LCOV - code coverage report
Current view: top level - src/backend/access/heap - rewriteheap.c (source / functions) Hit Total Coverage
Test: PostgreSQL Lines: 164 325 50.5 %
Date: 2017-09-29 15:12:54 Functions: 9 12 75.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * rewriteheap.c
       4             :  *    Support functions to rewrite tables.
       5             :  *
       6             :  * These functions provide a facility to completely rewrite a heap, while
       7             :  * preserving visibility information and update chains.
       8             :  *
       9             :  * INTERFACE
      10             :  *
      11             :  * The caller is responsible for creating the new heap, all catalog
      12             :  * changes, supplying the tuples to be written to the new heap, and
      13             :  * rebuilding indexes.  The caller must hold AccessExclusiveLock on the
      14             :  * target table, because we assume no one else is writing into it.
      15             :  *
      16             :  * To use the facility:
      17             :  *
      18             :  * begin_heap_rewrite
      19             :  * while (fetch next tuple)
      20             :  * {
      21             :  *     if (tuple is dead)
      22             :  *         rewrite_heap_dead_tuple
      23             :  *     else
      24             :  *     {
      25             :  *         // do any transformations here if required
      26             :  *         rewrite_heap_tuple
      27             :  *     }
      28             :  * }
      29             :  * end_heap_rewrite
      30             :  *
      31             :  * The contents of the new relation shouldn't be relied on until after
      32             :  * end_heap_rewrite is called.
      33             :  *
      34             :  *
      35             :  * IMPLEMENTATION
      36             :  *
      37             :  * This would be a fairly trivial affair, except that we need to maintain
      38             :  * the ctid chains that link versions of an updated tuple together.
      39             :  * Since the newly stored tuples will have tids different from the original
      40             :  * ones, if we just copied t_ctid fields to the new table the links would
      41             :  * be wrong.  When we are required to copy a (presumably recently-dead or
      42             :  * delete-in-progress) tuple whose ctid doesn't point to itself, we have
      43             :  * to substitute the correct ctid instead.
      44             :  *
      45             :  * For each ctid reference from A -> B, we might encounter either A first
      46             :  * or B first.  (Note that a tuple in the middle of a chain is both A and B
      47             :  * of different pairs.)
      48             :  *
      49             :  * If we encounter A first, we'll store the tuple in the unresolved_tups
      50             :  * hash table. When we later encounter B, we remove A from the hash table,
      51             :  * fix the ctid to point to the new location of B, and insert both A and B
      52             :  * to the new heap.
      53             :  *
      54             :  * If we encounter B first, we can insert B to the new heap right away.
      55             :  * We then add an entry to the old_new_tid_map hash table showing B's
      56             :  * original tid (in the old heap) and new tid (in the new heap).
      57             :  * When we later encounter A, we get the new location of B from the table,
      58             :  * and can write A immediately with the correct ctid.
      59             :  *
      60             :  * Entries in the hash tables can be removed as soon as the later tuple
      61             :  * is encountered.  That helps to keep the memory usage down.  At the end,
      62             :  * both tables are usually empty; we should have encountered both A and B
      63             :  * of each pair.  However, it's possible for A to be RECENTLY_DEAD and B
      64             :  * entirely DEAD according to HeapTupleSatisfiesVacuum, because the test
      65             :  * for deadness using OldestXmin is not exact.  In such a case we might
      66             :  * encounter B first, and skip it, and find A later.  Then A would be added
      67             :  * to unresolved_tups, and stay there until end of the rewrite.  Since
      68             :  * this case is very unusual, we don't worry about the memory usage.
      69             :  *
      70             :  * Using in-memory hash tables means that we use some memory for each live
      71             :  * update chain in the table, from the time we find one end of the
      72             :  * reference until we find the other end.  That shouldn't be a problem in
      73             :  * practice, but if you do something like an UPDATE without a where-clause
      74             :  * on a large table, and then run CLUSTER in the same transaction, you
      75             :  * could run out of memory.  It doesn't seem worthwhile to add support for
      76             :  * spill-to-disk, as there shouldn't be that many RECENTLY_DEAD tuples in a
      77             :  * table under normal circumstances.  Furthermore, in the typical scenario
      78             :  * of CLUSTERing on an unchanging key column, we'll see all the versions
      79             :  * of a given tuple together anyway, and so the peak memory usage is only
      80             :  * proportional to the number of RECENTLY_DEAD versions of a single row, not
      81             :  * in the whole table.  Note that if we do fail halfway through a CLUSTER,
      82             :  * the old table is still valid, so failure is not catastrophic.
      83             :  *
      84             :  * We can't use the normal heap_insert function to insert into the new
      85             :  * heap, because heap_insert overwrites the visibility information.
      86             :  * We use a special-purpose raw_heap_insert function instead, which
      87             :  * is optimized for bulk inserting a lot of tuples, knowing that we have
      88             :  * exclusive access to the heap.  raw_heap_insert builds new pages in
      89             :  * local storage.  When a page is full, or at the end of the process,
      90             :  * we insert it to WAL as a single record and then write it to disk
      91             :  * directly through smgr.  Note, however, that any data sent to the new
      92             :  * heap's TOAST table will go through the normal bufmgr.
