Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * s_lock.h
4 : * Hardware-dependent implementation of spinlocks.
5 : *
6 : * NOTE: none of the macros in this file are intended to be called directly.
7 : * Call them through the hardware-independent macros in spin.h.
8 : *
9 : * The following hardware-dependent macros must be provided for each
10 : * supported platform:
11 : *
12 : * void S_INIT_LOCK(slock_t *lock)
13 : * Initialize a spinlock (to the unlocked state).
14 : *
15 : * int S_LOCK(slock_t *lock)
16 : * Acquire a spinlock, waiting if necessary.
17 : * Time out and abort() if unable to acquire the lock in a
18 : * "reasonable" amount of time --- typically ~ 1 minute.
19 : * Should return number of "delays"; see s_lock.c
20 : *
21 : * void S_UNLOCK(slock_t *lock)
22 : * Unlock a previously acquired lock.
23 : *
24 : * bool S_LOCK_FREE(slock_t *lock)
25 : * Tests if the lock is free. Returns TRUE if free, FALSE if locked.
26 : * This does *not* change the state of the lock.
27 : *
28 : * void SPIN_DELAY(void)
29 : * Delay operation to occur inside spinlock wait loop.
30 : *
31 : * Note to implementors: there are default implementations for all these
32 : * macros at the bottom of the file. Check if your platform can use
33 : * these or needs to override them.
34 : *
35 : * Usually, S_LOCK() is implemented in terms of even lower-level macros
36 : * TAS() and TAS_SPIN():
37 : *
38 : * int TAS(slock_t *lock)
39 : * Atomic test-and-set instruction. Attempt to acquire the lock,
40 : * but do *not* wait. Returns 0 if successful, nonzero if unable
41 : * to acquire the lock.
42 : *
43 : * int TAS_SPIN(slock_t *lock)
44 : * Like TAS(), but this version is used when waiting for a lock
45 : * previously found to be contended. By default, this is the
46 : * same as TAS(), but on some architectures it's better to poll a
47 : * contended lock using an unlocked instruction and retry the
48 : * atomic test-and-set only when it appears free.
49 : *
50 : * TAS() and TAS_SPIN() are NOT part of the API, and should never be called
51 : * directly.
52 : *
53 : * CAUTION: on some platforms TAS() and/or TAS_SPIN() may sometimes report
54 : * failure to acquire a lock even when the lock is not locked. For example,
55 : * on Alpha TAS() will "fail" if interrupted. Therefore a retry loop must
56 : * always be used, even if you are certain the lock is free.
57 : *
58 : * It is the responsibility of these macros to make sure that the compiler
59 : * does not re-order accesses to shared memory to precede the actual lock
60 : * acquisition, or follow the lock release. Prior to PostgreSQL 9.5, this
61 : * was the caller's responsibility, which meant that callers had to use
62 : * volatile-qualified pointers to refer to both the spinlock itself and the
63 : * shared data being accessed within the spinlocked critical section. This
64 : * was notationally awkward, easy to forget (and thus error-prone), and
65 : * prevented some useful compiler optimizations. For these reasons, we
66 : * now require that the macros themselves prevent compiler re-ordering,
67 : * so that the caller doesn't need to take special precautions.
68 : *
69 : * On platforms with weak memory ordering, the TAS(), TAS_SPIN(), and
70 : * S_UNLOCK() macros must further include hardware-level memory fence
71 : * instructions to prevent similar re-ordering at the hardware level.
72 : * TAS() and TAS_SPIN() must guarantee that loads and stores issued after
73 : * the macro are not executed until the lock has been obtained. Conversely,
74 : * S_UNLOCK() must guarantee that loads and stores issued before the macro
75 : * have been executed before the lock is released.
76 : *
77 : * On most supported platforms, TAS() uses a tas() function written
78 : * in assembly language to execute a hardware atomic-test-and-set
79 : * instruction. Equivalent OS-supplied mutex routines could be used too.
80 : *
81 : * If no system-specific TAS() is available (ie, HAVE_SPINLOCKS is not
82 : * defined), then we fall back on an emulation that uses SysV semaphores
83 : * (see spin.c). This emulation will be MUCH MUCH slower than a proper TAS()
84 : * implementation, because of the cost of a kernel call per lock or unlock.
85 : * An old report is that Postgres spends around 40% of its time in semop(2)
86 : * when using the SysV semaphore code.
87 : *
88 : *
89 : * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
90 : * Portions Copyright (c) 1994, Regents of the University of California
91 : *
92 : * src/include/storage/s_lock.h
93 : *
94 : *-------------------------------------------------------------------------
95 : */
96 : #ifndef S_LOCK_H
97 : #define S_LOCK_H
98 :
99 : #ifdef FRONTEND
100 : #error "s_lock.h may not be included from frontend code"
101 : #endif
102 :
103 : #ifdef HAVE_SPINLOCKS /* skip spinlocks if requested */
104 :
105 : #if defined(__GNUC__) || defined(__INTEL_COMPILER)
106 : /*************************************************************************
107 : * All the gcc inlines
108 : * Gcc consistently defines the CPU as __cpu__.
