     /*
     477             :      * Clean up when the control segment detaches, if a containing DSM segment
     478             :      * was provided.
     479             :      */
     480          17 :     if (segment != NULL)
     481          17 :         on_dsm_detach(segment, &dsa_on_dsm_detach_release_in_place,
     482             :                       PointerGetDatum(place));
     483             : 
     484          17 :     return area;
     485             : }
     486             : 
     487             : /*
     488             :  * Obtain a handle that can be passed to other processes so that they can
     489             :  * attach to the given area.  Cannot be called for areas created with
     490             :  * dsa_create_in_place.
     491             :  */
     492             : dsa_handle
     493           0 : dsa_get_handle(dsa_area *area)
     494             : {
     495           0 :     Assert(area->control->handle != DSM_HANDLE_INVALID);
     496           0 :     return area->control->handle;
     497             : }
     498             : 
     499             : /*
     500             :  * Attach to an area given a handle generated (possibly in another process) by
     501             :  * dsa_get_handle.  The area must have been created with dsa_create (not
     502             :  * dsa_create_in_place).
     503             :  */
     504             : dsa_area *
     505           0 : dsa_attach(dsa_handle handle)
     506             : {
     507             :     dsm_segment *segment;
     508             :     dsa_area   *area;
     509             : 
     510             :     /*
     511             :      * An area handle is really a DSM segment handle for the first segment, so
     512             :      * we go ahead and attach to that.
     513             :      */
     514           0 :     segment = dsm_attach(handle);
     515           0 :     if (segment == NULL)
     516           0 :         ereport(ERROR,
     517             :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
     518             :                  errmsg("could not attach to dynamic shared area")));
     519             : 
     520           0 :     area = attach_internal(dsm_segment_address(segment), segment, handle);
     521             : 
     522             :     /* Clean up when the control segment detaches. */
     523           0 :     on_dsm_detach(segment, &dsa_on_dsm_detach_release_in_place,
     524           0 :                   PointerGetDatum(dsm_segment_address(segment)));
     525             : 
     526           0 :     return area;
     527             : }
     528             : 
     529             : /*
     530             :  * Attach to an area that was created with dsa_create_in_place.  The caller
     531             :  * must somehow know the location in memory that was used when the area was
     532             :  * created, though it may be mapped at a different virtual address in this
     533             :  * process.
     534             :  *
     535             :  * See dsa_create_in_place for note about releasing in-place areas, and the
     536             :  * optional 'segment' argument which can be provided to allow automatic
     537             :  * release if the containing memory happens to be a DSM segment.
     538             :  */
     539             : dsa_area *
     540         115 : dsa_attach_in_place(void *place, dsm_segment *segment)
     541             : {
     542             :     dsa_area   *area;
     543             : 
     544         115 :     area = attach_internal(place, NULL, DSM_HANDLE_INVALID);
     545             : 
     546             :     /*
     547             :      * Clean up when the control segment detaches, if a containing DSM segment
     548             :      * was provided.
     549             :      */
     550         115 :     if (segment != NULL)
     551         115 :         on_dsm_detach(segment, &dsa_on_dsm_detach_release_in_place,
     552             :                       PointerGetDatum(place));
     553             : 
     554         115 :     return area;
     555             : }
     556             : 
     557             : /*
     558             :  * Release a DSA area that was produced by dsa_create_in_place or
     559             :  * dsa_attach_in_place.  The 'segment' argument is ignored but provides an
     560             :  * interface suitable for on_dsm_detach, for the convenience of users who want
     561             :  * to create a DSA segment inside an existing DSM segment and have it
     562             :  * automatically released when the containing DSM segment is detached.
     563             :  * 'place' should be the address of the place where the area was created.
     564             :  *
     565             :  * This callback is automatically registered for the DSM segment containing
     566             :  * the control object of in-place areas when a segment is provided to
     567             :  * dsa_create_in_place or dsa_attach_in_place, and also for all areas created
     568             :  * with dsa_create.
     569             :  */
     570             : void
     571         132 : dsa_on_dsm_detach_release_in_place(dsm_segment *segment, Datum place)
     572             : {
     573         132 :     dsa_release_in_place(DatumGetPointer(place));
     574         132 : }
     575             : 
     576             : /*
     577             :  * Release a DSA area that was produced by dsa_create_in_place or
     578             :  * dsa_attach_in_place.  The 'code' argument is ignored but provides an
     579             :  * interface suitable for on_shmem_exit or before_shmem_exit, for the
     580             :  * convenience of users who want to create a DSA segment inside shared memory
     581             :  * other than a DSM segment and have it automatically release at backend exit.
     582             :  * 'place' should be the address of the place where the area was created.
     583             :  */
     584             : void
     585           0 : dsa_on_shmem_exit_release_in_place(int code, Datum place)
     586             : {
     587           0 :     dsa_release_in_place(DatumGetPointer(place));
     588           0 : }
     589             : 
     590             : /*
     591             :  * Release a DSA area that was produced by dsa_create_in_place or
     592             :  * dsa_attach_in_place.  It is preferable to use one of the 'dsa_on_XXX'
     593             :  * callbacks so that this is managed automatically, because failure to release
     594             :  * an area created in-place leaks its segments permanently.
     595             :  *
     596             :  * This is also called automatically for areas produced by dsa_create or
     597             :  * dsa_attach as an implementation detail.
     598             :  */
     599             : void
     600         132 : dsa_release_in_place(void *place)
     601             : {
     602         132 :     dsa_area_control *control = (dsa_area_control *) place;
     603             :     int         i;
     604             : 
     605         132 :     LWLockAcquire(&control->lock, LW_EXCLUSIVE);
     606         132 :     Assert(control->segment_header.magic ==
     607             :            (DSA_SEGMENT_HEADER_MAGIC ^ control->handle ^ 0));
     608         132 :     Assert(control->refcnt > 0);
     609         132 :     if (--control->refcnt == 0)
     610             :     {
     611          36 :         for (i = 0; i <= control->high_segment_index; ++i)
     612             :         {
     613             :             dsm_handle  handle;
     614             : 
     615          19 :             handle = control->segment_handles[i];
     616          19 :             if (handle != DSM_HANDLE_INVALID)
     617           2 :                 dsm_unpin_segment(handle);
     618             :         }
     619             :     }
     620         132 :     LWLockRelease(&control->lock);
     621         132 : }
     622             : 
     623             : /*
     624             :  * Keep a DSA area attached until end of session or explicit detach.
     625             :  *
     626             :  * By default, areas are owned by the current resource owner, which means they
     627             :  * are detached automatically when that scope ends.
     628             :  */
     629             : void
     630           0 : dsa_pin_mapping(dsa_area *area)
     631             : {
     632             :     int         i;
     633             : 
     634           0 :     Assert(!area->mapping_pinned);
     635           0 :     area->mapping_pinned = true;
     636             : 
     637           0 :     for (i = 0; i <= area->high_segment_index; ++i)
     638           0 :         if (area->segment_maps[i].segment != NULL)
     639           0 :             dsm_pin_mapping(area->segment_maps[i].segment);
     640           0 : }
     641             : 
     642             : /*
     643             :  * Allocate memory in this storage area.  The return value is a dsa_pointer
     644             :  * that can be passed to other processes, and converted to a local pointer
     645             :  * with dsa_get_address.  'flags' is a bitmap which should be constructed
     646             :  * from the following values:
     647             :  *
     648             :  * DSA_ALLOC_HUGE allows allocations >= 1GB.  Otherwise, such allocations
     649             :  * will result in an ERROR.
     650             :  *
     651             :  * DSA_ALLOC_NO_OOM causes this function to return InvalidDsaPointer when
     652             :  * no memory is available or a size limit establed by set_dsa_size_limit
     653             :  * would be exceeded.  Otherwise, such allocations will result in an ERROR.
     654             :  *
     655             :  * DSA_ALLOC_ZERO causes the allocated memory to be zeroed.  Otherwise, the
     656             :  * contents of newly-allocated memory are indeterminate.
     657             :  *
     658             :  * These flags correspond to similarly named flags used by
     659             :  * MemoryContextAllocExtended().  See also the macros dsa_allocate and
     660             :  * dsa_allocate0 which expand to a call to this function with commonly used
     661             :  * flags.
     662             :  */
     663             : dsa_pointer
     664          58 : dsa_allocate_extended(dsa_area *area, Size size, int flags)
     665             : {
     666             :     uint16      size_class;
     667             :     dsa_pointer start_pointer;
     668             :     dsa_segment_map *segment_map;
     669             :     dsa_pointer result;
     670             : 
     671          58 :     Assert(size > 0);
     672             : 
     673             :     /* Sanity check on huge individual allocation size. */
     674         116 :     if (((flags & DSA_ALLOC_HUGE) != 0 && !AllocHugeSizeIsValid(size)) ||
     675          92 :         ((flags & DSA_ALLOC_HUGE) == 0 && !AllocSizeIsValid(size)))
     676           0 :         elog(ERROR, "invalid DSA memory alloc request size %zu", size);
     677             : 
     678             :     /*
     679             :      * If bigger than the largest size class, just grab a run of pages from
     680             :      * the free page manager, instead of allocating an object from a pool.
     681             :      * There will still be a span, but it's a special class of span that
     682             :      * manages this whole allocation and simply gives all pages back to the
     683             :      * free page manager when dsa_free is called.
     684             :      */
     685          58 :     if (size > dsa_size_classes[lengthof(dsa_size_classes) - 1])
     686             :     {
     687          24 :         Size        npages = fpm_size_to_pages(size);
     688             :         Size        first_page;
     689             :         dsa_pointer span_pointer;
     690          24 :         dsa_area_pool *pool = &area->control->pools[DSA_SCLASS_SPAN_LARGE];
     691             : 
     692             :         /* Obtain a span object. */
     693          24 :         span_pointer = alloc_object(area, DSA_SCLASS_BLOCK_OF_SPANS);
     694          24 :         if (!DsaPointerIsValid(span_pointer))
     695           0 :             return InvalidDsaPointer;
     696             : 
     697          24 :         LWLockAcquire(DSA_AREA_LOCK(area), LW_EXCLUSIVE);
     698             : 
     699             :         /* Find a segment from which to allocate. */
     700          24 :         segment_map = get_best_segment(area, npages);
     701          24 :         if (segment_map == NULL)
     702           0 :             segment_map = make_new_segment(area, npages);
     703          24 :         if (segment_map == NULL)
     704             :         {
     705             :             /* Can't make any more segments: game over. */
     706           0 :             LWLockRelease(DSA_AREA_LOCK(area));
     707           0 :             dsa_free(area, span_pointer);
     708             : 
     709             :             /* Raise error unless asked not to. */
     710           0 :             if ((flags & DSA_ALLOC_NO_OOM) == 0)
     711           0 :                 ereport(ERROR,
     712             :                         (errcode(ERRCODE_OUT_OF_MEMORY),
     713             :                          errmsg("out of memory"),
     714             :                          errdetail("Failed on DSA request of size %zu.",
     715             :                                    size)));
     716           0 :             return InvalidDsaPointer;
     717             :         }
     718             : 
     719             :         /*
     720             :          * Ask the free page manager for a run of pages.  This should always
     721             :          * succeed, since both get_best_segment and make_new_segment should
     722             :          * only return a non-NULL pointer if it actually contains enough
     723             :          * contiguous freespace.  If it does fail, something in our backend
     724             :          * private state is out of whack, so use FATAL to kill the process.