      93             :  *
      94             :  *
      95             :  * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
      96             :  * Portions Copyright (c) 1994-5, Regents of the University of California
      97             :  *
      98             :  * IDENTIFICATION
      99             :  *    src/backend/access/heap/rewriteheap.c
     100             :  *
     101             :  *-------------------------------------------------------------------------
     102             :  */
     103             : #include "postgres.h"
     104             : 
     105             : #include <sys/stat.h>
     106             : #include <unistd.h>
     107             : 
     108             : #include "miscadmin.h"
     109             : 
     110             : #include "access/heapam.h"
     111             : #include "access/heapam_xlog.h"
     112             : #include "access/rewriteheap.h"
     113             : #include "access/transam.h"
     114             : #include "access/tuptoaster.h"
     115             : #include "access/xact.h"
     116             : #include "access/xloginsert.h"
     117             : 
     118             : #include "catalog/catalog.h"
     119             : 
     120             : #include "lib/ilist.h"
     121             : 
     122             : #include "pgstat.h"
     123             : 
     124             : #include "replication/logical.h"
     125             : #include "replication/slot.h"
     126             : 
     127             : #include "storage/bufmgr.h"
     128             : #include "storage/fd.h"
     129             : #include "storage/smgr.h"
     130             : 
     131             : #include "utils/memutils.h"
     132             : #include "utils/rel.h"
     133             : #include "utils/tqual.h"
     134             : 
     135             : #include "storage/procarray.h"
     136             : 
     137             : /*
     138             :  * State associated with a rewrite operation. This is opaque to the user
     139             :  * of the rewrite facility.
     140             :  */
     141             : typedef struct RewriteStateData
     142             : {
     143             :     Relation    rs_old_rel;     /* source heap */
     144             :     Relation    rs_new_rel;     /* destination heap */
     145             :     Page        rs_buffer;      /* page currently being built */
     146             :     BlockNumber rs_blockno;     /* block where page will go */
     147             :     bool        rs_buffer_valid;    /* T if any tuples in buffer */
     148             :     bool        rs_use_wal;     /* must we WAL-log inserts? */
     149             :     bool        rs_logical_rewrite; /* do we need to do logical rewriting */
     150             :     TransactionId rs_oldest_xmin;   /* oldest xmin used by caller to determine
     151             :                                      * tuple visibility */
     152             :     TransactionId rs_freeze_xid;    /* Xid that will be used as freeze cutoff
     153             :                                      * point */
     154             :     TransactionId rs_logical_xmin;  /* Xid that will be used as cutoff point
     155             :                                      * for logical rewrites */
     156             :     MultiXactId rs_cutoff_multi;    /* MultiXactId that will be used as cutoff
     157             :                                      * point for multixacts */
     158             :     MemoryContext rs_cxt;       /* for hash tables and entries and tuples in
     159             :                                  * them */
     160             :     XLogRecPtr  rs_begin_lsn;   /* XLogInsertLsn when starting the rewrite */
     161             :     HTAB       *rs_unresolved_tups; /* unmatched A tuples */
     162             :     HTAB       *rs_old_new_tid_map; /* unmatched B tuples */
     163             :     HTAB       *rs_logical_mappings;    /* logical remapping files */
     164             :     uint32      rs_num_rewrite_mappings;    /* # in memory mappings */
     165             : }           RewriteStateData;
     166             : 
     167             : /*
     168             :  * The lookup keys for the hash tables are tuple TID and xmin (we must check
     169             :  * both to avoid false matches from dead tuples).  Beware that there is
     170             :  * probably some padding space in this struct; it must be zeroed out for
     171             :  * correct hashtable operation.
     172             :  */
     173             : typedef struct
     174             : {
     175             :     TransactionId xmin;         /* tuple xmin */
     176             :     ItemPointerData tid;        /* tuple location in old heap */
     177             : } TidHashKey;
     178             : 
     179             : /*
     180             :  * Entry structures for the hash tables
     181             :  */
     182             : typedef struct
     183             : {
     184             :     TidHashKey  key;            /* expected xmin/old location of B tuple */
     185             :     ItemPointerData old_tid;    /* A's location in the old heap */
     186             :     HeapTuple   tuple;          /* A's tuple contents */
     187             : } UnresolvedTupData;
     188             : 
     189             : typedef UnresolvedTupData *UnresolvedTup;
     190             : 
     191             : typedef struct
     192             : {
     193             :     TidHashKey  key;            /* actual xmin/old location of B tuple */
     194             :     ItemPointerData new_tid;    /* where we put it in the new heap */
     195             : } OldToNewMappingData;
     196             : 
     197             : typedef OldToNewMappingData *OldToNewMapping;
     198             : 
     199             : /*
     200             :  * In-Memory data for an xid that might need logical remapping entries
     201             :  * to be logged.