109 : * Other compilers use __cpu or __cpu__ so we test for both in those cases.
110 : */
111 :
112 : /*----------
113 : * Standard gcc asm format (assuming "volatile slock_t *lock"):
114 :
115 : __asm__ __volatile__(
116 : " instruction \n"
117 : " instruction \n"
118 : " instruction \n"
119 : : "=r"(_res), "+m"(*lock) // return register, in/out lock value
120 : : "r"(lock) // lock pointer, in input register
121 : : "memory", "cc"); // show clobbered registers here
122 :
123 : * The output-operands list (after first colon) should always include
124 : * "+m"(*lock), whether or not the asm code actually refers to this
125 : * operand directly. This ensures that gcc believes the value in the
126 : * lock variable is used and set by the asm code. Also, the clobbers
127 : * list (after third colon) should always include "memory"; this prevents
128 : * gcc from thinking it can cache the values of shared-memory fields
129 : * across the asm code. Add "cc" if your asm code changes the condition
130 : * code register, and also list any temp registers the code uses.
131 : *----------
132 : */
133 :
134 :
135 : #ifdef __i386__ /* 32-bit i386 */
136 : #define HAS_TEST_AND_SET
137 :
138 : typedef unsigned char slock_t;
139 :
140 : #define TAS(lock) tas(lock)
141 :
142 : static __inline__ int
143 2880958 : tas(volatile slock_t *lock)
144 : {
145 2880958 : register slock_t _res = 1;
146 :
147 : /*
148 : * Use a non-locking test before asserting the bus lock. Note that the
149 : * extra test appears to be a small loss on some x86 platforms and a small
150 : * win on others; it's by no means clear that we should keep it.
151 : *
152 : * When this was last tested, we didn't have separate TAS() and TAS_SPIN()
153 : * macros. Nowadays it probably would be better to do a non-locking test
154 : * in TAS_SPIN() but not in TAS(), like on x86_64, but no-one's done the
155 : * testing to verify that. Without some empirical evidence, better to
156 : * leave it alone.
157 : */
158 2880958 : __asm__ __volatile__(
159 : " cmpb $0,%1 \n"
160 : " jne 1f \n"
161 : " lock \n"
162 : " xchgb %0,%1 \n"
163 : "1: \n"
164 : : "+q"(_res), "+m"(*lock)
165 : : /* no inputs */
166 : : "memory", "cc");
167 2880958 : return (int) _res;
168 : }
169 :
170 : #define SPIN_DELAY() spin_delay()
171 :
172 : static __inline__ void
173 32227 : spin_delay(void)
174 : {
175 : /*
176 : * This sequence is equivalent to the PAUSE instruction ("rep" is
177 : * ignored by old IA32 processors if the following instruction is
178 : * not a string operation); the IA-32 Architecture Software
179 : * Developer's Manual, Vol. 3, Section 7.7.2 describes why using
180 : * PAUSE in the inner loop of a spin lock is necessary for good
181 : * performance:
182 : *
183 : * The PAUSE instruction improves the performance of IA-32
184 : * processors supporting Hyper-Threading Technology when
185 : * executing spin-wait loops and other routines where one
186 : * thread is accessing a shared lock or semaphore in a tight
187 : * polling loop. When executing a spin-wait loop, the
188 : * processor can suffer a severe performance penalty when
189 : * exiting the loop because it detects a possible memory order
190 : * violation and flushes the core processor's pipeline. The
191 : * PAUSE instruction provides a hint to the processor that the
192 : * code sequence is a spin-wait loop. The processor uses this
193 : * hint to avoid the memory order violation and prevent the
194 : * pipeline flush. In addition, the PAUSE instruction
195 : * de-pipelines the spin-wait loop to prevent it from
196 : * consuming execution resources excessively.
197 : */
198 32227 : __asm__ __volatile__(
199 : " rep; nop \n");
200 32227 : }
201 :
202 : #endif /* __i386__ */
203 :
204 :
205 : #ifdef __x86_64__ /* AMD Opteron, Intel EM64T */
206 : #define HAS_TEST_AND_SET
207 :
208 : typedef unsigned char slock_t;
209 :
210 : #define TAS(lock) tas(lock)
211 :
212 : /*
213 : * On Intel EM64T, it's a win to use a non-locking test before the xchg proper,
214 : * but only when spinning.