     725             :          */
     726          24 :         if (!FreePageManagerGet(segment_map->fpm, npages, &first_page))
     727           0 :             elog(FATAL,
     728             :                  "dsa_allocate could not find %zu free pages", npages);
     729          24 :         LWLockRelease(DSA_AREA_LOCK(area));
     730             : 
     731          24 :         start_pointer = DSA_MAKE_POINTER(get_segment_index(area, segment_map),
     732             :                                          first_page * FPM_PAGE_SIZE);
     733             : 
     734             :         /* Initialize span and pagemap. */
     735          24 :         LWLockAcquire(DSA_SCLASS_LOCK(area, DSA_SCLASS_SPAN_LARGE),
     736             :                       LW_EXCLUSIVE);
     737          24 :         init_span(area, span_pointer, pool, start_pointer, npages,
     738             :                   DSA_SCLASS_SPAN_LARGE);
     739          24 :         segment_map->pagemap[first_page] = span_pointer;
     740          24 :         LWLockRelease(DSA_SCLASS_LOCK(area, DSA_SCLASS_SPAN_LARGE));
     741             : 
     742             :         /* Zero-initialize the memory if requested. */
     743          24 :         if ((flags & DSA_ALLOC_ZERO) != 0)
     744          24 :             memset(dsa_get_address(area, start_pointer), 0, size);
     745             : 
     746          24 :         return start_pointer;
     747             :     }
     748             : 
     749             :     /* Map allocation to a size class. */
     750          34 :     if (size < lengthof(dsa_size_class_map) * DSA_SIZE_CLASS_MAP_QUANTUM)
     751             :     {
     752             :         int         mapidx;
     753             : 
     754             :         /* For smaller sizes we have a lookup table... */
     755          46 :         mapidx = ((size + DSA_SIZE_CLASS_MAP_QUANTUM - 1) /
     756          23 :                   DSA_SIZE_CLASS_MAP_QUANTUM) - 1;
     757          23 :         size_class = dsa_size_class_map[mapidx];
     758             :     }
     759             :     else
     760             :     {
     761             :         uint16      min;
     762             :         uint16      max;
     763             : 
     764             :         /* ... and for the rest we search by binary chop. */
     765          11 :         min = dsa_size_class_map[lengthof(dsa_size_class_map) - 1];
     766          11 :         max = lengthof(dsa_size_classes) - 1;
     767             : 
     768          66 :         while (min < max)
     769             :         {
     770          44 :             uint16      mid = (min + max) / 2;
     771          44 :             uint16      class_size = dsa_size_classes[mid];
     772             : 
     773          44 :             if (class_size < size)
     774          12 :                 min = mid + 1;
     775             :             else
     776          32 :                 max = mid;
     777             :         }
     778             : 
     779          11 :         size_class = min;
     780             :     }
     781          34 :     Assert(size <= dsa_size_classes[size_class]);
     782          34 :     Assert(size_class == 0 || size > dsa_size_classes[size_class - 1]);
     783             : 
     784             :     /* Attempt to allocate an object from the appropriate pool. */
     785          34 :     result = alloc_object(area, size_class);
     786             : 
     787             :     /* Check for failure to allocate. */
     788          34 :     if (!DsaPointerIsValid(result))
     789             :     {
     790             :         /* Raise error unless asked not to. */
     791           0 :         if ((flags & DSA_ALLOC_NO_OOM) == 0)
     792             :         {
     793           0 :             ereport(ERROR,
     794             :                     (errcode(ERRCODE_OUT_OF_MEMORY),
     795             :                      errmsg("out of memory"),
     796             :                      errdetail("Failed on DSA request of size %zu.", size)));
     797             :         }
     798           0 :         return InvalidDsaPointer;
     799             :     }
     800             : 
     801             :     /* Zero-initialize the memory if requested. */
     802          34 :     if ((flags & DSA_ALLOC_ZERO) != 0)
     803          22 :         memset(dsa_get_address(area, result), 0, size);
     804             : 
     805          34 :     return result;
     806             : }
     807             : 
     808             : /*
     809             :  * Free memory obtained with dsa_allocate.
     810             :  */
     811             : void
     812          71 : dsa_free(dsa_area *area, dsa_pointer dp)
     813             : {
     814             :     dsa_segment_map *segment_map;
     815             :     int         pageno;
     816             :     dsa_pointer span_pointer;
     817             :     dsa_area_span *span;
     818             :     char       *superblock;
     819             :     char       *object;
     820             :     Size        size;
     821             :     int         size_class;
     822             : 
     823             :     /* Make sure we don't have a stale segment in the slot 'dp' refers to. */
     824          71 :     check_for_freed_segments(area);
     825             : 
     826             :     /* Locate the object, span and pool. */
     827          71 :     segment_map = get_segment_by_index(area, DSA_EXTRACT_SEGMENT_NUMBER(dp));
     828          71 :     pageno = DSA_EXTRACT_OFFSET(dp) / FPM_PAGE_SIZE;
     829          71 :     span_pointer = segment_map->pagemap[pageno];
     830          71 :     span = dsa_get_address(area, span_pointer);
     831          71 :     superblock = dsa_get_address(area, span->start);
     832          71 :     object = dsa_get_address(area, dp);
     833          71 :     size_class = span->size_class;
     834          71 :     size = dsa_size_classes[size_class];
     835             : 
     836             :     /*
     837             :      * Special case for large objects that live in a special span: we return
     838             :      * those pages directly to the free page manager and free the span.
     839             :      */
     840          71 :     if (span->size_class == DSA_SCLASS_SPAN_LARGE)
     841             :     {
     842             : 
     843             : #ifdef CLOBBER_FREED_MEMORY
     844          22 :         memset(object, 0x7f, span->npages * FPM_PAGE_SIZE);
     845             : #endif
     846             : 
     847             :         /* Give pages back to free page manager. */
     848          22 :         LWLockAcquire(DSA_AREA_LOCK(area), LW_EXCLUSIVE);
     849          44 :         FreePageManagerPut(segment_map->fpm,
     850          22 :                            DSA_EXTRACT_OFFSET(span->start) / FPM_PAGE_SIZE,
     851             :                            span->npages);
     852          22 :         LWLockRelease(DSA_AREA_LOCK(area));
     853             :         /* Unlink span. */
     854          22 :         LWLockAcquire(DSA_SCLASS_LOCK(area, DSA_SCLASS_SPAN_LARGE),
     855             :                       LW_EXCLUSIVE);
     856          22 :         unlink_span(area, span);
     857          22 :         LWLockRelease(DSA_SCLASS_LOCK(area, DSA_SCLASS_SPAN_LARGE));
     858             :         /* Free the span object so it can be reused. */
     859          22 :         dsa_free(area, span_pointer);
     860          93 :         return;
     861             :     }
     862             : 
     863             : #ifdef CLOBBER_FREED_MEMORY
     864          49 :     memset(object, 0x7f, size);
     865             : #endif
     866             : 
     867          49 :     LWLockAcquire(DSA_SCLASS_LOCK(area, size_class), LW_EXCLUSIVE);
     868             : 
     869             :     /* Put the object on the span's freelist. */
     870          49 :     Assert(object >= superblock);
     871          49 :     Assert(object < superblock + DSA_SUPERBLOCK_SIZE);
     872          49 :     Assert((object - superblock) % size == 0);
     873          49 :     NextFreeObjectIndex(object) = span->firstfree;
     874          49 :     span->firstfree = (object - superblock) / size;
     875          49 :     ++span->nallocatable;
     876             : 
     877             :     /*
     878             :      * See if the span needs to moved to a different fullness class, or be
     879             :      * freed so its pages can be given back to the segment.
     880             :      */
     881          49 :     if (span->nallocatable == 1 && span->fclass == DSA_FULLNESS_CLASSES - 1)
     882             :     {
     883             :         /*
     884             :          * The block was completely full and is located in the
     885             :          * highest-numbered fullness class, which is never scanned for free
     886             :          * chunks.  We must move it to the next-lower fullness class.
     887             :          */
     888           0 :         unlink_span(area, span);
     889           0 :         add_span_to_fullness_class(area, span, span_pointer,
     890             :                                    DSA_FULLNESS_CLASSES - 2);
     891             : 
     892             :         /*
     893             :          * If this is the only span, and there is no active span, then we
     894             :          * should probably move this span to fullness class 1.  (Otherwise if
     895             :          * you allocate exactly all the objects in the only span, it moves to
     896             :          * class 3, then you free them all, it moves to 2, and then is given
     897             :          * back, leaving no active span).
     898             :          */
     899             :     }
     900          67 :     else if (span->nallocatable == span->nmax &&
     901          36 :              (span->fclass != 1 || span->prevspan != InvalidDsaPointer))
     902             :     {
     903             :         /*
     904             :          * This entire block is free, and it's not the active block for this
     905             :          * size class.  Return the memory to the free page manager. We don't
     906             :          * do this for the active block to prevent hysteresis: if we
     907             :          * repeatedly allocate and free the only chunk in the active block, it
     908             :          * will be very inefficient if we deallocate and reallocate the block
     909             :          * every time.
     910             :          */
     911           0 :         destroy_superblock(area, span_pointer);
     912             :     }
     913             : 
     914          49 :     LWLockRelease(DSA_SCLASS_LOCK(area, size_class));
     915             : }
     916             : 
     917             : /*
     918             :  * Obtain a backend-local address for a dsa_pointer.  'dp' must point to
     919             :  * memory allocated by the given area (possibly in another process) that
     920             :  * hasn't yet been freed.  This may cause a segment to be mapped into the
     921             :  * current process if required, and may cause freed segments to be unmapped.
