Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * sha2.c
4 : * Set of SHA functions for SHA-224, SHA-256, SHA-384 and SHA-512.
5 : *
6 : * This is the set of in-core functions used when there are no other
7 : * alternative options like OpenSSL.
8 : *
9 : * Portions Copyright (c) 2016-2017, PostgreSQL Global Development Group
10 : *
11 : * IDENTIFICATION
12 : * src/common/sha2.c
13 : *
14 : *-------------------------------------------------------------------------
15 : */
16 :
17 : /* $OpenBSD: sha2.c,v 1.6 2004/05/03 02:57:36 millert Exp $ */
18 : /*
19 : * FILE: sha2.c
20 : * AUTHOR: Aaron D. Gifford <me@aarongifford.com>
21 : *
22 : * Copyright (c) 2000-2001, Aaron D. Gifford
23 : * All rights reserved.
24 : *
25 : * Redistribution and use in source and binary forms, with or without
26 : * modification, are permitted provided that the following conditions
27 : * are met:
28 : * 1. Redistributions of source code must retain the above copyright
29 : * notice, this list of conditions and the following disclaimer.
30 : * 2. Redistributions in binary form must reproduce the above copyright
31 : * notice, this list of conditions and the following disclaimer in the
32 : * documentation and/or other materials provided with the distribution.
33 : * 3. Neither the name of the copyright holder nor the names of contributors
34 : * may be used to endorse or promote products derived from this software
35 : * without specific prior written permission.
36 : *
37 : * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
38 : * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
39 : * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
40 : * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
41 : * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
42 : * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
43 : * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 : * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
45 : * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
46 : * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
47 : * SUCH DAMAGE.
48 : *
49 : * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
50 : */
51 :
52 :
53 : #ifndef FRONTEND
54 : #include "postgres.h"
55 : #else
56 : #include "postgres_fe.h"
57 : #endif
58 :
59 : #include <sys/param.h>
60 :
61 : #include "common/sha2.h"
62 :
63 : /*
64 : * UNROLLED TRANSFORM LOOP NOTE:
65 : * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
66 : * loop version for the hash transform rounds (defined using macros
67 : * later in this file). Either define on the command line, for example:
68 : *
69 : * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
70 : *
71 : * or define below:
72 : *
73 : * #define SHA2_UNROLL_TRANSFORM
74 : *
75 : */
76 :
77 : /*** SHA-256/384/512 Various Length Definitions ***********************/
78 : #define PG_SHA256_SHORT_BLOCK_LENGTH (PG_SHA256_BLOCK_LENGTH - 8)
79 : #define PG_SHA384_SHORT_BLOCK_LENGTH (PG_SHA384_BLOCK_LENGTH - 16)
80 : #define PG_SHA512_SHORT_BLOCK_LENGTH (PG_SHA512_BLOCK_LENGTH - 16)
81 :
82 : /*** ENDIAN REVERSAL MACROS *******************************************/
83 : #ifndef WORDS_BIGENDIAN
84 : #define REVERSE32(w,x) { \
85 : uint32 tmp = (w); \
86 : tmp = (tmp >> 16) | (tmp << 16); \
87 : (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
88 : }
89 : #define REVERSE64(w,x) { \
90 : uint64 tmp = (w); \
91 : tmp = (tmp >> 32) | (tmp << 32); \
92 : tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
93 : ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
94 : (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
95 : ((tmp & 0x0000ffff0000ffffULL) << 16); \
96 : }
97 : #endif /* not bigendian */
98 :
99 : /*
100 : * Macro for incrementally adding the unsigned 64-bit integer n to the
101 : * unsigned 128-bit integer (represented using a two-element array of
102 : * 64-bit words):
103 : */
104 : #define ADDINC128(w,n) { \
105 : (w)[0] += (uint64)(n); \
106 : if ((w)[0] < (n)) { \
107 : (w)[1]++; \
108 : } \
109 : }
110 :
111 : /*** THE SIX LOGICAL FUNCTIONS ****************************************/
112 : /*
113 : * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
114 : *
115 : * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
116 : * S is a ROTATION) because the SHA-256/384/512 description document
117 : * (see http://www.iwar.org.uk/comsec/resources/cipher/sha256-384-512.pdf)
118 : * uses this same "backwards" definition.