215 : *
216 : * See also Implementing Scalable Atomic Locks for Multi-Core Intel(tm) EM64T
217 : * and IA32, by Michael Chynoweth and Mary R. Lee. As of this writing, it is
218 : * available at:
219 : * http://software.intel.com/en-us/articles/implementing-scalable-atomic-locks-for-multi-core-intel-em64t-and-ia32-architectures
220 : */
221 : #define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock))
222 :
223 : static __inline__ int
224 : tas(volatile slock_t *lock)
225 : {
226 : register slock_t _res = 1;
227 :
228 : __asm__ __volatile__(
229 : " lock \n"
230 : " xchgb %0,%1 \n"
231 : : "+q"(_res), "+m"(*lock)
232 : : /* no inputs */
233 : : "memory", "cc");
234 : return (int) _res;
235 : }
236 :
237 : #define SPIN_DELAY() spin_delay()
238 :
239 : static __inline__ void
240 : spin_delay(void)
241 : {
242 : /*
243 : * Adding a PAUSE in the spin delay loop is demonstrably a no-op on
244 : * Opteron, but it may be of some use on EM64T, so we keep it.
245 : */
246 : __asm__ __volatile__(
247 : " rep; nop \n");
248 : }
249 :
250 : #endif /* __x86_64__ */
251 :
252 :
253 : #if defined(__ia64__) || defined(__ia64)
254 : /*
255 : * Intel Itanium, gcc or Intel's compiler.
256 : *
257 : * Itanium has weak memory ordering, but we rely on the compiler to enforce
258 : * strict ordering of accesses to volatile data. In particular, while the
259 : * xchg instruction implicitly acts as a memory barrier with 'acquire'
260 : * semantics, we do not have an explicit memory fence instruction in the
261 : * S_UNLOCK macro. We use a regular assignment to clear the spinlock, and
262 : * trust that the compiler marks the generated store instruction with the
263 : * ".rel" opcode.
264 : *
265 : * Testing shows that assumption to hold on gcc, although I could not find
266 : * any explicit statement on that in the gcc manual. In Intel's compiler,
267 : * the -m[no-]serialize-volatile option controls that, and testing shows that
268 : * it is enabled by default.
269 : *
270 : * While icc accepts gcc asm blocks on x86[_64], this is not true on ia64
271 : * (at least not in icc versions before 12.x). So we have to carry a separate
272 : * compiler-intrinsic-based implementation for it.
273 : */
274 : #define HAS_TEST_AND_SET
275 :
276 : typedef unsigned int slock_t;
277 :
278 : #define TAS(lock) tas(lock)
279 :
280 : /* On IA64, it's a win to use a non-locking test before the xchg proper */
281 : #define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock))
282 :
283 : #ifndef __INTEL_COMPILER
284 :
285 : static __inline__ int
286 : tas(volatile slock_t *lock)
287 : {
288 : long int ret;
289 :
290 : __asm__ __volatile__(
291 : " xchg4 %0=%1,%2 \n"
292 : : "=r"(ret), "+m"(*lock)
293 : : "r"(1)
294 : : "memory");
295 : return (int) ret;
296 : }
297 :
298 : #else /* __INTEL_COMPILER */
299 :
300 : static __inline__ int
301 : tas(volatile slock_t *lock)
302 : {
303 : int ret;
304 :
305 : ret = _InterlockedExchange(lock,1); /* this is a xchg asm macro */
306 :
307 : return ret;
308 : }
309 :
310 : /* icc can't use the regular gcc S_UNLOCK() macro either in this case */
311 : #define S_UNLOCK(lock) \
312 : do { __memory_barrier(); *(lock) = 0; } while (0)
313 :
314 : #endif /* __INTEL_COMPILER */
315 : #endif /* __ia64__ || __ia64 */
316 :
317 : /*
318 : * On ARM and ARM64, we use __sync_lock_test_and_set(int *, int) if available.
319 : *
320 : * We use the int-width variant of the builtin because it works on more chips
321 : * than other widths.
322 : */
323 : #if defined(__arm__) || defined(__arm) || defined(__aarch64__) || defined(__aarch64)
324 : #ifdef HAVE_GCC__SYNC_INT32_TAS
325 : #define HAS_TEST_AND_SET
326 :
327 : #define TAS(lock) tas(lock)
328 :
329 : typedef int slock_t;
330 :
331 : static __inline__ int
332 : tas(volatile slock_t *lock)
333 : {
334 : return __sync_lock_test_and_set(lock, 1);
335 : }
336 :
337 : #define S_UNLOCK(lock) __sync_lock_release(lock)
338 :
339 : #endif /* HAVE_GCC__SYNC_INT32_TAS */
340 : #endif /* __arm__ || __arm || __aarch64__ || __aarch64 */
341 :
342 :
343 : /* S/390 and S/390x Linux (32- and 64-bit zSeries) */
344 : #if defined(__s390__) || defined(__s390x__)
345 : #define HAS_TEST_AND_SET
346 :
347 : typedef unsigned int slock_t;
348 :
349 : #define TAS(lock) tas(lock)
350 :
351 : static __inline__ int
352 : tas(volatile slock_t *lock)
353 : {
354 : int _res = 0;
355 :
356 : __asm__ __volatile__(
357 : " cs %0,%3,0(%2) \n"
358 : : "+d"(_res), "+m"(*lock)
359 : : "a"(lock), "d"(1)
360 : : "memory", "cc");
361 : return _res;
362 : }
363 :
364 : #endif /* __s390__ || __s390x__ */
365 :
366 :
367 : #if defined(__sparc__) /* Sparc */
368 : /*
369 : * Solaris has always run sparc processors in TSO (total store) mode, but
370 : * linux didn't use to and the *BSDs still don't. So, be careful about
371 : * acquire/release semantics. The CPU will treat superfluous membars as
372 : * NOPs, so it's just code space.