     922             :  */
     923             : void *
     924         965 : dsa_get_address(dsa_area *area, dsa_pointer dp)
     925             : {
     926             :     dsa_segment_index index;
     927             :     Size        offset;
     928             : 
     929             :     /* Convert InvalidDsaPointer to NULL. */
     930         965 :     if (!DsaPointerIsValid(dp))
     931          20 :         return NULL;
     932             : 
     933             :     /* Process any requests to detach from freed segments. */
     934         945 :     check_for_freed_segments(area);
     935             : 
     936             :     /* Break the dsa_pointer into its components. */
     937         945 :     index = DSA_EXTRACT_SEGMENT_NUMBER(dp);
     938         945 :     offset = DSA_EXTRACT_OFFSET(dp);
     939         945 :     Assert(index < DSA_MAX_SEGMENTS);
     940             : 
     941             :     /* Check if we need to cause this segment to be mapped in. */
     942         945 :     if (unlikely(area->segment_maps[index].mapped_address == NULL))
     943             :     {
     944             :         /* Call for effect (we don't need the result). */
     945          44 :         get_segment_by_index(area, index);
     946             :     }
     947             : 
     948         945 :     return area->segment_maps[index].mapped_address + offset;
     949             : }
     950             : 
     951             : /*
     952             :  * Pin this area, so that it will continue to exist even if all backends
     953             :  * detach from it.  In that case, the area can still be reattached to if a
     954             :  * handle has been recorded somewhere.
     955             :  */
     956             : void
     957           0 : dsa_pin(dsa_area *area)
     958             : {
     959           0 :     LWLockAcquire(DSA_AREA_LOCK(area), LW_EXCLUSIVE);
     960           0 :     if (area->control->pinned)
     961             :     {
     962           0 :         LWLockRelease(DSA_AREA_LOCK(area));
     963           0 :         elog(ERROR, "dsa_area already pinned");
     964             :     }
     965           0 :     area->control->pinned = true;
     966           0 :     ++area->control->refcnt;
     967           0 :     LWLockRelease(DSA_AREA_LOCK(area));
     968           0 : }
     969             : 
     970             : /*
     971             :  * Undo the effects of dsa_pin, so that the given area can be freed when no
     972             :  * backends are attached to it.  May be called only if dsa_pin has been
     973             :  * called.
     974             :  */
     975             : void
     976           0 : dsa_unpin(dsa_area *area)
     977             : {
     978           0 :     LWLockAcquire(DSA_AREA_LOCK(area), LW_EXCLUSIVE);
     979           0 :     Assert(area->control->refcnt > 1);
     980           0 :     if (!area->control->pinned)
     981             :     {
     982           0 :         LWLockRelease(DSA_AREA_LOCK(area));
     983           0 :         elog(ERROR, "dsa_area not pinned");
     984             :     }
     985           0 :     area->control->pinned = false;
     986           0 :     --area->control->refcnt;
     987           0 :     LWLockRelease(DSA_AREA_LOCK(area));
     988           0 : }
     989             : 
     990             : /*
     991             :  * Set the total size limit for this area.  This limit is checked whenever new
     992             :  * segments need to be allocated from the operating system.  If the new size
     993             :  * limit is already exceeded, this has no immediate effect.
     994             :  *
     995             :  * Note that the total virtual memory usage may be temporarily larger than
     996             :  * this limit when segments have been freed, but not yet detached by all
     997             :  * backends that have attached to them.
     998             :  */
     999             : void
    1000           0 : dsa_set_size_limit(dsa_area *area, Size limit)
    1001             : {
    1002           0 :     LWLockAcquire(DSA_AREA_LOCK(area), LW_EXCLUSIVE);
    1003           0 :     area->control->max_total_segment_size = limit;
    1004           0 :     LWLockRelease(DSA_AREA_LOCK(area));
    1005           0 : }
    1006             : 
    1007             : /*
    1008             :  * Aggressively free all spare memory in the hope of returning DSM segments to
    1009             :  * the operating system.
    1010             :  */
    1011             : void
    1012           0 : dsa_trim(dsa_area *area)
    1013             : {
    1014             :     int         size_class;
    1015             : 
    1016             :     /*
    1017             :      * Trim in reverse pool order so we get to the spans-of-spans last, just
    1018             :      * in case any become entirely free while processing all the other pools.
    1019             :      */
    1020           0 :     for (size_class = DSA_NUM_SIZE_CLASSES - 1; size_class >= 0; --size_class)
    1021             :     {
    1022           0 :         dsa_area_pool *pool = &area->control->pools[size_class];
    1023             :         dsa_pointer span_pointer;
    1024             : 
    1025           0 :         if (size_class == DSA_SCLASS_SPAN_LARGE)
    1026             :         {
    1027             :             /* Large object frees give back segments aggressively already. */
    1028           0 :             continue;
    1029             :         }
    1030             : 
    1031             :         /*
    1032             :          * Search fullness class 1 only.  That is where we expect to find an
    1033             :          * entirely empty superblock (entirely empty superblocks in other
    1034             :          * fullness classes are returned to the free page map by dsa_free).
    1035             :          */
    1036           0 :         LWLockAcquire(DSA_SCLASS_LOCK(area, size_class), LW_EXCLUSIVE);
    1037           0 :         span_pointer = pool->spans[1];
    1038           0 :         while (DsaPointerIsValid(span_pointer))
    1039             :         {
    1040           0 :             dsa_area_span *span = dsa_get_address(area, span_pointer);
    1041           0 :             dsa_pointer next = span->nextspan;
    1042             : 
    1043           0 :             if (span->nallocatable == span->nmax)
    1044           0 :                 destroy_superblock(area, span_pointer);
    1045             : 
    1046           0 :             span_pointer = next;
    1047             :         }
    1048           0 :         LWLockRelease(DSA_SCLASS_LOCK(area, size_class));
    1049             :     }
    1050           0 : }
    1051             : 
    1052             : /*
    1053             :  * Print out debugging information about the internal state of the shared
    1054             :  * memory area.
    1055             :  */
    1056             : void
    1057           0 : dsa_dump(dsa_area *area)
    1058             : {
    1059             :     Size        i,
    1060             :                 j;
    1061             : 
    1062             :     /*
    1063             :      * Note: This gives an inconsistent snapshot as it acquires and releases
    1064             :      * individual locks as it goes...
    1065             :      */
    1066             : 
    1067           0 :     LWLockAcquire(DSA_AREA_LOCK(area), LW_EXCLUSIVE);
    1068           0 :     fprintf(stderr, "dsa_area handle %x:\n", area->control->handle);
    1069           0 :     fprintf(stderr, "  max_total_segment_size: %zu\n",
    1070           0 :             area->control->max_total_segment_size);
    1071           0 :     fprintf(stderr, "  total_segment_size: %zu\n",
    1072           0 :             area->control->total_segment_size);
    1073           0 :     fprintf(stderr, "  refcnt: %d\n", area->control->refcnt);
    1074           0 :     fprintf(stderr, "  pinned: %c\n", area->control->pinned ? 't' : 'f');
    1075           0 :     fprintf(stderr, "  segment bins:\n");
    1076           0 :     for (i = 0; i < DSA_NUM_SEGMENT_BINS; ++i)
    1077             :     {
    1078           0 :         if (area->control->segment_bins[i] != DSA_SEGMENT_INDEX_NONE)
    1079             :         {
    1080             :             dsa_segment_index segment_index;
    1081             : 
    1082           0 :             fprintf(stderr,
    1083             :                     "    segment bin %zu (at least %d contiguous pages free):\n",
    1084           0 :                     i, 1 << (i - 1));
    1085           0 :             segment_index = area->control->segment_bins[i];
    1086           0 :             while (segment_index != DSA_SEGMENT_INDEX_NONE)
    1087             :             {
    1088             :                 dsa_segment_map *segment_map;
    1089             : 
    1090           0 :                 segment_map =
    1091             :                     get_segment_by_index(area, segment_index);
    1092             : 
    1093           0 :                 fprintf(stderr,
    1094             :                         "      segment index %zu, usable_pages = %zu, "
    1095             :                         "contiguous_pages = %zu, mapped at %p\n",
    1096             :                         segment_index,
    1097           0 :                         segment_map->header->usable_pages,
    1098           0 :                         fpm_largest(segment_map->fpm),
    1099             :                         segment_map->mapped_address);
    1100           0 :                 segment_index = segment_map->header->next;
    1101             :             }
    1102             :         }
    1103             :     }
    1104           0 :     LWLockRelease(DSA_AREA_LOCK(area));
    1105             : 
    1106           0 :     fprintf(stderr, "  pools:\n");
    1107           0 :     for (i = 0; i < DSA_NUM_SIZE_CLASSES; ++i)
    1108             :     {
    1109           0 :         bool        found = false;
    1110             : 
    1111           0 :         LWLockAcquire(DSA_SCLASS_LOCK(area, i), LW_EXCLUSIVE);
    1112           0 :         for (j = 0; j < DSA_FULLNESS_CLASSES; ++j)
    1113           0 :             if (DsaPointerIsValid(area->control->pools[i].spans[j]))
    1114           0 :                 found = true;
    1115           0 :         if (found)
    1116             :         {
    1117           0 :             if (i == DSA_SCLASS_BLOCK_OF_SPANS)
    1118           0 :                 fprintf(stderr, "    pool for blocks of span objects:\n");
    1119           0 :             else if (i == DSA_SCLASS_SPAN_LARGE)
    1120           0 :                 fprintf(stderr, "    pool for large object spans:\n");
    1121             :             else
    1122           0 :                 fprintf(stderr,
    1123             :                         "    pool for size class %zu (object size %hu bytes):\n",
    1124           0 :                         i, dsa_size_classes[i]);
    1125           0 :             for (j = 0; j < DSA_FULLNESS_CLASSES; ++j)
    1126             :             {
    1127           0 :                 if (!DsaPointerIsValid(area->control->pools[i].spans[j]))
    1128           0 :                     fprintf(stderr, "      fullness class %zu is empty\n", j);
    1129             :                 else
    1130             :                 {
    1131           0 :                     dsa_pointer span_pointer = area->control->pools[i].spans[j];
    1132             : 
    1133           0 :                     fprintf(stderr, "      fullness class %zu:\n", j);
    1134           0 :                     while (DsaPointerIsValid(span_pointer))
    1135             :                     {
    1136             :                         dsa_area_span *span;
    1137             : 
    1138           0 :                         span = dsa_get_address(area, span_pointer);
    1139           0 :                         fprintf(stderr,
    1140             :                                 "        span descriptor at "
    1141             :                                 DSA_POINTER_FORMAT ", superblock at "
    1142             :                                 DSA_POINTER_FORMAT
    1143             :                                 ", pages = %zu, objects free = %hu/%hu\n",
    1144             :                                 span_pointer, span->start, span->npages,
    1145           0 :                                 span->nallocatable, span->nmax);
    1146           0 :                         span_pointer = span->nextspan;
    1147             :                     }
    1148             :                 }
    1149             :             }
    1150             :         }
    1151           0 :         LWLockRelease(DSA_SCLASS_LOCK(area, i));
    1152             :     }
    1153           0 : }
    1154             : 
    1155             : /*
    1156             :  * Return the smallest size that you can successfully provide to
    1157             :  * dsa_create_in_place.