119 : */
120 : /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
121 : #define R(b,x) ((x) >> (b))
122 : /* 32-bit Rotate-right (used in SHA-256): */
123 : #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
124 : /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
125 : #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
126 :
127 : /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
128 : #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
129 : #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
130 :
131 : /* Four of six logical functions used in SHA-256: */
132 : #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
133 : #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
134 : #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
135 : #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
136 :
137 : /* Four of six logical functions used in SHA-384 and SHA-512: */
138 : #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
139 : #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
140 : #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
141 : #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
142 :
143 : /*** INTERNAL FUNCTION PROTOTYPES *************************************/
144 : /* NOTE: These should not be accessed directly from outside this
145 : * library -- they are intended for private internal visibility/use
146 : * only.
147 : */
148 : static void SHA512_Last(pg_sha512_ctx *context);
149 : static void SHA256_Transform(pg_sha256_ctx *context, const uint8 *data);
150 : static void SHA512_Transform(pg_sha512_ctx *context, const uint8 *data);
151 :
152 : /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
153 : /* Hash constant words K for SHA-256: */
154 : static const uint32 K256[64] = {
155 : 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
156 : 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
157 : 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
158 : 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
159 : 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
160 : 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
161 : 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
162 : 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
163 : 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
164 : 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
165 : 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
166 : 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
167 : 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
168 : 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
169 : 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
170 : 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
171 : };
172 :
173 : /* Initial hash value H for SHA-224: */
174 : static const uint32 sha224_initial_hash_value[8] = {
175 : 0xc1059ed8UL,
176 : 0x367cd507UL,
177 : 0x3070dd17UL,
178 : 0xf70e5939UL,
179 : 0xffc00b31UL,
180 : 0x68581511UL,
181 : 0x64f98fa7UL,
182 : 0xbefa4fa4UL
183 : };
184 :
185 : /* Initial hash value H for SHA-256: */
186 : static const uint32 sha256_initial_hash_value[8] = {
187 : 0x6a09e667UL,
188 : 0xbb67ae85UL,
189 : 0x3c6ef372UL,
190 : 0xa54ff53aUL,
191 : 0x510e527fUL,
192 : 0x9b05688cUL,
193 : 0x1f83d9abUL,
194 : 0x5be0cd19UL
195 : };
196 :
197 : /* Hash constant words K for SHA-384 and SHA-512: */
198 : static const uint64 K512[80] = {
199 : 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
200 : 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
201 : 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
202 : 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
203 : 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
204 : 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
205 : 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
206 : 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
207 : 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