373 : */
374 : #define HAS_TEST_AND_SET
375 :
376 : typedef unsigned char slock_t;
377 :
378 : #define TAS(lock) tas(lock)
379 :
380 : static __inline__ int
381 : tas(volatile slock_t *lock)
382 : {
383 : register slock_t _res;
384 :
385 : /*
386 : * See comment in /pg/backend/port/tas/solaris_sparc.s for why this
387 : * uses "ldstub", and that file uses "cas". gcc currently generates
388 : * sparcv7-targeted binaries, so "cas" use isn't possible.
389 : */
390 : __asm__ __volatile__(
391 : " ldstub [%2], %0 \n"
392 : : "=r"(_res), "+m"(*lock)
393 : : "r"(lock)
394 : : "memory");
395 : #if defined(__sparcv7) || defined(__sparc_v7__)
396 : /*
397 : * No stbar or membar available, luckily no actually produced hardware
398 : * requires a barrier.
399 : */
400 : #elif defined(__sparcv8) || defined(__sparc_v8__)
401 : /* stbar is available (and required for both PSO, RMO), membar isn't */
402 : __asm__ __volatile__ ("stbar \n":::"memory");
403 : #else
404 : /*
405 : * #LoadStore (RMO) | #LoadLoad (RMO) together are the appropriate acquire
406 : * barrier for sparcv8+ upwards.
407 : */
408 : __asm__ __volatile__ ("membar #LoadStore | #LoadLoad \n":::"memory");
409 : #endif
410 : return (int) _res;
411 : }
412 :
413 : #if defined(__sparcv7) || defined(__sparc_v7__)
414 : /*
415 : * No stbar or membar available, luckily no actually produced hardware
416 : * requires a barrier. We fall through to the default gcc definition of
417 : * S_UNLOCK in this case.
418 : */
419 : #elif defined(__sparcv8) || defined(__sparc_v8__)
420 : /* stbar is available (and required for both PSO, RMO), membar isn't */
421 : #define S_UNLOCK(lock) \
422 : do \
423 : { \
424 : __asm__ __volatile__ ("stbar \n":::"memory"); \
425 : *((volatile slock_t *) (lock)) = 0; \
426 : } while (0)
427 : #else
428 : /*
429 : * #LoadStore (RMO) | #StoreStore (RMO, PSO) together are the appropriate
430 : * release barrier for sparcv8+ upwards.
431 : */
432 : #define S_UNLOCK(lock) \
433 : do \
434 : { \
435 : __asm__ __volatile__ ("membar #LoadStore | #StoreStore \n":::"memory"); \
436 : *((volatile slock_t *) (lock)) = 0; \
437 : } while (0)
438 : #endif
439 :
440 : #endif /* __sparc__ */
441 :
442 :
443 : /* PowerPC */
444 : #if defined(__ppc__) || defined(__powerpc__) || defined(__ppc64__) || defined(__powerpc64__)
445 : #define HAS_TEST_AND_SET
446 :
447 : typedef unsigned int slock_t;
448 :
449 : #define TAS(lock) tas(lock)
450 :
451 : /* On PPC, it's a win to use a non-locking test before the lwarx */
452 : #define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock))
453 :
454 : /*
455 : * NOTE: per the Enhanced PowerPC Architecture manual, v1.0 dated 7-May-2002,
456 : * an isync is a sufficient synchronization barrier after a lwarx/stwcx loop.
457 : * On newer machines, we can use lwsync instead for better performance.
458 : *
459 : * Ordinarily, we'd code the branches here using GNU-style local symbols, that
460 : * is "1f" referencing "1:" and so on. But some people run gcc on AIX with
461 : * IBM's assembler as backend, and IBM's assembler doesn't do local symbols.
462 : * So hand-code the branch offsets; fortunately, all PPC instructions are
463 : * exactly 4 bytes each, so it's not too hard to count.