    1158             :  */
    1159             : Size
    1160          34 : dsa_minimum_size(void)
    1161             : {
    1162             :     Size        size;
    1163          34 :     int         pages = 0;
    1164             : 
    1165          34 :     size = MAXALIGN(sizeof(dsa_area_control)) +
    1166             :         MAXALIGN(sizeof(FreePageManager));
    1167             : 
    1168             :     /* Figure out how many pages we need, including the page map... */
    1169         102 :     while (((size + FPM_PAGE_SIZE - 1) / FPM_PAGE_SIZE) > pages)
    1170             :     {
    1171          34 :         ++pages;
    1172          34 :         size += sizeof(dsa_pointer);
    1173             :     }
    1174             : 
    1175          34 :     return pages * FPM_PAGE_SIZE;
    1176             : }
    1177             : 
    1178             : /*
    1179             :  * Workhorse function for dsa_create and dsa_create_in_place.
    1180             :  */
    1181             : static dsa_area *
    1182          17 : create_internal(void *place, size_t size,
    1183             :                 int tranche_id,
    1184             :                 dsm_handle control_handle,
    1185             :                 dsm_segment *control_segment)
    1186             : {
    1187             :     dsa_area_control *control;
    1188             :     dsa_area   *area;
    1189             :     dsa_segment_map *segment_map;
    1190             :     Size        usable_pages;
    1191             :     Size        total_pages;
    1192             :     Size        metadata_bytes;
    1193             :     int         i;
    1194             : 
    1195             :     /* Sanity check on the space we have to work in. */
    1196          17 :     if (size < dsa_minimum_size())
    1197           0 :         elog(ERROR, "dsa_area space must be at least %zu, but %zu provided",
    1198             :              dsa_minimum_size(), size);
    1199             : 
    1200             :     /* Now figure out how much space is usable */
    1201          17 :     total_pages = size / FPM_PAGE_SIZE;
    1202          17 :     metadata_bytes =
    1203             :         MAXALIGN(sizeof(dsa_area_control)) +
    1204          17 :         MAXALIGN(sizeof(FreePageManager)) +
    1205             :         total_pages * sizeof(dsa_pointer);
    1206             :     /* Add padding up to next page boundary. */
    1207          17 :     if (metadata_bytes % FPM_PAGE_SIZE != 0)
    1208          17 :         metadata_bytes += FPM_PAGE_SIZE - (metadata_bytes % FPM_PAGE_SIZE);
    1209          17 :     Assert(metadata_bytes <= size);
    1210          17 :     usable_pages = (size - metadata_bytes) / FPM_PAGE_SIZE;
    1211             : 
    1212             :     /*
    1213             :      * Initialize the dsa_area_control object located at the start of the
    1214             :      * space.
    1215             :      */
    1216          17 :     control = (dsa_area_control *) place;
    1217          17 :     control->segment_header.magic =
    1218          17 :         DSA_SEGMENT_HEADER_MAGIC ^ control_handle ^ 0;
    1219          17 :     control->segment_header.next = DSA_SEGMENT_INDEX_NONE;
    1220          17 :     control->segment_header.prev = DSA_SEGMENT_INDEX_NONE;
    1221          17 :     control->segment_header.usable_pages = usable_pages;
    1222          17 :     control->segment_header.freed = false;
    1223          17 :     control->segment_header.size = DSA_INITIAL_SEGMENT_SIZE;
    1224          17 :     control->handle = control_handle;
    1225          17 :     control->max_total_segment_size = (Size) -1;
    1226          17 :     control->total_segment_size = size;
    1227          17 :     memset(&control->segment_handles[0], 0,
    1228             :            sizeof(dsm_handle) * DSA_MAX_SEGMENTS);
    1229          17 :     control->segment_handles[0] = control_handle;
    1230         289 :     for (i = 0; i < DSA_NUM_SEGMENT_BINS; ++i)
    1231         272 :         control->segment_bins[i] = DSA_SEGMENT_INDEX_NONE;
    1232          17 :     control->high_segment_index = 0;
    1233          17 :     control->refcnt = 1;
    1234          17 :     control->freed_segment_counter = 0;
    1235          17 :     control->lwlock_tranche_id = tranche_id;
    1236             : 
    1237             :     /*
    1238             :      * Create the dsa_area object that this backend will use to access the
    1239             :      * area.  Other backends will need to obtain their own dsa_area object by
    1240             :      * attaching.
    1241             :      */
    1242          17 :     area = palloc(sizeof(dsa_area));
    1243          17 :     area->control = control;
    1244          17 :     area->mapping_pinned = false;
    1245          17 :     memset(area->segment_maps, 0, sizeof(dsa_segment_map) * DSA_MAX_SEGMENTS);
    1246          17 :     area->high_segment_index = 0;
    1247          17 :     area->freed_segment_counter = 0;
    1248          17 :     LWLockInitialize(&control->lock, control->lwlock_tranche_id);
    1249         663 :     for (i = 0; i < DSA_NUM_SIZE_CLASSES; ++i)
    1250         646 :         LWLockInitialize(DSA_SCLASS_LOCK(area, i),
    1251             :                          control->lwlock_tranche_id);
    1252             : 
    1253             :     /* Set up the segment map for this process's mapping. */
    1254          17 :     segment_map = &area->segment_maps[0];
    1255          17 :     segment_map->segment = control_segment;
    1256          17 :     segment_map->mapped_address = place;
    1257          17 :     segment_map->header = (dsa_segment_header *) place;
    1258          17 :     segment_map->fpm = (FreePageManager *)
    1259          17 :         (segment_map->mapped_address +
    1260             :          MAXALIGN(sizeof(dsa_area_control)));
    1261          17 :     segment_map->pagemap = (dsa_pointer *)
    1262          17 :         (segment_map->mapped_address +
    1263             :          MAXALIGN(sizeof(dsa_area_control)) +
    1264             :          MAXALIGN(sizeof(FreePageManager)));
    1265             : 
    1266             :     /* Set up the free page map. */
    1267          17 :     FreePageManagerInitialize(segment_map->fpm, segment_map->mapped_address);
    1268             :     /* There can be 0 usable pages if size is dsa_minimum_size(). */
    1269             : 
    1270          17 :     if (usable_pages > 0)
    1271           0 :         FreePageManagerPut(segment_map->fpm, metadata_bytes / FPM_PAGE_SIZE,
    1272             :                            usable_pages);
    1273             : 
    1274             :     /* Put this segment into the appropriate bin. */
    1275          17 :     control->segment_bins[contiguous_pages_to_segment_bin(usable_pages)] = 0;
    1276          17 :     segment_map->header->bin = contiguous_pages_to_segment_bin(usable_pages);
    1277             : 
    1278          17 :     return area;
    1279             : }
    1280             : 
    1281             : /*
    1282             :  * Workhorse function for dsa_attach and dsa_attach_in_place.
    1283             :  */
    1284             : static dsa_area *
    1285         115 : attach_internal(void *place, dsm_segment *segment, dsa_handle handle)
    1286             : {
    1287             :     dsa_area_control *control;
    1288             :     dsa_area   *area;
    1289             :     dsa_segment_map *segment_map;
    1290             : 
    1291         115 :     control = (dsa_area_control *) place;
    1292         115 :     Assert(control->handle == handle);
    1293         115 :     Assert(control->segment_handles[0] == handle);
    1294         115 :     Assert(control->segment_header.magic ==
    1295             :            (DSA_SEGMENT_HEADER_MAGIC ^ handle ^ 0));
    1296             : 
    1297             :     /* Build the backend-local area object. */
    1298         115 :     area = palloc(sizeof(dsa_area));
    1299         115 :     area->control = control;
    1300         115 :     area->mapping_pinned = false;
    1301         115 :     memset(&area->segment_maps[0], 0,
    1302             :            sizeof(dsa_segment_map) * DSA_MAX_SEGMENTS);
    1303         115 :     area->high_segment_index = 0;
    1304             : 
    1305             :     /* Set up the segment map for this process's mapping. */
    1306         115 :     segment_map = &area->segment_maps[0];
    1307         115 :     segment_map->segment = segment; /* NULL for in-place */
    1308         115 :     segment_map->mapped_address = place;
    1309         115 :     segment_map->header = (dsa_segment_header *) segment_map->mapped_address;
    1310         115 :     segment_map->fpm = (FreePageManager *)
    1311         115 :         (segment_map->mapped_address + MAXALIGN(sizeof(dsa_area_control)));
    1312         115 :     segment_map->pagemap = (dsa_pointer *)
    1313         115 :         (segment_map->mapped_address + MAXALIGN(sizeof(dsa_area_control)) +
    1314             :          MAXALIGN(sizeof(FreePageManager)));
    1315             : 
    1316             :     /* Bump the reference count. */
    1317         115 :     LWLockAcquire(DSA_AREA_LOCK(area), LW_EXCLUSIVE);
    1318         115 :     if (control->refcnt == 0)
    1319             :     {
    1320             :         /* We can't attach to a DSA area that has already been destroyed. */
    1321           0 :         ereport(ERROR,
    1322             :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
    1323             :                  errmsg("could not attach to dynamic shared area")));
    1324             :     }
    1325         115 :     ++control->refcnt;
    1326         115 :     area->freed_segment_counter = area->control->freed_segment_counter;
    1327         115 :     LWLockRelease(DSA_AREA_LOCK(area));
    1328             : 
    1329         115 :     return area;
    1330             : }
    1331             : 
    1332             : /*
    1333             :  * Add a new span to fullness class 1 of the indicated pool.
    1334             :  */
    1335             : static void
    1336          31 : init_span(dsa_area *area,
    1337             :           dsa_pointer span_pointer,
    1338             :           dsa_area_pool *pool, dsa_pointer start, Size npages,
    1339             :           uint16 size_class)
    1340             : {
    1341          31 :     dsa_area_span *span = dsa_get_address(area, span_pointer);
    1342          31 :     Size        obsize = dsa_size_classes[size_class];
    1343             : 
    1344             :     /*
    1345             :      * The per-pool lock must be held because we manipulate the span list for
    1346             :      * this pool.
    1347             :      */
    1348          31 :     Assert(LWLockHeldByMe(DSA_SCLASS_LOCK(area, size_class)));
    1349             : 
    1350             :     /* Push this span onto the front of the span list for fullness class 1. */
    1351          31 :     if (DsaPointerIsValid(pool->spans[1]))
    1352             :     {
    1353          13 :         dsa_area_span *head = (dsa_area_span *)
    1354          13 :         dsa_get_address(area, pool->spans[1]);
    1355             : 
    1356          13 :         head->prevspan = span_pointer;
    1357             :     }
    1358          31 :     span->pool = DsaAreaPoolToDsaPointer(area, pool);
    1359          31 :     span->nextspan = pool->spans[1];
    1360          31 :     span->prevspan = InvalidDsaPointer;
    1361          31 :     pool->spans[1] = span_pointer;
    1362             : 
    1363          31 :     span->start = start;
    1364          31 :     span->npages = npages;
    1365          31 :     span->size_class = size_class;
    1366          31 :     span->ninitialized = 0;
    1367          31 :     if (size_class == DSA_SCLASS_BLOCK_OF_SPANS)
    1368             :     {
    1369             :         /*
    1370             :          * A block-of-spans contains its own descriptor, so mark one object as
    1371             :          * initialized and reduce the count of allocatable objects by one.