208 : 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
209 : 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
210 : 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
211 : 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
212 : 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
213 : 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
214 : 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
215 : 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
216 : 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
217 : 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
218 : 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
219 : 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
220 : 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
221 : 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
222 : 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
223 : 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
224 : 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
225 : 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
226 : 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
227 : 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
228 : 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
229 : 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
230 : 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
231 : 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
232 : 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
233 : 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
234 : 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
235 : 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
236 : 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
237 : 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
238 : 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
239 : };
240 :
241 : /* Initial hash value H for SHA-384 */
242 : static const uint64 sha384_initial_hash_value[8] = {
243 : 0xcbbb9d5dc1059ed8ULL,
244 : 0x629a292a367cd507ULL,
245 : 0x9159015a3070dd17ULL,
246 : 0x152fecd8f70e5939ULL,
247 : 0x67332667ffc00b31ULL,
248 : 0x8eb44a8768581511ULL,
249 : 0xdb0c2e0d64f98fa7ULL,
250 : 0x47b5481dbefa4fa4ULL
251 : };
252 :
253 : /* Initial hash value H for SHA-512 */
254 : static const uint64 sha512_initial_hash_value[8] = {
255 : 0x6a09e667f3bcc908ULL,
256 : 0xbb67ae8584caa73bULL,
257 : 0x3c6ef372fe94f82bULL,
258 : 0xa54ff53a5f1d36f1ULL,
259 : 0x510e527fade682d1ULL,
260 : 0x9b05688c2b3e6c1fULL,
261 : 0x1f83d9abfb41bd6bULL,
262 : 0x5be0cd19137e2179ULL
263 : };
264 :
265 :
266 : /*** SHA-256: *********************************************************/
267 : void
268 0 : pg_sha256_init(pg_sha256_ctx *context)
269 : {
270 0 : if (context == NULL)
271 0 : return;
272 0 : memcpy(context->state, sha256_initial_hash_value, PG_SHA256_DIGEST_LENGTH);
273 0 : memset(context->buffer, 0, PG_SHA256_BLOCK_LENGTH);
274 0 : context->bitcount = 0;
275 : }
276 :
277 : #ifdef SHA2_UNROLL_TRANSFORM
278 :
279 : /* Unrolled SHA-256 round macros: */
280 :
281 : #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \
282 : W256[j] = (uint32)data[3] | ((uint32)data[2] << 8) | \
283 : ((uint32)data[1] << 16) | ((uint32)data[0] << 24); \
284 : data += 4; \
285 : T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
286 : (d) += T1; \
287 : (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
288 : j++; \
289 : } while(0)
290 :
291 : #define ROUND256(a,b,c,d,e,f,g,h) do { \
292 : s0 = W256[(j+1)&0x0f]; \
293 : s0 = sigma0_256(s0); \
294 : s1 = W256[(j+14)&0x0f]; \
295 : s1 = sigma1_256(s1); \
296 : T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \
297 : (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
298 : (d) += T1; \
299 : (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
300 : j++; \
301 : } while(0)
302 :
303 : static void
304 : SHA256_Transform(pg_sha256_ctx *context, const uint8 *data)
305 : {
306 : uint32 a,