464 : */
465 : static __inline__ int
466 : tas(volatile slock_t *lock)
467 : {
468 : slock_t _t;
469 : int _res;
470 :
471 : __asm__ __volatile__(
472 : #ifdef USE_PPC_LWARX_MUTEX_HINT
473 : " lwarx %0,0,%3,1 \n"
474 : #else
475 : " lwarx %0,0,%3 \n"
476 : #endif
477 : " cmpwi %0,0 \n"
478 : " bne $+16 \n" /* branch to li %1,1 */
479 : " addi %0,%0,1 \n"
480 : " stwcx. %0,0,%3 \n"
481 : " beq $+12 \n" /* branch to lwsync/isync */
482 : " li %1,1 \n"
483 : " b $+12 \n" /* branch to end of asm sequence */
484 : #ifdef USE_PPC_LWSYNC
485 : " lwsync \n"
486 : #else
487 : " isync \n"
488 : #endif
489 : " li %1,0 \n"
490 :
491 : : "=&r"(_t), "=r"(_res), "+m"(*lock)
492 : : "r"(lock)
493 : : "memory", "cc");
494 : return _res;
495 : }
496 :
497 : /*
498 : * PowerPC S_UNLOCK is almost standard but requires a "sync" instruction.
499 : * On newer machines, we can use lwsync instead for better performance.
500 : */
501 : #ifdef USE_PPC_LWSYNC
502 : #define S_UNLOCK(lock) \
503 : do \
504 : { \
505 : __asm__ __volatile__ (" lwsync \n" ::: "memory"); \
506 : *((volatile slock_t *) (lock)) = 0; \
507 : } while (0)
508 : #else
509 : #define S_UNLOCK(lock) \
510 : do \
511 : { \
512 : __asm__ __volatile__ (" sync \n" ::: "memory"); \
513 : *((volatile slock_t *) (lock)) = 0; \
514 : } while (0)
515 : #endif /* USE_PPC_LWSYNC */
516 :
517 : #endif /* powerpc */
518 :
519 :
520 : /* Linux Motorola 68k */
521 : #if (defined(__mc68000__) || defined(__m68k__)) && defined(__linux__)
522 : #define HAS_TEST_AND_SET
523 :
524 : typedef unsigned char slock_t;
525 :
526 : #define TAS(lock) tas(lock)
527 :
528 : static __inline__ int
529 : tas(volatile slock_t *lock)
530 : {
531 : register int rv;
532 :
533 : __asm__ __volatile__(
534 : " clrl %0 \n"
535 : " tas %1 \n"
536 : " sne %0 \n"
537 : : "=d"(rv), "+m"(*lock)
538 : : /* no inputs */
539 : : "memory", "cc");
540 : return rv;
541 : }
542 :
543 : #endif /* (__mc68000__ || __m68k__) && __linux__ */
544 :
545 :
546 : /*
547 : * VAXen -- even multiprocessor ones
548 : * (thanks to Tom Ivar Helbekkmo)
549 : */
550 : #if defined(__vax__)
551 : #define HAS_TEST_AND_SET
552 :
553 : typedef unsigned char slock_t;
554 :
555 : #define TAS(lock) tas(lock)
556 :
557 : static __inline__ int
558 : tas(volatile slock_t *lock)
559 : {
560 : register int _res;
561 :
562 : __asm__ __volatile__(
563 : " movl $1, %0 \n"
564 : " bbssi $0, (%2), 1f \n"
565 : " clrl %0 \n"
566 : "1: \n"
567 : : "=&r"(_res), "+m"(*lock)
568 : : "r"(lock)
569 : : "memory");
570 : return _res;
571 : }
572 :
573 : #endif /* __vax__ */
574 :
575 :
576 : #if defined(__mips__) && !defined(__sgi) /* non-SGI MIPS */
577 : /* Note: on SGI we use the OS' mutex ABI, see below */
578 : /* Note: R10000 processors require a separate SYNC */
579 : #define HAS_TEST_AND_SET
580 :
581 : typedef unsigned int slock_t;
582 :
583 : #define TAS(lock) tas(lock)
584 :
585 : static __inline__ int
586 : tas(volatile slock_t *lock)
587 : {
588 : register volatile slock_t *_l = lock;
589 : register int _res;
590 : register int _tmp;
591 :
592 : __asm__ __volatile__(
593 : " .set push \n"
594 : " .set mips2 \n"
595 : " .set noreorder \n"
596 : " .set nomacro \n"
597 : " ll %0, %2 \n"
598 : " or %1, %0, 1 \n"
599 : " sc %1, %2 \n"
600 : " xori %1, 1 \n"
601 : " or %0, %0, %1 \n"
602 : " sync \n"
603 : " .set pop "
604 : : "=&r" (_res), "=&r" (_tmp), "+R" (*_l)
605 : : /* no inputs */
606 : : "memory");
607 : return _res;
608 : }
609 :
610 : /* MIPS S_UNLOCK is almost standard but requires a "sync" instruction */
611 : #define S_UNLOCK(lock) \
612 : do \
613 : { \
614 : __asm__ __volatile__( \
615 : " .set push \n" \
616 : " .set mips2 \n" \
617 : " .set noreorder \n" \
618 : " .set nomacro \n" \
619 : " sync \n" \
620 : " .set pop " \
621 : : /* no outputs */ \
622 : : /* no inputs */ \
623 : : "memory"); \
624 : *((volatile slock_t *) (lock)) = 0; \
625 : } while (0)
626 :
627 : #endif /* __mips__ && !__sgi */
628 :
629 :
630 : #if defined(__m32r__) && defined(HAVE_SYS_TAS_H) /* Renesas' M32R */
631 : #define HAS_TEST_AND_SET
632 :
633 : #include <sys/tas.h>
634 :
635 : typedef int slock_t;
636 :
637 : #define TAS(lock) tas(lock)
638 :
639 : #endif /* __m32r__ */
640 :
641 :
642 : #if defined(__sh__) /* Renesas' SuperH */
643 : #define HAS_TEST_AND_SET
644 :
645 : typedef unsigned char slock_t;
646 :
647 : #define TAS(lock) tas(lock)
648 :
649 : static __inline__ int
650 : tas(volatile slock_t *lock)
651 : {
652 : register int _res;
653 :
654 : /*
655 : * This asm is coded as if %0 could be any register, but actually SuperH
656 : * restricts the target of xor-immediate to be R0. That's handled by
657 : * the "z" constraint on _res.