    1372             :          * Doing this here has the side effect of also reducing nmax by one,
    1373             :          * which is important to make sure we free this object at the correct
    1374             :          * time.
    1375             :          */
    1376           2 :         span->ninitialized = 1;
    1377           2 :         span->nallocatable = FPM_PAGE_SIZE / obsize - 1;
    1378             :     }
    1379          29 :     else if (size_class != DSA_SCLASS_SPAN_LARGE)
    1380           5 :         span->nallocatable = DSA_SUPERBLOCK_SIZE / obsize;
    1381          31 :     span->firstfree = DSA_SPAN_NOTHING_FREE;
    1382          31 :     span->nmax = span->nallocatable;
    1383          31 :     span->fclass = 1;
    1384          31 : }
    1385             : 
    1386             : /*
    1387             :  * Transfer the first span in one fullness class to the head of another
    1388             :  * fullness class.
    1389             :  */
    1390             : static bool
    1391          14 : transfer_first_span(dsa_area *area,
    1392             :                     dsa_area_pool *pool, int fromclass, int toclass)
    1393             : {
    1394             :     dsa_pointer span_pointer;
    1395             :     dsa_area_span *span;
    1396             :     dsa_area_span *nextspan;
    1397             : 
    1398             :     /* Can't do it if source list is empty. */
    1399          14 :     span_pointer = pool->spans[fromclass];
    1400          14 :     if (!DsaPointerIsValid(span_pointer))
    1401          14 :         return false;
    1402             : 
    1403             :     /* Remove span from head of source list. */
    1404           0 :     span = dsa_get_address(area, span_pointer);
    1405           0 :     pool->spans[fromclass] = span->nextspan;
    1406           0 :     if (DsaPointerIsValid(span->nextspan))
    1407             :     {
    1408           0 :         nextspan = (dsa_area_span *)
    1409           0 :             dsa_get_address(area, span->nextspan);
    1410           0 :         nextspan->prevspan = InvalidDsaPointer;
    1411             :     }
    1412             : 
    1413             :     /* Add span to head of target list. */
    1414           0 :     span->nextspan = pool->spans[toclass];
    1415           0 :     pool->spans[toclass] = span_pointer;
    1416           0 :     if (DsaPointerIsValid(span->nextspan))
    1417             :     {
    1418           0 :         nextspan = (dsa_area_span *)
    1419           0 :             dsa_get_address(area, span->nextspan);
    1420           0 :         nextspan->prevspan = span_pointer;
    1421             :     }
    1422           0 :     span->fclass = toclass;
    1423             : 
    1424           0 :     return true;
    1425             : }
    1426             : 
    1427             : /*
    1428             :  * Allocate one object of the requested size class from the given area.
    1429             :  */
    1430             : static inline dsa_pointer
    1431          63 : alloc_object(dsa_area *area, int size_class)
    1432             : {
    1433          63 :     dsa_area_pool *pool = &area->control->pools[size_class];
    1434             :     dsa_area_span *span;
    1435             :     dsa_pointer block;
    1436             :     dsa_pointer result;
    1437             :     char       *object;
    1438             :     Size        size;
    1439             : 
    1440             :     /*
    1441             :      * Even though ensure_active_superblock can in turn call alloc_object if
    1442             :      * it needs to allocate a new span, that's always from a different pool,
    1443             :      * and the order of lock acquisition is always the same, so it's OK that
    1444             :      * we hold this lock for the duration of this function.
    1445             :      */
    1446          63 :     Assert(!LWLockHeldByMe(DSA_SCLASS_LOCK(area, size_class)));
    1447          63 :     LWLockAcquire(DSA_SCLASS_LOCK(area, size_class), LW_EXCLUSIVE);
    1448             : 
    1449             :     /*
    1450             :      * If there's no active superblock, we must successfully obtain one or
    1451             :      * fail the request.
    1452             :      */
    1453          70 :     if (!DsaPointerIsValid(pool->spans[1]) &&
    1454           7 :         !ensure_active_superblock(area, pool, size_class))
    1455             :     {
    1456           0 :         result = InvalidDsaPointer;
    1457             :     }
    1458             :     else
    1459             :     {
    1460             :         /*
    1461             :          * There should be a block in fullness class 1 at this point, and it
    1462             :          * should never be completely full.  Thus we can either pop an object
    1463             :          * from the free list or, failing that, initialize a new object.
    1464             :          */
    1465          63 :         Assert(DsaPointerIsValid(pool->spans[1]));
    1466          63 :         span = (dsa_area_span *)
    1467          63 :             dsa_get_address(area, pool->spans[1]);
    1468          63 :         Assert(span->nallocatable > 0);
    1469          63 :         block = span->start;
    1470          63 :         Assert(size_class < DSA_NUM_SIZE_CLASSES);
    1471          63 :         size = dsa_size_classes[size_class];
    1472          63 :         if (span->firstfree != DSA_SPAN_NOTHING_FREE)
    1473             :         {
    1474          48 :             result = block + span->firstfree * size;
    1475          48 :             object = dsa_get_address(area, result);
    1476          48 :             span->firstfree = NextFreeObjectIndex(object);
    1477             :         }
    1478             :         else
    1479             :         {
    1480          15 :             result = block + span->ninitialized * size;
    1481          15 :             ++span->ninitialized;
    1482             :         }
    1483          63 :         --span->nallocatable;
    1484             : 
    1485             :         /* If it's now full, move it to the highest-numbered fullness class. */
    1486          63 :         if (span->nallocatable == 0)
    1487           0 :             transfer_first_span(area, pool, 1, DSA_FULLNESS_CLASSES - 1);
    1488             :     }
    1489             : 
    1490          63 :     Assert(LWLockHeldByMe(DSA_SCLASS_LOCK(area, size_class)));
    1491          63 :     LWLockRelease(DSA_SCLASS_LOCK(area, size_class));
    1492             : 
    1493          63 :     return result;
    1494             : }
    1495             : 
    1496             : /*
    1497             :  * Ensure an active (i.e. fullness class 1) superblock, unless all existing
    1498             :  * superblocks are completely full and no more can be allocated.
    1499             :  *
    1500             :  * Fullness classes K of 0..N are loosely intended to represent blocks whose
    1501             :  * utilization percentage is at least K/N, but we only enforce this rigorously
    1502             :  * for the highest-numbered fullness class, which always contains exactly
    1503             :  * those blocks that are completely full.  It's otherwise acceptable for a
    1504             :  * block to be in a higher-numbered fullness class than the one to which it
    1505             :  * logically belongs.  In addition, the active block, which is always the
    1506             :  * first block in fullness class 1, is permitted to have a higher allocation
    1507             :  * percentage than would normally be allowable for that fullness class; we
    1508             :  * don't move it until it's completely full, and then it goes to the
    1509             :  * highest-numbered fullness class.
    1510             :  *
    1511             :  * It might seem odd that the active block is the head of fullness class 1
    1512             :  * rather than fullness class 0, but experience with other allocators has
    1513             :  * shown that it's usually better to allocate from a block that's moderately
    1514             :  * full rather than one that's nearly empty.  Insofar as is reasonably
    1515             :  * possible, we want to avoid performing new allocations in a block that would
    1516             :  * otherwise become empty soon.
    1517             :  */
    1518             : static bool
    1519           7 : ensure_active_superblock(dsa_area *area, dsa_area_pool *pool,
    1520             :                          int size_class)
    1521             : {
    1522             :     dsa_pointer span_pointer;
    1523             :     dsa_pointer start_pointer;
    1524           7 :     Size        obsize = dsa_size_classes[size_class];
    1525             :     Size        nmax;
    1526             :     int         fclass;
    1527           7 :     Size        npages = 1;
    1528             :     Size        first_page;
    1529             :     Size        i;
    1530             :     dsa_segment_map *segment_map;
    1531             : 
    1532           7 :     Assert(LWLockHeldByMe(DSA_SCLASS_LOCK(area, size_class)));
    1533             : 
    1534             :     /*
    1535             :      * Compute the number of objects that will fit in a block of this size
    1536             :      * class.  Span-of-spans blocks are just a single page, and the first
    1537             :      * object isn't available for use because it describes the block-of-spans
    1538             :      * itself.
    1539             :      */
    1540           7 :     if (size_class == DSA_SCLASS_BLOCK_OF_SPANS)
    1541           2 :         nmax = FPM_PAGE_SIZE / obsize - 1;
    1542             :     else
    1543           5 :         nmax = DSA_SUPERBLOCK_SIZE / obsize;
    1544             : 
    1545             :     /*
    1546             :      * If fullness class 1 is empty, try to find a span to put in it by
    1547             :      * scanning higher-numbered fullness classes (excluding the last one,
    1548             :      * whose blocks are certain to all be completely full).
    1549             :      */
    1550          14 :     for (fclass = 2; fclass < DSA_FULLNESS_CLASSES - 1; ++fclass)
    1551             :     {
    1552           7 :         span_pointer = pool->spans[fclass];
    1553             : 
    1554          14 :         while (DsaPointerIsValid(span_pointer))
    1555             :         {
    1556             :             int         tfclass;
    1557             :             dsa_area_span *span;
    1558             :             dsa_area_span *nextspan;
    1559             :             dsa_area_span *prevspan;
    1560             :             dsa_pointer next_span_pointer;
    1561             : 
    1562           0 :             span = (dsa_area_span *)
    1563             :                 dsa_get_address(area, span_pointer);
    1564           0 :             next_span_pointer = span->nextspan;
    1565             : 
    1566             :             /* Figure out what fullness class should contain this span. */
    1567           0 :             tfclass = (nmax - span->nallocatable)
    1568           0 :                 * (DSA_FULLNESS_CLASSES - 1) / nmax;
    1569             : 
    1570             :             /* Look up next span. */
    1571           0 :             if (DsaPointerIsValid(span->nextspan))
    1572           0 :                 nextspan = (dsa_area_span *)
    1573           0 :                     dsa_get_address(area, span->nextspan);
    1574             :             else
    1575           0 :                 nextspan = NULL;
    1576             : 
    1577             :             /*
    1578             :              * If utilization has dropped enough that this now belongs in some
    1579             :              * other fullness class, move it there.