307 : b,
308 : c,
309 : d,
310 : e,
311 : f,
312 : g,
313 : h,
314 : s0,
315 : s1;
316 : uint32 T1,
317 : *W256;
318 : int j;
319 :
320 : W256 = (uint32 *) context->buffer;
321 :
322 : /* Initialize registers with the prev. intermediate value */
323 : a = context->state[0];
324 : b = context->state[1];
325 : c = context->state[2];
326 : d = context->state[3];
327 : e = context->state[4];
328 : f = context->state[5];
329 : g = context->state[6];
330 : h = context->state[7];
331 :
332 : j = 0;
333 : do
334 : {
335 : /* Rounds 0 to 15 (unrolled): */
336 : ROUND256_0_TO_15(a, b, c, d, e, f, g, h);
337 : ROUND256_0_TO_15(h, a, b, c, d, e, f, g);
338 : ROUND256_0_TO_15(g, h, a, b, c, d, e, f);
339 : ROUND256_0_TO_15(f, g, h, a, b, c, d, e);
340 : ROUND256_0_TO_15(e, f, g, h, a, b, c, d);
341 : ROUND256_0_TO_15(d, e, f, g, h, a, b, c);
342 : ROUND256_0_TO_15(c, d, e, f, g, h, a, b);
343 : ROUND256_0_TO_15(b, c, d, e, f, g, h, a);
344 : } while (j < 16);
345 :
346 : /* Now for the remaining rounds to 64: */
347 : do
348 : {
349 : ROUND256(a, b, c, d, e, f, g, h);
350 : ROUND256(h, a, b, c, d, e, f, g);
351 : ROUND256(g, h, a, b, c, d, e, f);
352 : ROUND256(f, g, h, a, b, c, d, e);
353 : ROUND256(e, f, g, h, a, b, c, d);
354 : ROUND256(d, e, f, g, h, a, b, c);
355 : ROUND256(c, d, e, f, g, h, a, b);
356 : ROUND256(b, c, d, e, f, g, h, a);
357 : } while (j < 64);
358 :
359 : /* Compute the current intermediate hash value */
360 : context->state[0] += a;
361 : context->state[1] += b;
362 : context->state[2] += c;
363 : context->state[3] += d;
364 : context->state[4] += e;
365 : context->state[5] += f;
366 : context->state[6] += g;
367 : context->state[7] += h;
368 :
369 : /* Clean up */
370 : a = b = c = d = e = f = g = h = T1 = 0;
371 : }
372 : #else /* SHA2_UNROLL_TRANSFORM */
373 :
374 : static void
375 0 : SHA256_Transform(pg_sha256_ctx *context, const uint8 *data)
376 : {
377 : uint32 a,
378 : b,
379 : c,
380 : d,
381 : e,
382 : f,
383 : g,
384 : h,
385 : s0,
386 : s1;
387 : uint32 T1,
388 : T2,
389 : *W256;
390 : int j;
391 :
392 0 : W256 = (uint32 *) context->buffer;
393 :
394 : /* Initialize registers with the prev. intermediate value */
395 0 : a = context->state[0];
396 0 : b = context->state[1];
397 0 : c = context->state[2];
398 0 : d = context->state[3];
399 0 : e = context->state[4];
400 0 : f = context->state[5];
401 0 : g = context->state[6];
402 0 : h = context->state[7];
403 :
404 0 : j = 0;
405 : do
406 : {
407 0 : W256[j] = (uint32) data[3] | ((uint32) data[2] << 8) |
408 0 : ((uint32) data[1] << 16) | ((uint32) data[0] << 24);
409 0 : data += 4;
410 : /* Apply the SHA-256 compression function to update a..h */
411 0 : T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
412 0 : T2 = Sigma0_256(a) + Maj(a, b, c);
413 0 : h = g;
414 0 : g = f;
415 0 : f = e;
416 0 : e = d + T1;
417 0 : d = c;
418 0 : c = b;
419 0 : b = a;
420 0 : a = T1 + T2;
421 :
422 0 : j++;
423 0 : } while (j < 16);
424 :
425 : do
426 : {
427 : /* Part of the message block expansion: */
428 0 : s0 = W256[(j + 1) & 0x0f];
429 0 : s0 = sigma0_256(s0);
430 0 : s1 = W256[(j + 14) & 0x0f];
431 0 : s1 = sigma1_256(s1);
432 :
433 : /* Apply the SHA-256 compression function to update a..h */
434 0 : T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
435 0 : (W256[j & 0x0f] += s1 + W256[(j + 9) & 0x0f] + s0);
436 0 : T2 = Sigma0_256(a) + Maj(a, b, c);
437 0 : h = g;
438 0 : g = f;
439 0 : f = e;
440 0 : e = d + T1;
441 0 : d = c;
442 0 : c = b;
443 0 : b = a;
444 0 : a = T1 + T2;
445 :
446 0 : j++;
447 0 : } while (j < 64);
448 :
449 : /* Compute the current intermediate hash value */
450 0 : context->state[0] += a;
451 0 : context->state[1] += b;
452 0 : context->state[2] += c;
453 0 : context->state[3] += d;
454 0 : context->state[4] += e;
455 0 : context->state[5] += f;
456 0 : context->state[6] += g;
457 0 : context->state[7] += h;
458 :
459 : /* Clean up */
460 0 : a = b = c = d = e = f = g = h = T1 = T2 = 0;