658 : */
659 : __asm__ __volatile__(
660 : " tas.b @%2 \n"
661 : " movt %0 \n"
662 : " xor #1,%0 \n"
663 : : "=z"(_res), "+m"(*lock)
664 : : "r"(lock)
665 : : "memory", "t");
666 : return _res;
667 : }
668 :
669 : #endif /* __sh__ */
670 :
671 :
672 : /* These live in s_lock.c, but only for gcc */
673 :
674 :
675 : #if defined(__m68k__) && !defined(__linux__) /* non-Linux Motorola 68k */
676 : #define HAS_TEST_AND_SET
677 :
678 : typedef unsigned char slock_t;
679 : #endif
680 :
681 : /*
682 : * Default implementation of S_UNLOCK() for gcc/icc.
683 : *
684 : * Note that this implementation is unsafe for any platform that can reorder
685 : * a memory access (either load or store) after a following store. That
686 : * happens not to be possible on x86 and most legacy architectures (some are
687 : * single-processor!), but many modern systems have weaker memory ordering.
688 : * Those that do must define their own version of S_UNLOCK() rather than
689 : * relying on this one.
690 : */
691 : #if !defined(S_UNLOCK)
692 : #define S_UNLOCK(lock) \
693 : do { __asm__ __volatile__("" : : : "memory"); *(lock) = 0; } while (0)
694 : #endif
695 :
696 : #endif /* defined(__GNUC__) || defined(__INTEL_COMPILER) */
697 :
698 :
699 :
700 : /*
701 : * ---------------------------------------------------------------------
702 : * Platforms that use non-gcc inline assembly:
703 : * ---------------------------------------------------------------------
704 : */
705 :
706 : #if !defined(HAS_TEST_AND_SET) /* We didn't trigger above, let's try here */
707 :
708 :
709 : #if defined(__hppa) || defined(__hppa__) /* HP PA-RISC, GCC and HP compilers */
710 : /*
711 : * HP's PA-RISC
712 : *
713 : * See src/backend/port/hpux/tas.c.template for details about LDCWX. Because
714 : * LDCWX requires a 16-byte-aligned address, we declare slock_t as a 16-byte
715 : * struct. The active word in the struct is whichever has the aligned address;
716 : * the other three words just sit at -1.
717 : *
718 : * When using gcc, we can inline the required assembly code.
719 : */
720 : #define HAS_TEST_AND_SET
721 :
722 : typedef struct
723 : {
724 : int sema[4];
725 : } slock_t;
726 :
727 : #define TAS_ACTIVE_WORD(lock) ((volatile int *) (((uintptr_t) (lock) + 15) & ~15))
728 :
729 : #if defined(__GNUC__)
730 :
731 : static __inline__ int
732 : tas(volatile slock_t *lock)
733 : {
734 : volatile int *lockword = TAS_ACTIVE_WORD(lock);
735 : register int lockval;
736 :
737 : __asm__ __volatile__(
738 : " ldcwx 0(0,%2),%0 \n"
739 : : "=r"(lockval), "+m"(*lockword)
740 : : "r"(lockword)
741 : : "memory");
742 : return (lockval == 0);
743 : }
744 :
745 : /*
746 : * The hppa implementation doesn't follow the rules of this files and provides
747 : * a gcc specific implementation outside of the above defined(__GNUC__). It
748 : * does so to avoid duplication between the HP compiler and gcc. So undefine
749 : * the generic fallback S_UNLOCK from above.