    1580             :              */
    1581           0 :             if (tfclass < fclass)
    1582             :             {
    1583             :                 /* Remove from the current fullness class list. */
    1584           0 :                 if (pool->spans[fclass] == span_pointer)
    1585             :                 {
    1586             :                     /* It was the head; remove it. */
    1587           0 :                     Assert(!DsaPointerIsValid(span->prevspan));
    1588           0 :                     pool->spans[fclass] = span->nextspan;
    1589           0 :                     if (nextspan != NULL)
    1590           0 :                         nextspan->prevspan = InvalidDsaPointer;
    1591             :                 }
    1592             :                 else
    1593             :                 {
    1594             :                     /* It was not the head. */
    1595           0 :                     Assert(DsaPointerIsValid(span->prevspan));
    1596           0 :                     prevspan = (dsa_area_span *)
    1597           0 :                         dsa_get_address(area, span->prevspan);
    1598           0 :                     prevspan->nextspan = span->nextspan;
    1599             :                 }
    1600           0 :                 if (nextspan != NULL)
    1601           0 :                     nextspan->prevspan = span->prevspan;
    1602             : 
    1603             :                 /* Push onto the head of the new fullness class list. */
    1604           0 :                 span->nextspan = pool->spans[tfclass];
    1605           0 :                 pool->spans[tfclass] = span_pointer;
    1606           0 :                 span->prevspan = InvalidDsaPointer;
    1607           0 :                 if (DsaPointerIsValid(span->nextspan))
    1608             :                 {
    1609           0 :                     nextspan = (dsa_area_span *)
    1610           0 :                         dsa_get_address(area, span->nextspan);
    1611           0 :                     nextspan->prevspan = span_pointer;
    1612             :                 }
    1613           0 :                 span->fclass = tfclass;
    1614             :             }
    1615             : 
    1616             :             /* Advance to next span on list. */
    1617           0 :             span_pointer = next_span_pointer;
    1618             :         }
    1619             : 
    1620             :         /* Stop now if we found a suitable block. */
    1621           7 :         if (DsaPointerIsValid(pool->spans[1]))
    1622           0 :             return true;
    1623             :     }
    1624             : 
    1625             :     /*
    1626             :      * If there are no blocks that properly belong in fullness class 1, pick
    1627             :      * one from some other fullness class and move it there anyway, so that we
    1628             :      * have an allocation target.  Our last choice is to transfer a block
    1629             :      * that's almost empty (and might become completely empty soon if left
    1630             :      * alone), but even that is better than failing, which is what we must do
    1631             :      * if there are no blocks at all with freespace.
    1632             :      */
    1633           7 :     Assert(!DsaPointerIsValid(pool->spans[1]));
    1634          14 :     for (fclass = 2; fclass < DSA_FULLNESS_CLASSES - 1; ++fclass)
    1635           7 :         if (transfer_first_span(area, pool, fclass, 1))
    1636           0 :             return true;
    1637          14 :     if (!DsaPointerIsValid(pool->spans[1]) &&
    1638           7 :         transfer_first_span(area, pool, 0, 1))
    1639           0 :         return true;
    1640             : 
    1641             :     /*
    1642             :      * We failed to find an existing span with free objects, so we need to
    1643             :      * allocate a new superblock and construct a new span to manage it.
    1644             :      *
    1645             :      * First, get a dsa_area_span object to describe the new superblock block
    1646             :      * ... unless this allocation is for a dsa_area_span object, in which case
    1647             :      * that's surely not going to work.  We handle that case by storing the
    1648             :      * span describing a block-of-spans inline.
    1649             :      */
    1650           7 :     if (size_class != DSA_SCLASS_BLOCK_OF_SPANS)
    1651             :     {
    1652           5 :         span_pointer = alloc_object(area, DSA_SCLASS_BLOCK_OF_SPANS);
    1653           5 :         if (!DsaPointerIsValid(span_pointer))
    1654           0 :             return false;
    1655           5 :         npages = DSA_PAGES_PER_SUPERBLOCK;
    1656             :     }
    1657             : 
    1658             :     /* Find or create a segment and allocate the superblock. */
    1659           7 :     LWLockAcquire(DSA_AREA_LOCK(area), LW_EXCLUSIVE);
    1660           7 :     segment_map = get_best_segment(area, npages);
    1661           7 :     if (segment_map == NULL)
    1662             :     {
    1663           2 :         segment_map = make_new_segment(area, npages);
    1664           2 :         if (segment_map == NULL)
    1665             :         {
    1666           0 :             LWLockRelease(DSA_AREA_LOCK(area));
    1667           0 :             return false;
    1668             :         }
    1669             :     }
    1670           7 :     if (!FreePageManagerGet(segment_map->fpm, npages, &first_page))
    1671             :     {
    1672           0 :         LWLockRelease(DSA_AREA_LOCK(area));
    1673           0 :         if (size_class != DSA_SCLASS_BLOCK_OF_SPANS)
    1674           0 :             dsa_free(area, span_pointer);
    1675           0 :         return false;
    1676             :     }
    1677           7 :     LWLockRelease(DSA_AREA_LOCK(area));
    1678             : 
    1679             :     /* Compute the start of the superblock. */
    1680           7 :     start_pointer =
    1681           7 :         DSA_MAKE_POINTER(get_segment_index(area, segment_map),
    1682             :                          first_page * FPM_PAGE_SIZE);
    1683             : 
    1684             :     /*
    1685             :      * If this is a block-of-spans, carve the descriptor right out of the
    1686             :      * allocated space.
    1687             :      */
    1688           7 :     if (size_class == DSA_SCLASS_BLOCK_OF_SPANS)
    1689             :     {
    1690             :         /*
    1691             :          * We have a pointer into the segment.  We need to build a dsa_pointer
    1692             :          * from the segment index and offset into the segment.
    1693             :          */
    1694           2 :         span_pointer = start_pointer;
    1695             :     }
    1696             : 
    1697             :     /* Initialize span and pagemap. */
    1698           7 :     init_span(area, span_pointer, pool, start_pointer, npages, size_class);
    1699          89 :     for (i = 0; i < npages; ++i)
    1700          82 :         segment_map->pagemap[first_page + i] = span_pointer;
    1701             : 
    1702           7 :     return true;
    1703             : }
    1704             : 
    1705             : /*
    1706             :  * Return the segment map corresponding to a given segment index, mapping the
    1707             :  * segment in if necessary.  For internal segment book-keeping, this is called
    1708             :  * with the area lock held.  It is also called by dsa_free and dsa_get_address
    1709             :  * without any locking, relying on the fact they have a known live segment
    1710             :  * index and they always call check_for_freed_segments to ensures that any
    1711             :  * freed segment occupying the same slot is detached first.
    1712             :  */
    1713             : static dsa_segment_map *
    1714         144 : get_segment_by_index(dsa_area *area, dsa_segment_index index)
    1715             : {
    1716         144 :     if (unlikely(area->segment_maps[index].mapped_address == NULL))
    1717             :     {
    1718             :         dsm_handle  handle;
    1719             :         dsm_segment *segment;
    1720             :         dsa_segment_map *segment_map;
    1721             : 
    1722             :         /*
    1723             :          * If we are reached by dsa_free or dsa_get_address, there must be at
    1724             :          * least one object allocated in the referenced segment.  Otherwise,
    1725             :          * their caller has a double-free or access-after-free bug, which we
    1726             :          * have no hope of detecting.  So we know it's safe to access this
    1727             :          * array slot without holding a lock; it won't change underneath us.
    1728             :          * Furthermore, we know that we can see the latest contents of the
    1729             :          * slot, as explained in check_for_freed_segments, which those
    1730             :          * functions call before arriving here.
    1731             :          */
    1732          44 :         handle = area->control->segment_handles[index];
    1733             : 
    1734             :         /* It's an error to try to access an unused slot. */
    1735          44 :         if (handle == DSM_HANDLE_INVALID)
    1736           0 :             elog(ERROR,
    1737             :                  "dsa_area could not attach to a segment that has been freed");
    1738             : 
    1739          44 :         segment = dsm_attach(handle);
    1740          44 :         if (segment == NULL)
    1741           0 :             elog(ERROR, "dsa_area could not attach to segment");
    1742          44 :         if (area->mapping_pinned)
    1743           0 :             dsm_pin_mapping(segment);
    1744          44 :         segment_map = &area->segment_maps[index];
    1745          44 :         segment_map->segment = segment;
    1746          44 :         segment_map->mapped_address = dsm_segment_address(segment);
    1747          44 :         segment_map->header =
    1748          44 :             (dsa_segment_header *) segment_map->mapped_address;
    1749          44 :         segment_map->fpm = (FreePageManager *)
    1750          44 :             (segment_map->mapped_address +
    1751             :              MAXALIGN(sizeof(dsa_segment_header)));
    1752          44 :         segment_map->pagemap = (dsa_pointer *)
    1753          44 :             (segment_map->mapped_address +
    1754             :              MAXALIGN(sizeof(dsa_segment_header)) +
    1755             :              MAXALIGN(sizeof(FreePageManager)));
    1756             : 
    1757             :         /* Remember the highest index this backend has ever mapped. */
    1758          44 :         if (area->high_segment_index < index)
    1759          44 :             area->high_segment_index = index;
    1760             : 
    1761          44 :         Assert(segment_map->header->magic ==
    1762             :                (DSA_SEGMENT_HEADER_MAGIC ^ area->control->handle ^ index));
    1763             :     }
    1764             : 
    1765         144 :     return &area->segment_maps[index];
    1766             : }
    1767             : 
    1768             : /*
    1769             :  * Return a superblock to the free page manager.  If the underlying segment
    1770             :  * has become entirely free, then return it to the operating system.
    1771             :  *
    1772             :  * The appropriate pool lock must be held.
    1773             :  */
    1774             : static void
    1775           0 : destroy_superblock(dsa_area *area, dsa_pointer span_pointer)
    1776             : {
    1777           0 :     dsa_area_span *span = dsa_get_address(area, span_pointer);
    1778           0 :     int         size_class = span->size_class;
    1779             :     dsa_segment_map *segment_map;
    1780             : 
    1781           0 :     segment_map =
    1782           0 :         get_segment_by_index(area, DSA_EXTRACT_SEGMENT_NUMBER(span->start));
    1783             : 
    1784             :     /* Remove it from its fullness class list. */
    1785           0 :     unlink_span(area, span);
    1786             : 
    1787             :     /*
    1788             :      * Note: Here we acquire the area lock while we already hold a per-pool
    1789             :      * lock.  We never hold the area lock and then take a pool lock, or we
    1790             :      * could deadlock.
    1791             :      */
    1792           0 :     LWLockAcquire(DSA_AREA_LOCK(area), LW_EXCLUSIVE);
    1793           0 :     FreePageManagerPut(segment_map->fpm,
    1794           0 :                        DSA_EXTRACT_OFFSET(span->start) / FPM_PAGE_SIZE,
    1795             :                        span->npages);
    1796             :     /* Check if the segment is now entirely free. */
    1797           0 :     if (fpm_largest(segment_map->fpm) == segment_map->header->usable_pages)
    1798             :     {
    1799           0 :         dsa_segment_index index = get_segment_index(area, segment_map);
    1800             : 
    1801             :         /* If it's not the segment with extra control data, free it. */
    1802           0 :         if (index != 0)
    1803             :         {
    1804             :             /*
    1805             :              * Give it back to the OS, and allow other backends to detect that
    1806             :              * they need to detach.