461 0 : }
462 : #endif /* SHA2_UNROLL_TRANSFORM */
463 :
464 : void
465 0 : pg_sha256_update(pg_sha256_ctx *context, const uint8 *data, size_t len)
466 : {
467 : size_t freespace,
468 : usedspace;
469 :
470 : /* Calling with no data is valid (we do nothing) */
471 0 : if (len == 0)
472 0 : return;
473 :
474 0 : usedspace = (context->bitcount >> 3) % PG_SHA256_BLOCK_LENGTH;
475 0 : if (usedspace > 0)
476 : {
477 : /* Calculate how much free space is available in the buffer */
478 0 : freespace = PG_SHA256_BLOCK_LENGTH - usedspace;
479 :
480 0 : if (len >= freespace)
481 : {
482 : /* Fill the buffer completely and process it */
483 0 : memcpy(&context->buffer[usedspace], data, freespace);
484 0 : context->bitcount += freespace << 3;
485 0 : len -= freespace;
486 0 : data += freespace;
487 0 : SHA256_Transform(context, context->buffer);
488 : }
489 : else
490 : {
491 : /* The buffer is not yet full */
492 0 : memcpy(&context->buffer[usedspace], data, len);
493 0 : context->bitcount += len << 3;
494 : /* Clean up: */
495 0 : usedspace = freespace = 0;
496 0 : return;
497 : }
498 : }
499 0 : while (len >= PG_SHA256_BLOCK_LENGTH)
500 : {
501 : /* Process as many complete blocks as we can */
502 0 : SHA256_Transform(context, data);
503 0 : context->bitcount += PG_SHA256_BLOCK_LENGTH << 3;
504 0 : len -= PG_SHA256_BLOCK_LENGTH;
505 0 : data += PG_SHA256_BLOCK_LENGTH;
506 : }
507 0 : if (len > 0)
508 : {
509 : /* There's left-overs, so save 'em */
510 0 : memcpy(context->buffer, data, len);
511 0 : context->bitcount += len << 3;
512 : }
513 : /* Clean up: */
514 0 : usedspace = freespace = 0;
515 : }
516 :
517 : static void
518 0 : SHA256_Last(pg_sha256_ctx *context)
519 : {
520 : unsigned int usedspace;
521 :
522 0 : usedspace = (context->bitcount >> 3) % PG_SHA256_BLOCK_LENGTH;
523 : #ifndef WORDS_BIGENDIAN
524 : /* Convert FROM host byte order */
525 0 : REVERSE64(context->bitcount, context->bitcount);
526 : #endif
527 0 : if (usedspace > 0)
528 : {
529 : /* Begin padding with a 1 bit: */
530 0 : context->buffer[usedspace++] = 0x80;
531 :
532 0 : if (usedspace <= PG_SHA256_SHORT_BLOCK_LENGTH)
533 : {
534 : /* Set-up for the last transform: */
535 0 : memset(&context->buffer[usedspace], 0, PG_SHA256_SHORT_BLOCK_LENGTH - usedspace);
536 : }
537 : else
538 : {
539 0 : if (usedspace < PG_SHA256_BLOCK_LENGTH)
540 : {
541 0 : memset(&context->buffer[usedspace], 0, PG_SHA256_BLOCK_LENGTH - usedspace);
542 : }
543 : /* Do second-to-last transform: */
544 0 : SHA256_Transform(context, context->buffer);
545 :
546 : /* And set-up for the last transform: */
547 0 : memset(context->buffer, 0, PG_SHA256_SHORT_BLOCK_LENGTH);
548 : }
549 : }
550 : else
551 : {
552 : /* Set-up for the last transform: */
553 0 : memset(context->buffer, 0, PG_SHA256_SHORT_BLOCK_LENGTH);
554 :
555 : /* Begin padding with a 1 bit: */
556 0 : *context->buffer = 0x80;
557 : }
558 : /* Set the bit count: */
559 0 : *(uint64 *) &context->buffer[PG_SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
560 :
561 : /* Final transform: */
562 0 : SHA256_Transform(context, context->buffer);
563 0 : }
564 :
565 : void
566 0 : pg_sha256_final(pg_sha256_ctx *context, uint8 *digest)
567 : {
568 : /* If no digest buffer is passed, we don't bother doing this: */
569 0 : if (digest != NULL)
570 : {
571 0 : SHA256_Last(context);
572 :
573 : #ifndef WORDS_BIGENDIAN
574 : {
575 : /* Convert TO host byte order */
576 : int j;
577 :
578 0 : for (j = 0; j < 8; j++)
579 : {
580 0 : REVERSE32(context->state[j], context->state[j]);
581 : }
582 : }
583 : #endif
584 0 : memcpy(digest, context->state, PG_SHA256_DIGEST_LENGTH);
585 : }
586 :
587 : /* Clean up state data: */
588 0 : memset(context, 0, sizeof(pg_sha256_ctx));
589 0 : }
590 :
591 :
592 : /*** SHA-512: *********************************************************/
593 : void
594 0 : pg_sha512_init(pg_sha512_ctx *context)
595 : {
596 0 : if (context == NULL)