750 : */
751 : #ifdef S_UNLOCK
752 : #undef S_UNLOCK
753 : #endif
754 : #define S_UNLOCK(lock) \
755 : do { \
756 : __asm__ __volatile__("" : : : "memory"); \
757 : *TAS_ACTIVE_WORD(lock) = -1; \
758 : } while (0)
759 :
760 : #endif /* __GNUC__ */
761 :
762 : #define S_INIT_LOCK(lock) \
763 : do { \
764 : volatile slock_t *lock_ = (lock); \
765 : lock_->sema[0] = -1; \
766 : lock_->sema[1] = -1; \
767 : lock_->sema[2] = -1; \
768 : lock_->sema[3] = -1; \
769 : } while (0)
770 :
771 : #define S_LOCK_FREE(lock) (*TAS_ACTIVE_WORD(lock) != 0)
772 :
773 : #endif /* __hppa || __hppa__ */
774 :
775 :
776 : #if defined(__hpux) && defined(__ia64) && !defined(__GNUC__)
777 : /*
778 : * HP-UX on Itanium, non-gcc/icc compiler
779 : *
780 : * We assume that the compiler enforces strict ordering of loads/stores on
781 : * volatile data (see comments on the gcc-version earlier in this file).
782 : * Note that this assumption does *not* hold if you use the
783 : * +Ovolatile=__unordered option on the HP-UX compiler, so don't do that.
784 : *
785 : * See also Implementing Spinlocks on the Intel Itanium Architecture and
786 : * PA-RISC, by Tor Ekqvist and David Graves, for more information. As of
787 : * this writing, version 1.0 of the manual is available at:
788 : * http://h21007.www2.hp.com/portal/download/files/unprot/itanium/spinlocks.pdf
789 : */
790 : #define HAS_TEST_AND_SET
791 :
792 : typedef unsigned int slock_t;
793 :
794 : #include <ia64/sys/inline.h>
795 : #define TAS(lock) _Asm_xchg(_SZ_W, lock, 1, _LDHINT_NONE)
796 : /* On IA64, it's a win to use a non-locking test before the xchg proper */
797 : #define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock))
798 : #define S_UNLOCK(lock) \
799 : do { _Asm_mf(); (*(lock)) = 0; } while (0)
800 :
801 : #endif /* HPUX on IA64, non gcc/icc */
802 :
803 : #if defined(_AIX) /* AIX */
804 : /*
805 : * AIX (POWER)
806 : */
807 : #define HAS_TEST_AND_SET
808 :
809 : #include <sys/atomic_op.h>
810 :
811 : typedef int slock_t;
812 :
813 : #define TAS(lock) _check_lock((slock_t *) (lock), 0, 1)
814 : #define S_UNLOCK(lock) _clear_lock((slock_t *) (lock), 0)
815 : #endif /* _AIX */
816 :
817 :
818 : /* These are in sunstudio_(sparc|x86).s */
819 :
820 : #if defined(__SUNPRO_C) && (defined(__i386) || defined(__x86_64__) || defined(__sparc__) || defined(__sparc))
821 : #define HAS_TEST_AND_SET
822 :
823 : #if defined(__i386) || defined(__x86_64__) || defined(__sparcv9) || defined(__sparcv8plus)
824 : typedef unsigned int slock_t;
825 : #else
826 : typedef unsigned char slock_t;
827 : #endif
828 :
829 : extern slock_t pg_atomic_cas(volatile slock_t *lock, slock_t with,
830 : slock_t cmp);
831 :
832 : #define TAS(a) (pg_atomic_cas((a), 1, 0) != 0)
833 : #endif
834 :
835 :
836 : #ifdef _MSC_VER
837 : typedef LONG slock_t;
838 :
839 : #define HAS_TEST_AND_SET
840 : #define TAS(lock) (InterlockedCompareExchange(lock, 1, 0))
841 :
842 : #define SPIN_DELAY() spin_delay()
843 :
844 : /* If using Visual C++ on Win64, inline assembly is unavailable.
845 : * Use a _mm_pause intrinsic instead of rep nop.
846 : */
847 : #if defined(_WIN64)
848 : static __forceinline void
849 : spin_delay(void)
850 : {
851 : _mm_pause();
852 : }
853 : #else
854 : static __forceinline void
855 : spin_delay(void)
856 : {
857 : /* See comment for gcc code. Same code, MASM syntax */
858 : __asm rep nop;
859 : }
860 : #endif
861 :
862 : #include <intrin.h>
863 : #pragma intrinsic(_ReadWriteBarrier)
864 :
865 : #define S_UNLOCK(lock) \
866 : do { _ReadWriteBarrier(); (*(lock)) = 0; } while (0)
867 :
868 : #endif
869 :
870 :
871 : #endif /* !defined(HAS_TEST_AND_SET) */
872 :
873 :
874 : /* Blow up if we didn't have any way to do spinlocks */
875 : #ifndef HAS_TEST_AND_SET
876 : #error PostgreSQL does not have native spinlock support on this platform. To continue the compilation, rerun configure using --disable-spinlocks. However, performance will be poor. Please report this to pgsql-bugs@postgresql.org.
877 : #endif
878 :
879 :
880 : #else /* !HAVE_SPINLOCKS */
881 :
882 :
883 : /*
884 : * Fake spinlock implementation using semaphores --- slow and prone
885 : * to fall foul of kernel limits on number of semaphores, so don't use this
886 : * unless you must! The subroutines appear in spin.c.