    1807             :              */
    1808           0 :             unlink_segment(area, segment_map);
    1809           0 :             segment_map->header->freed = true;
    1810           0 :             Assert(area->control->total_segment_size >=
    1811             :                    segment_map->header->size);
    1812           0 :             area->control->total_segment_size -=
    1813           0 :                 segment_map->header->size;
    1814           0 :             dsm_unpin_segment(dsm_segment_handle(segment_map->segment));
    1815           0 :             dsm_detach(segment_map->segment);
    1816           0 :             area->control->segment_handles[index] = DSM_HANDLE_INVALID;
    1817           0 :             ++area->control->freed_segment_counter;
    1818           0 :             segment_map->segment = NULL;
    1819           0 :             segment_map->header = NULL;
    1820           0 :             segment_map->mapped_address = NULL;
    1821             :         }
    1822             :     }
    1823           0 :     LWLockRelease(DSA_AREA_LOCK(area));
    1824             : 
    1825             :     /*
    1826             :      * Span-of-spans blocks store the span which describes them within the
    1827             :      * block itself, so freeing the storage implicitly frees the descriptor
    1828             :      * also.  If this is a block of any other type, we need to separately free
    1829             :      * the span object also.  This recursive call to dsa_free will acquire the
    1830             :      * span pool's lock.  We can't deadlock because the acquisition order is
    1831             :      * always some other pool and then the span pool.
    1832             :      */
    1833           0 :     if (size_class != DSA_SCLASS_BLOCK_OF_SPANS)
    1834           0 :         dsa_free(area, span_pointer);
    1835           0 : }
    1836             : 
    1837             : static void
    1838          22 : unlink_span(dsa_area *area, dsa_area_span *span)
    1839             : {
    1840          22 :     if (DsaPointerIsValid(span->nextspan))
    1841             :     {
    1842           0 :         dsa_area_span *next = dsa_get_address(area, span->nextspan);
    1843             : 
    1844           0 :         next->prevspan = span->prevspan;
    1845             :     }
    1846          22 :     if (DsaPointerIsValid(span->prevspan))
    1847             :     {
    1848          13 :         dsa_area_span *prev = dsa_get_address(area, span->prevspan);
    1849             : 
    1850          13 :         prev->nextspan = span->nextspan;
    1851             :     }
    1852             :     else
    1853             :     {
    1854           9 :         dsa_area_pool *pool = dsa_get_address(area, span->pool);
    1855             : 
    1856           9 :         pool->spans[span->fclass] = span->nextspan;
    1857             :     }
    1858          22 : }
    1859             : 
    1860             : static void
    1861           0 : add_span_to_fullness_class(dsa_area *area, dsa_area_span *span,
    1862             :                            dsa_pointer span_pointer,
    1863             :                            int fclass)
    1864             : {
    1865           0 :     dsa_area_pool *pool = dsa_get_address(area, span->pool);
    1866             : 
    1867           0 :     if (DsaPointerIsValid(pool->spans[fclass]))
    1868             :     {
    1869           0 :         dsa_area_span *head = dsa_get_address(area,
    1870             :                                               pool->spans[fclass]);
    1871             : 
    1872           0 :         head->prevspan = span_pointer;
    1873             :     }
    1874           0 :     span->prevspan = InvalidDsaPointer;
    1875           0 :     span->nextspan = pool->spans[fclass];
    1876           0 :     pool->spans[fclass] = span_pointer;
    1877           0 :     span->fclass = fclass;
    1878           0 : }
    1879             : 
    1880             : /*
    1881             :  * Detach from an area that was either created or attached to by this process.
    1882             :  */
    1883             : void
    1884         130 : dsa_detach(dsa_area *area)
    1885             : {
    1886             :     int         i;
    1887             : 
    1888             :     /* Detach from all segments. */
    1889         306 :     for (i = 0; i <= area->high_segment_index; ++i)
    1890         176 :         if (area->segment_maps[i].segment != NULL)
    1891          46 :             dsm_detach(area->segment_maps[i].segment);
    1892             : 
    1893             :     /*
    1894             :      * Note that 'detaching' (= detaching from DSM segments) doesn't include
    1895             :      * 'releasing' (= adjusting the reference count).  It would be nice to
    1896             :      * combine these operations, but client code might never get around to
    1897             :      * calling dsa_detach because of an error path, and a detach hook on any
    1898             :      * particular segment is too late to detach other segments in the area
    1899             :      * without risking a 'leak' warning in the non-error path.
    1900             :      */
    1901             : 
    1902             :     /* Free the backend-local area object. */
    1903         130 :     pfree(area);
    1904         130 : }
    1905             : 
    1906             : /*
    1907             :  * Unlink a segment from the bin that contains it.
    1908             :  */
    1909             : static void
    1910           0 : unlink_segment(dsa_area *area, dsa_segment_map *segment_map)
    1911             : {
    1912           0 :     if (segment_map->header->prev != DSA_SEGMENT_INDEX_NONE)
    1913             :     {
    1914             :         dsa_segment_map *prev;
    1915             : 
    1916           0 :         prev = get_segment_by_index(area, segment_map->header->prev);
    1917           0 :         prev->header->next = segment_map->header->next;
    1918             :     }
    1919             :     else
    1920             :     {
    1921           0 :         Assert(area->control->segment_bins[segment_map->header->bin] ==
    1922             :                get_segment_index(area, segment_map));
    1923           0 :         area->control->segment_bins[segment_map->header->bin] =
    1924           0 :             segment_map->header->next;
    1925             :     }
    1926           0 :     if (segment_map->header->next != DSA_SEGMENT_INDEX_NONE)
    1927             :     {
    1928             :         dsa_segment_map *next;
    1929             : 
    1930           0 :         next = get_segment_by_index(area, segment_map->header->next);
    1931           0 :         next->header->prev = segment_map->header->prev;
    1932             :     }
    1933           0 : }
    1934             : 
    1935             : /*
    1936             :  * Find a segment that could satisfy a request for 'npages' of contiguous
    1937             :  * memory, or return NULL if none can be found.  This may involve attaching to
    1938             :  * segments that weren't previously attached so that we can query their free
    1939             :  * pages map.
    1940             :  */
    1941             : static dsa_segment_map *
    1942          31 : get_best_segment(dsa_area *area, Size npages)
    1943             : {
    1944             :     Size        bin;
    1945             : 
    1946          31 :     Assert(LWLockHeldByMe(DSA_AREA_LOCK(area)));
    1947             : 
    1948             :     /*
    1949             :      * Start searching from the first bin that *might* have enough contiguous
    1950             :      * pages.
    1951             :      */
    1952         224 :     for (bin = contiguous_pages_to_segment_bin(npages);
    1953             :          bin < DSA_NUM_SEGMENT_BINS;
    1954         162 :          ++bin)
    1955             :     {
    1956             :         /*
    1957             :          * The minimum contiguous size that any segment in this bin should
    1958             :          * have.  We'll re-bin if we see segments with fewer.
    1959             :          */
    1960         191 :         Size        threshold = (Size) 1 << (bin - 1);
    1961             :         dsa_segment_index segment_index;
    1962             : 
    1963             :         /* Search this bin for a segment with enough contiguous space. */
    1964         191 :         segment_index = area->control->segment_bins[bin];
    1965         382 :         while (segment_index != DSA_SEGMENT_INDEX_NONE)
    1966             :         {
    1967             :             dsa_segment_map *segment_map;
    1968             :             dsa_segment_index next_segment_index;
    1969             :             Size        contiguous_pages;
    1970             : 
    1971          29 :             segment_map = get_segment_by_index(area, segment_index);
    1972          29 :             next_segment_index = segment_map->header->next;
    1973          29 :             contiguous_pages = fpm_largest(segment_map->fpm);
    1974             : 
    1975             :             /* Not enough for the request, still enough for this bin. */
    1976          29 :             if (contiguous_pages >= threshold && contiguous_pages < npages)
    1977             :             {
    1978           0 :                 segment_index = next_segment_index;
    1979           0 :                 continue;
    1980             :             }
    1981             : 
    1982             :             /* Re-bin it if it's no longer in the appropriate bin. */
    1983          29 :             if (contiguous_pages < threshold)
    1984             :             {
    1985             :                 Size        new_bin;
    1986             : 
    1987           0 :                 new_bin = contiguous_pages_to_segment_bin(contiguous_pages);
    1988             : 
    1989             :                 /* Remove it from its current bin. */
    1990           0 :                 unlink_segment(area, segment_map);
    1991             : 
    1992             :                 /* Push it onto the front of its new bin. */
    1993           0 :                 segment_map->header->prev = DSA_SEGMENT_INDEX_NONE;
    1994           0 :                 segment_map->header->next =
    1995           0 :                     area->control->segment_bins[new_bin];
    1996           0 :                 segment_map->header->bin = new_bin;
    1997           0 :                 area->control->segment_bins[new_bin] = segment_index;
    1998           0 :                 if (segment_map->header->next != DSA_SEGMENT_INDEX_NONE)
    1999             :                 {
    2000             :                     dsa_segment_map *next;
    2001             : 
    2002           0 :                     next = get_segment_by_index(area,
    2003           0 :                                                 segment_map->header->next);
    2004           0 :                     Assert(next->header->bin == new_bin);
    2005           0 :                     next->header->prev = segment_index;
    2006             :                 }
    2007             : 
    2008             :                 /*
    2009             :                  * But fall through to see if it's enough to satisfy this
    2010             :                  * request anyway....
    2011             :                  */
    2012             :             }
    2013             : 
    2014             :             /* Check if we are done. */
    2015          29 :             if (contiguous_pages >= npages)
    2016          29 :                 return segment_map;
    2017             : 
    2018             :             /* Continue searching the same bin. */
    2019           0 :             segment_index = next_segment_index;
    2020             :         }
    2021             :     }
    2022             : 
    2023             :     /* Not found. */
    2024           2 :     return NULL;
    2025             : }
    2026             : 
    2027             : /*
    2028             :  * Create a new segment that can handle at least requested_pages.  Returns
    2029             :  * NULL if the requested total size limit or maximum allowed number of
    2030             :  * segments would be exceeded.
    2031             :  */
    2032             : static dsa_segment_map *
    2033           2 : make_new_segment(dsa_area *area, Size requested_pages)
    2034             : {
    2035             :     dsa_segment_index new_index;
    2036             :     Size        metadata_bytes;
    2037             :     Size        total_size;
    2038             :     Size        total_pages;
    2039             :     Size        usable_pages;
    2040             :     dsa_segment_map *segment_map;
    2041             :     dsm_segment *segment;
    2042             : 
    2043           2 :     Assert(LWLockHeldByMe(DSA_AREA_LOCK(area)));
    2044             : 
    2045             :     /* Find a segment slot that is not in use (linearly for now). */
    2046           2 :     for (new_index = 1; new_index < DSA_MAX_SEGMENTS; ++new_index)
    2047             :     {
    2048           2 :         if (area->control->segment_handles[new_index] == DSM_HANDLE_INVALID)
    2049           2 :             break;
    2050             :     }
    2051           2 :     if (new_index == DSA_MAX_SEGMENTS)
    2052           0 :         return NULL;
    2053             : 
    2054             :     /*
    2055             :      * If the total size limit is already exceeded, then we exit early and
    2056             :      * avoid arithmetic wraparound in the unsigned expressions below.