597 0 : return;
598 0 : memcpy(context->state, sha512_initial_hash_value, PG_SHA512_DIGEST_LENGTH);
599 0 : memset(context->buffer, 0, PG_SHA512_BLOCK_LENGTH);
600 0 : context->bitcount[0] = context->bitcount[1] = 0;
601 : }
602 :
603 : #ifdef SHA2_UNROLL_TRANSFORM
604 :
605 : /* Unrolled SHA-512 round macros: */
606 :
607 : #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \
608 : W512[j] = (uint64)data[7] | ((uint64)data[6] << 8) | \
609 : ((uint64)data[5] << 16) | ((uint64)data[4] << 24) | \
610 : ((uint64)data[3] << 32) | ((uint64)data[2] << 40) | \
611 : ((uint64)data[1] << 48) | ((uint64)data[0] << 56); \
612 : data += 8; \
613 : T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
614 : (d) += T1; \
615 : (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \
616 : j++; \
617 : } while(0)
618 :
619 :
620 : #define ROUND512(a,b,c,d,e,f,g,h) do { \
621 : s0 = W512[(j+1)&0x0f]; \
622 : s0 = sigma0_512(s0); \
623 : s1 = W512[(j+14)&0x0f]; \
624 : s1 = sigma1_512(s1); \
625 : T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + \
626 : (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
627 : (d) += T1; \
628 : (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \
629 : j++; \
630 : } while(0)
631 :
632 : static void
633 : SHA512_Transform(pg_sha512_ctx *context, const uint8 *data)
634 : {
635 : uint64 a,
636 : b,
637 : c,
638 : d,
639 : e,
640 : f,
641 : g,
642 : h,
643 : s0,
644 : s1;
645 : uint64 T1,
646 : *W512 = (uint64 *) context->buffer;
647 : int j;
648 :
649 : /* Initialize registers with the prev. intermediate value */
650 : a = context->state[0];
651 : b = context->state[1];
652 : c = context->state[2];
653 : d = context->state[3];
654 : e = context->state[4];
655 : f = context->state[5];
656 : g = context->state[6];
657 : h = context->state[7];
658 :
659 : j = 0;
660 : do
661 : {
662 : ROUND512_0_TO_15(a, b, c, d, e, f, g, h);
663 : ROUND512_0_TO_15(h, a, b, c, d, e, f, g);
664 : ROUND512_0_TO_15(g, h, a, b, c, d, e, f);
665 : ROUND512_0_TO_15(f, g, h, a, b, c, d, e);
666 : ROUND512_0_TO_15(e, f, g, h, a, b, c, d);
667 : ROUND512_0_TO_15(d, e, f, g, h, a, b, c);
668 : ROUND512_0_TO_15(c, d, e, f, g, h, a, b);
669 : ROUND512_0_TO_15(b, c, d, e, f, g, h, a);
670 : } while (j < 16);
671 :
672 : /* Now for the remaining rounds up to 79: */
673 : do
674 : {
675 : ROUND512(a, b, c, d, e, f, g, h);
676 : ROUND512(h, a, b, c, d, e, f, g);
677 : ROUND512(g, h, a, b, c, d, e, f);
678 : ROUND512(f, g, h, a, b, c, d, e);
679 : ROUND512(e, f, g, h, a, b, c, d);
680 : ROUND512(d, e, f, g, h, a, b, c);
681 : ROUND512(c, d, e, f, g, h, a, b);
682 : ROUND512(b, c, d, e, f, g, h, a);
683 : } while (j < 80);
684 :
685 : /* Compute the current intermediate hash value */
686 : context->state[0] += a;
687 : context->state[1] += b;
688 : context->state[2] += c;
689 : context->state[3] += d;
690 : context->state[4] += e;
691 : context->state[5] += f;
692 : context->state[6] += g;
693 : context->state[7] += h;
694 :
695 : /* Clean up */
696 : a = b = c = d = e = f = g = h = T1 = 0;
697 : }
698 : #else /* SHA2_UNROLL_TRANSFORM */
699 :
700 : static void
701 0 : SHA512_Transform(pg_sha512_ctx *context, const uint8 *data)
702 : {
703 : uint64 a,
704 : b,
705 : c,
706 : d,
707 : e,
708 : f,
709 : g,
710 : h,
711 : s0,
712 : s1;
713 : uint64 T1,
714 : T2,
715 0 : *W512 = (uint64 *) context->buffer;
716 : int j;
717 :
718 : /* Initialize registers with the prev. intermediate value */
719 0 : a = context->state[0];
720 0 : b = context->state[1];
721 0 : c = context->state[2];
722 0 : d = context->state[3];
723 0 : e = context->state[4];
724 0 : f = context->state[5];
725 0 : g = context->state[6];
726 0 : h = context->state[7];
727 :
728 0 : j = 0;
729 : do
730 : {
731 0 : W512[j] = (uint64) data[7] | ((uint64) data[6] << 8) |
732 0 : ((uint64) data[5] << 16) | ((uint64) data[4] << 24) |
733 0 : ((uint64) data[3] << 32) | ((uint64) data[2] << 40) |