887 : */
888 : typedef int slock_t;
889 :
890 : extern bool s_lock_free_sema(volatile slock_t *lock);
891 : extern void s_unlock_sema(volatile slock_t *lock);
892 : extern void s_init_lock_sema(volatile slock_t *lock, bool nested);
893 : extern int tas_sema(volatile slock_t *lock);
894 :
895 : #define S_LOCK_FREE(lock) s_lock_free_sema(lock)
896 : #define S_UNLOCK(lock) s_unlock_sema(lock)
897 : #define S_INIT_LOCK(lock) s_init_lock_sema(lock, false)
898 : #define TAS(lock) tas_sema(lock)
899 :
900 :
901 : #endif /* HAVE_SPINLOCKS */
902 :
903 :
904 : /*
905 : * Default Definitions - override these above as needed.
906 : */
907 :
908 : #if !defined(S_LOCK)
909 : #define S_LOCK(lock) \
910 : (TAS(lock) ? s_lock((lock), __FILE__, __LINE__, PG_FUNCNAME_MACRO) : 0)
911 : #endif /* S_LOCK */
912 :
913 : #if !defined(S_LOCK_FREE)
914 : #define S_LOCK_FREE(lock) (*(lock) == 0)
915 : #endif /* S_LOCK_FREE */
916 :
917 : #if !defined(S_UNLOCK)
918 : /*
919 : * Our default implementation of S_UNLOCK is essentially *(lock) = 0. This
920 : * is unsafe if the platform can reorder a memory access (either load or
921 : * store) after a following store; platforms where this is possible must
922 : * define their own S_UNLOCK. But CPU reordering is not the only concern:
923 : * if we simply defined S_UNLOCK() as an inline macro, the compiler might
924 : * reorder instructions from inside the critical section to occur after the
925 : * lock release. Since the compiler probably can't know what the external
926 : * function s_unlock is doing, putting the same logic there should be adequate.
927 : * A sufficiently-smart globally optimizing compiler could break that
928 : * assumption, though, and the cost of a function call for every spinlock
929 : * release may hurt performance significantly, so we use this implementation
930 : * only for platforms where we don't know of a suitable intrinsic. For the
931 : * most part, those are relatively obscure platform/compiler combinations to
932 : * which the PostgreSQL project does not have access.
933 : */
934 : #define USE_DEFAULT_S_UNLOCK
935 : extern void s_unlock(volatile slock_t *lock);
936 : #define S_UNLOCK(lock) s_unlock(lock)
937 : #endif /* S_UNLOCK */
938 :
939 : #if !defined(S_INIT_LOCK)
940 : #define S_INIT_LOCK(lock) S_UNLOCK(lock)
941 : #endif /* S_INIT_LOCK */
942 :
943 : #if !defined(SPIN_DELAY)
944 : #define SPIN_DELAY() ((void) 0)
945 : #endif /* SPIN_DELAY */
946 :
947 : #if !defined(TAS)
948 : extern int tas(volatile slock_t *lock); /* in port/.../tas.s, or
949 : * s_lock.c */
950 :
951 : #define TAS(lock) tas(lock)
952 : #endif /* TAS */
953 :
954 : #if !defined(TAS_SPIN)
955 : #define TAS_SPIN(lock) TAS(lock)
956 : #endif /* TAS_SPIN */
957 :
958 : extern slock_t dummy_spinlock;
959 :
960 : /*
961 : * Platform-independent out-of-line support routines
962 : */
963 : extern int s_lock(volatile slock_t *lock, const char *file, int line, const char *func);
964 :
965 : /* Support for dynamic adjustment of spins_per_delay */
966 : #define DEFAULT_SPINS_PER_DELAY 100
967 :
968 : extern void set_spins_per_delay(int shared_spins_per_delay);
969 : extern int update_spins_per_delay(int shared_spins_per_delay);
970 :
971 : /*
972 : * Support for spin delay which is useful in various places where
973 : * spinlock-like procedures take place.
974 : */
975 : typedef struct
976 : {
977 : int spins;
978 : int delays;
979 : int cur_delay;
980 : const char *file;
981 : int line;
982 : const char *func;
983 : } SpinDelayStatus;
984 :
985 : static inline void
986 322565 : init_spin_delay(SpinDelayStatus *status,
987 : const char *file, int line, const char *func)
988 : {
989 322565 : status->spins = 0;
990 322565 : status->delays = 0;
991 322565 : status->cur_delay = 0;
992 322565 : status->file = file;
993 322565 : status->line = line;
994 322565 : status->func = func;
995 322565 : }
996 :
997 : #define init_local_spin_delay(status) init_spin_delay(status, __FILE__, __LINE__, PG_FUNCNAME_MACRO)
998 : void perform_spin_delay(SpinDelayStatus *status);
999 : void finish_spin_delay(SpinDelayStatus *status);
1000 :
1001 : #endif /* S_LOCK_H */
|