    2057             :      */
    2058           4 :     if (area->control->total_segment_size >=
    2059           2 :         area->control->max_total_segment_size)
    2060           0 :         return NULL;
    2061             : 
    2062             :     /*
    2063             :      * The size should be at least as big as requested, and at least big
    2064             :      * enough to follow a geometric series that approximately doubles the
    2065             :      * total storage each time we create a new segment.  We use geometric
    2066             :      * growth because the underlying DSM system isn't designed for large
    2067             :      * numbers of segments (otherwise we might even consider just using one
    2068             :      * DSM segment for each large allocation and for each superblock, and then
    2069             :      * we wouldn't need to use FreePageManager).
    2070             :      *
    2071             :      * We decide on a total segment size first, so that we produce tidy
    2072             :      * power-of-two sized segments.  This is a good property to have if we
    2073             :      * move to huge pages in the future.  Then we work back to the number of
    2074             :      * pages we can fit.
    2075             :      */
    2076           2 :     total_size = DSA_INITIAL_SEGMENT_SIZE *
    2077           2 :         ((Size) 1 << (new_index / DSA_NUM_SEGMENTS_AT_EACH_SIZE));
    2078           2 :     total_size = Min(total_size, DSA_MAX_SEGMENT_SIZE);
    2079           2 :     total_size = Min(total_size,
    2080             :                      area->control->max_total_segment_size -
    2081             :                      area->control->total_segment_size);
    2082             : 
    2083           2 :     total_pages = total_size / FPM_PAGE_SIZE;
    2084           2 :     metadata_bytes =
    2085             :         MAXALIGN(sizeof(dsa_segment_header)) +
    2086           2 :         MAXALIGN(sizeof(FreePageManager)) +
    2087             :         sizeof(dsa_pointer) * total_pages;
    2088             : 
    2089             :     /* Add padding up to next page boundary. */
    2090           2 :     if (metadata_bytes % FPM_PAGE_SIZE != 0)
    2091           2 :         metadata_bytes += FPM_PAGE_SIZE - (metadata_bytes % FPM_PAGE_SIZE);
    2092           2 :     if (total_size <= metadata_bytes)
    2093           0 :         return NULL;
    2094           2 :     usable_pages = (total_size - metadata_bytes) / FPM_PAGE_SIZE;
    2095           2 :     Assert(metadata_bytes + usable_pages * FPM_PAGE_SIZE <= total_size);
    2096             : 
    2097             :     /* See if that is enough... */
    2098           2 :     if (requested_pages > usable_pages)
    2099             :     {
    2100             :         /*
    2101             :          * We'll make an odd-sized segment, working forward from the requested
    2102             :          * number of pages.
    2103             :          */
    2104           0 :         usable_pages = requested_pages;
    2105           0 :         metadata_bytes =
    2106             :             MAXALIGN(sizeof(dsa_segment_header)) +
    2107           0 :             MAXALIGN(sizeof(FreePageManager)) +
    2108             :             usable_pages * sizeof(dsa_pointer);
    2109             : 
    2110             :         /* Add padding up to next page boundary. */
    2111           0 :         if (metadata_bytes % FPM_PAGE_SIZE != 0)
    2112           0 :             metadata_bytes += FPM_PAGE_SIZE - (metadata_bytes % FPM_PAGE_SIZE);
    2113           0 :         total_size = metadata_bytes + usable_pages * FPM_PAGE_SIZE;
    2114             : 
    2115             :         /* Is that too large for dsa_pointer's addressing scheme? */
    2116           0 :         if (total_size > DSA_MAX_SEGMENT_SIZE)
    2117           0 :             return NULL;
    2118             : 
    2119             :         /* Would that exceed the limit? */
    2120           0 :         if (total_size > area->control->max_total_segment_size -
    2121           0 :             area->control->total_segment_size)
    2122           0 :             return NULL;
    2123             :     }
    2124             : 
    2125             :     /* Create the segment. */
    2126           2 :     segment = dsm_create(total_size, 0);
    2127           2 :     if (segment == NULL)
    2128           0 :         return NULL;
    2129           2 :     dsm_pin_segment(segment);
    2130           2 :     if (area->mapping_pinned)
    2131           0 :         dsm_pin_mapping(segment);
    2132             : 
    2133             :     /* Store the handle in shared memory to be found by index. */
    2134           4 :     area->control->segment_handles[new_index] =
    2135           2 :         dsm_segment_handle(segment);
    2136             :     /* Track the highest segment index in the history of the area. */
    2137           2 :     if (area->control->high_segment_index < new_index)
    2138           2 :         area->control->high_segment_index = new_index;
    2139             :     /* Track the highest segment index this backend has ever mapped. */
    2140           2 :     if (area->high_segment_index < new_index)
    2141           2 :         area->high_segment_index = new_index;
    2142             :     /* Track total size of all segments. */
    2143           2 :     area->control->total_segment_size += total_size;
    2144           2 :     Assert(area->control->total_segment_size <=
    2145             :            area->control->max_total_segment_size);
    2146             : 
    2147             :     /* Build a segment map for this segment in this backend. */
    2148           2 :     segment_map = &area->segment_maps[new_index];
    2149           2 :     segment_map->segment = segment;
    2150           2 :     segment_map->mapped_address = dsm_segment_address(segment);
    2151           2 :     segment_map->header = (dsa_segment_header *) segment_map->mapped_address;
    2152           2 :     segment_map->fpm = (FreePageManager *)
    2153           2 :         (segment_map->mapped_address +
    2154             :          MAXALIGN(sizeof(dsa_segment_header)));
    2155           2 :     segment_map->pagemap = (dsa_pointer *)
    2156           2 :         (segment_map->mapped_address +
    2157             :          MAXALIGN(sizeof(dsa_segment_header)) +
    2158             :          MAXALIGN(sizeof(FreePageManager)));
    2159             : 
    2160             :     /* Set up the free page map. */
    2161           2 :     FreePageManagerInitialize(segment_map->fpm, segment_map->mapped_address);
    2162           2 :     FreePageManagerPut(segment_map->fpm, metadata_bytes / FPM_PAGE_SIZE,
    2163             :                        usable_pages);
    2164             : 
    2165             :     /* Set up the segment header and put it in the appropriate bin. */
    2166           4 :     segment_map->header->magic =
    2167           2 :         DSA_SEGMENT_HEADER_MAGIC ^ area->control->handle ^ new_index;
    2168           2 :     segment_map->header->usable_pages = usable_pages;
    2169           2 :     segment_map->header->size = total_size;
    2170           2 :     segment_map->header->bin = contiguous_pages_to_segment_bin(usable_pages);
    2171           2 :     segment_map->header->prev = DSA_SEGMENT_INDEX_NONE;
    2172           4 :     segment_map->header->next =
    2173           2 :         area->control->segment_bins[segment_map->header->bin];
    2174           2 :     segment_map->header->freed = false;
    2175           2 :     area->control->segment_bins[segment_map->header->bin] = new_index;
    2176           2 :     if (segment_map->header->next != DSA_SEGMENT_INDEX_NONE)
    2177             :     {
    2178           0 :         dsa_segment_map *next =
    2179           0 :         get_segment_by_index(area, segment_map->header->next);
    2180             : 
    2181           0 :         Assert(next->header->bin == segment_map->header->bin);
    2182           0 :         next->header->prev = new_index;
    2183             :     }
    2184             : 
    2185           2 :     return segment_map;
    2186             : }
    2187             : 
    2188             : /*
    2189             :  * Check if any segments have been freed by destroy_superblock, so we can
    2190             :  * detach from them in this backend.  This function is called by
    2191             :  * dsa_get_address and dsa_free to make sure that a dsa_pointer they have
    2192             :  * received can be resolved to the correct segment.
    2193             :  *
    2194             :  * The danger we want to defend against is that there could be an old segment
    2195             :  * mapped into a given slot in this backend, and the dsa_pointer they have
    2196             :  * might refer to some new segment in the same slot.  So those functions must
    2197             :  * be sure to process all instructions to detach from a freed segment that had
    2198             :  * been generated by the time this process received the dsa_pointer, before
    2199             :  * they call get_segment_by_index.
    2200             :  */
    2201             : static void
    2202        1016 : check_for_freed_segments(dsa_area *area)
    2203             : {
    2204             :     Size        freed_segment_counter;
    2205             : 
    2206             :     /*
    2207             :      * Any other process that has freed a segment has incremented
    2208             :      * free_segment_counter while holding an LWLock, and that must precede any
    2209             :      * backend creating a new segment in the same slot while holding an
    2210             :      * LWLock, and that must precede the creation of any dsa_pointer pointing
    2211             :      * into the new segment which might reach us here, and the caller must
    2212             :      * have sent the dsa_pointer to this process using appropriate memory
    2213             :      * synchronization (some kind of locking or atomic primitive or system
    2214             :      * call).  So all we need to do on the reading side is ask for the load of
    2215             :      * freed_segment_counter to follow the caller's load of the dsa_pointer it
    2216             :      * has, and we can be sure to detect any segments that had been freed as
    2217             :      * of the time that the dsa_pointer reached this process.
    2218             :      */
    2219        1016 :     pg_read_barrier();
    2220        1016 :     freed_segment_counter = area->control->freed_segment_counter;
    2221        1016 :     if (unlikely(area->freed_segment_counter != freed_segment_counter))
    2222             :     {
    2223             :         int         i;
    2224             : 
    2225             :         /* Check all currently mapped segments to find what's been freed. */
    2226           0 :         LWLockAcquire(DSA_AREA_LOCK(area), LW_EXCLUSIVE);
    2227           0 :         for (i = 0; i <= area->high_segment_index; ++i)
    2228             :         {
    2229           0 :             if (area->segment_maps[i].header != NULL &&
    2230           0 :                 area->segment_maps[i].header->freed)
    2231             :             {
    2232           0 :                 dsm_detach(area->segment_maps[i].segment);
    2233           0 :                 area->segment_maps[i].segment = NULL;
    2234           0 :                 area->segment_maps[i].header = NULL;
    2235           0 :                 area->segment_maps[i].mapped_address = NULL;
    2236             :             }
    2237             :         }
    2238           0 :         LWLockRelease(DSA_AREA_LOCK(area));
    2239           0 :         area->freed_segment_counter = freed_segment_counter;
    2240             :     }
    2241        1016 : }

Generated by: LCOV version 1.11