734 0 : ((uint64) data[1] << 48) | ((uint64) data[0] << 56);
735 0 : data += 8;
736 : /* Apply the SHA-512 compression function to update a..h */
737 0 : T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
738 0 : T2 = Sigma0_512(a) + Maj(a, b, c);
739 0 : h = g;
740 0 : g = f;
741 0 : f = e;
742 0 : e = d + T1;
743 0 : d = c;
744 0 : c = b;
745 0 : b = a;
746 0 : a = T1 + T2;
747 :
748 0 : j++;
749 0 : } while (j < 16);
750 :
751 : do
752 : {
753 : /* Part of the message block expansion: */
754 0 : s0 = W512[(j + 1) & 0x0f];
755 0 : s0 = sigma0_512(s0);
756 0 : s1 = W512[(j + 14) & 0x0f];
757 0 : s1 = sigma1_512(s1);
758 :
759 : /* Apply the SHA-512 compression function to update a..h */
760 0 : T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
761 0 : (W512[j & 0x0f] += s1 + W512[(j + 9) & 0x0f] + s0);
762 0 : T2 = Sigma0_512(a) + Maj(a, b, c);
763 0 : h = g;
764 0 : g = f;
765 0 : f = e;
766 0 : e = d + T1;
767 0 : d = c;
768 0 : c = b;
769 0 : b = a;
770 0 : a = T1 + T2;
771 :
772 0 : j++;
773 0 : } while (j < 80);
774 :
775 : /* Compute the current intermediate hash value */
776 0 : context->state[0] += a;
777 0 : context->state[1] += b;
778 0 : context->state[2] += c;
779 0 : context->state[3] += d;
780 0 : context->state[4] += e;
781 0 : context->state[5] += f;
782 0 : context->state[6] += g;
783 0 : context->state[7] += h;
784 :
785 : /* Clean up */
786 0 : a = b = c = d = e = f = g = h = T1 = T2 = 0;
787 0 : }
788 : #endif /* SHA2_UNROLL_TRANSFORM */
789 :
790 : void
791 0 : pg_sha512_update(pg_sha512_ctx *context, const uint8 *data, size_t len)
792 : {
793 : size_t freespace,
794 : usedspace;
795 :
796 : /* Calling with no data is valid (we do nothing) */
797 0 : if (len == 0)
798 0 : return;
799 :
800 0 : usedspace = (context->bitcount[0] >> 3) % PG_SHA512_BLOCK_LENGTH;
801 0 : if (usedspace > 0)
802 : {
803 : /* Calculate how much free space is available in the buffer */
804 0 : freespace = PG_SHA512_BLOCK_LENGTH - usedspace;
805 :
806 0 : if (len >= freespace)
807 : {
808 : /* Fill the buffer completely and process it */
809 0 : memcpy(&context->buffer[usedspace], data, freespace);
810 0 : ADDINC128(context->bitcount, freespace << 3);
811 0 : len -= freespace;
812 0 : data += freespace;
813 0 : SHA512_Transform(context, context->buffer);
814 : }
815 : else
816 : {
817 : /* The buffer is not yet full */
818 0 : memcpy(&context->buffer[usedspace], data, len);
819 0 : ADDINC128(context->bitcount, len << 3);
820 : /* Clean up: */
821 0 : usedspace = freespace = 0;
822 0 : return;
823 : }
824 : }
825 0 : while (len >= PG_SHA512_BLOCK_LENGTH)
826 : {
827 : /* Process as many complete blocks as we can */
828 0 : SHA512_Transform(context, data);
829 0 : ADDINC128(context->bitcount, PG_SHA512_BLOCK_LENGTH << 3);
830 0 : len -= PG_SHA512_BLOCK_LENGTH;
831 0 : data += PG_SHA512_BLOCK_LENGTH;
832 : }
833 0 : if (len > 0)
834 : {
835 : /* There's left-overs, so save 'em */
836 0 : memcpy(context->buffer, data, len);
837 0 : ADDINC128(context->bitcount, len << 3);
838 : }
839 : /* Clean up: */
840 0 : usedspace = freespace = 0;
841 : }
842 :
843 : static void
844 0 : SHA512_Last(pg_sha512_ctx *context)
845 : {
846 : unsigned int usedspace;
847 :
848 0 : usedspace = (context->bitcount[0] >> 3) % PG_SHA512_BLOCK_LENGTH;
849 : #ifndef WORDS_BIGENDIAN
850 : /* Convert FROM host byte order */
851 0 : REVERSE64(context->bitcount[0], context->bitcount[0]);
852 0 : REVERSE64(context->bitcount[1], context->bitcount[1]);
853 : #endif
854 0 : if (usedspace > 0)
855 : {
856 : /* Begin padding with a 1 bit: */
857 0 : context->buffer[usedspace++] = 0x80;
858 :
859 0 : if (usedspace <= PG_SHA512_SHORT_BLOCK_LENGTH)
860 : {
861 : /* Set-up for the last transform: */
862 0 : memset(&context->buffer[usedspace], 0, PG_SHA512_SHORT_BLOCK_LENGTH - usedspace);
863 : }
864 : else
865 : {
866 0 : if (usedspace < PG_SHA512_BLOCK_LENGTH)
867 : {
868 0 : memset(&context->buffer[usedspace], 0, PG_SHA512_BLOCK_LENGTH - usedspace);
869 : }
870 : /* Do second-to-last transform: */
871 0 : SHA512_Transform(context, context->buffer);
872 :
873 : /* And set-up for the last transform: */
874 0 : memset(context->buffer, 0, PG_SHA512_BLOCK_LENGTH - 2);
875 : }
876 : }
877 : else
878 : {
879 : /* Prepare for final transform: */
880 0 : memset(context->buffer, 0, PG_SHA512_SHORT_BLOCK_LENGTH);
881 :
882 : /* Begin padding with a 1 bit: */
883 0 : *context->buffer = 0x80;
884 : }
885 : /* Store the length of input data (in bits): */
886 0 : *(uint64 *) &context->buffer[PG_SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
887 0 : *(uint64 *) &context->buffer[PG_SHA512_SHORT_BLOCK_LENGTH + 8] = context->bitcount[0];
888 :
889 : /* Final transform: */
890 0 : SHA512_Transform(context, context->buffer);
891 0 : }
892 :
893 : void
894 0 : pg_sha512_final(pg_sha512_ctx *context, uint8 *digest)
895 : {
896 : /* If no digest buffer is passed, we don't bother doing this: */
897 0 : if (digest != NULL)
898 : {
899 0 : SHA512_Last(context);
900 :
901 : /* Save the hash data for output: */
902 : #ifndef WORDS_BIGENDIAN
903 : {
904 : /* Convert TO host byte order */
905 : int j;
906 :
907 0 : for (j = 0; j < 8; j++)
908 : {
909 0 : REVERSE64(context->state[j], context->state[j]);
910 : }
911 : }
912 : #endif
913 0 : memcpy(digest, context->state, PG_SHA512_DIGEST_LENGTH);
914 : }
915 :
916 : /* Zero out state data */
917 0 : memset(context, 0, sizeof(pg_sha512_ctx));
918 0 : }
919 :
920 :
921 : /*** SHA-384: *********************************************************/
922 : void
923 0 : pg_sha384_init(pg_sha384_ctx *context)
924 : {
925 0 : if (context == NULL)
926 0 : return;
927 0 : memcpy(context->state, sha384_initial_hash_value, PG_SHA512_DIGEST_LENGTH);
928 0 : memset(context->buffer, 0, PG_SHA384_BLOCK_LENGTH);
929 0 : context->bitcount[0] = context->bitcount[1] = 0;
930 : }
931 :
932 : void
933 0 : pg_sha384_update(pg_sha384_ctx *context, const uint8 *data, size_t len)
934 : {
935 0 : pg_sha512_update((pg_sha512_ctx *) context, data, len);
936 0 : }
937 :
938 : void
939 0 : pg_sha384_final(pg_sha384_ctx *context, uint8 *digest)
940 : {
941 : /* If no digest buffer is passed, we don't bother doing this: */
942 0 : if (digest != NULL)
943 : {
944 0 : SHA512_Last((pg_sha512_ctx *) context);
945 :
946 : /* Save the hash data for output: */
947 : #ifndef WORDS_BIGENDIAN
948 : {
949 : /* Convert TO host byte order */
950 : int j;
951 :
952 0 : for (j = 0; j < 6; j++)
953 : {
954 0 : REVERSE64(context->state[j], context->state[j]);
955 : }
956 : }
957 : #endif
958 0 : memcpy(digest, context->state, PG_SHA384_DIGEST_LENGTH);
959 : }
960 :
961 : /* Zero out state data */
962 0 : memset(context, 0, sizeof(pg_sha384_ctx));
963 0 : }
964 :
965 : /*** SHA-224: *********************************************************/
966 : void
967 0 : pg_sha224_init(pg_sha224_ctx *context)
968 : {
969 0 : if (context == NULL)
970 0 : return;
971 0 : memcpy(context->state, sha224_initial_hash_value, PG_SHA256_DIGEST_LENGTH);
972 0 : memset(context->buffer, 0, PG_SHA256_BLOCK_LENGTH);
973 0 : context->bitcount = 0;
974 : }
975 :
976 : void
977 0 : pg_sha224_update(pg_sha224_ctx *context, const uint8 *data, size_t len)
978 : {
979 0 : pg_sha256_update((pg_sha256_ctx *) context, data, len);
980 0 : }
981 :
982 : void
983 0 : pg_sha224_final(pg_sha224_ctx *context, uint8 *digest)
984 : {
985 : /* If no digest buffer is passed, we don't bother doing this: */
986 0 : if (digest != NULL)
987 : {
988 0 : SHA256_Last(context);
989 :
990 : #ifndef WORDS_BIGENDIAN
991 : {
992 : /* Convert TO host byte order */
993 : int j;
994 :
995 0 : for (j = 0; j < 8; j++)
996 : {
997 0 : REVERSE32(context->state[j], context->state[j]);
998 : }
999 : }
1000 : #endif
1001 0 : memcpy(digest, context->state, PG_SHA224_DIGEST_LENGTH);
1002 : }
1003 :
1004 : /* Clean up state data: */
1005 0 : memset(context, 0, sizeof(pg_sha224_ctx));
1006 0 : }
|