     202             :  */
     203             : typedef struct RewriteMappingFile
     204             : {
     205             :     TransactionId xid;          /* xid that might need to see the row */
     206             :     int         vfd;            /* fd of mappings file */
     207             :     off_t       off;            /* how far have we written yet */
     208             :     uint32      num_mappings;   /* number of in-memory mappings */
     209             :     dlist_head  mappings;       /* list of in-memory mappings */
     210             :     char        path[MAXPGPATH];    /* path, for error messages */
     211             : } RewriteMappingFile;
     212             : 
     213             : /*
     214             :  * A single In-Memory logical rewrite mapping, hanging off
     215             :  * RewriteMappingFile->mappings.
     216             :  */
     217             : typedef struct RewriteMappingDataEntry
     218             : {
     219             :     LogicalRewriteMappingData map;  /* map between old and new location of the
     220             :                                      * tuple */
     221             :     dlist_node  node;
     222             : } RewriteMappingDataEntry;
     223             : 
     224             : 
     225             : /* prototypes for internal functions */
     226             : static void raw_heap_insert(RewriteState state, HeapTuple tup);
     227             : 
     228             : /* internal logical remapping prototypes */
     229             : static void logical_begin_heap_rewrite(RewriteState state);
     230             : static void logical_rewrite_heap_tuple(RewriteState state, ItemPointerData old_tid, HeapTuple new_tuple);
     231             : static void logical_end_heap_rewrite(RewriteState state);
     232             : 
     233             : 
     234             : /*
     235             :  * Begin a rewrite of a table
     236             :  *
     237             :  * old_heap     old, locked heap relation tuples will be read from
     238             :  * new_heap     new, locked heap relation to insert tuples to
     239             :  * oldest_xmin  xid used by the caller to determine which tuples are dead
     240             :  * freeze_xid   xid before which tuples will be frozen
     241             :  * min_multi    multixact before which multis will be removed
     242             :  * use_wal      should the inserts to the new heap be WAL-logged?
     243             :  *
     244             :  * Returns an opaque RewriteState, allocated in current memory context,
     245             :  * to be used in subsequent calls to the other functions.
     246             :  */
     247             : RewriteState
     248          22 : begin_heap_rewrite(Relation old_heap, Relation new_heap, TransactionId oldest_xmin,
     249             :                    TransactionId freeze_xid, MultiXactId cutoff_multi,
     250             :                    bool use_wal)
     251             : {
     252             :     RewriteState state;
     253             :     MemoryContext rw_cxt;
     254             :     MemoryContext old_cxt;
     255             :     HASHCTL     hash_ctl;
     256             : 
     257             :     /*
     258             :      * To ease cleanup, make a separate context that will contain the
     259             :      * RewriteState struct itself plus all subsidiary data.
     260             :      */
     261          22 :     rw_cxt = AllocSetContextCreate(CurrentMemoryContext,
     262             :                                    "Table rewrite",
     263             :                                    ALLOCSET_DEFAULT_SIZES);
     264          22 :     old_cxt = MemoryContextSwitchTo(rw_cxt);
     265             : 
     266             :     /* Create and fill in the state struct */
     267          22 :     state = palloc0(sizeof(RewriteStateData));
     268             : 
     269          22 :     state->rs_old_rel = old_heap;
     270          22 :     state->rs_new_rel = new_heap;
     271          22 :     state->rs_buffer = (Page) palloc(BLCKSZ);
     272             :     /* new_heap needn't be empty, just locked */
     273          22 :     state->rs_blockno = RelationGetNumberOfBlocks(new_heap);
     274          22 :     state->rs_buffer_valid = false;
     275          22 :     state->rs_use_wal = use_wal;
     276          22 :     state->rs_oldest_xmin = oldest_xmin;
     277          22 :     state->rs_freeze_xid = freeze_xid;
     278          22 :     state->rs_cutoff_multi = cutoff_multi;
     279          22 :     state->rs_cxt = rw_cxt;
     280             : 
     281             :     /* Initialize hash tables used to track update chains */
     282          22 :     memset(&hash_ctl, 0, sizeof(hash_ctl));
     283          22 :     hash_ctl.keysize = sizeof(TidHashKey);
     284          22 :     hash_ctl.entrysize = sizeof(UnresolvedTupData);
     285          22 :     hash_ctl.hcxt = state->rs_cxt;
     286             : 
     287          22 :     state->rs_unresolved_tups =
     288          22 :         hash_create("Rewrite / Unresolved ctids",
     289             :                     128,        /* arbitrary initial size */
     290             :                     &hash_ctl,
     291             :                     HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
     292             : 
     293          22 :     hash_ctl.entrysize = sizeof(OldToNewMappingData);
     294             : 
     295          22 :     state->rs_old_new_tid_map =
     296          22 :         hash_create("Rewrite / Old to new tid map",
     297             :                     128,        /* arbitrary initial size */
     298             :                     &hash_ctl,
     299             :                     HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
     300             : 
     301          22 :     MemoryContextSwitchTo(old_cxt);
     302             : 
     303          22 :     logical_begin_heap_rewrite(state);
     304             : 
     305          22 :     return state;
     306             : }
     307             : 
     308             : /*
     309             :  * End a rewrite.
     310             :  *
     311             :  * state and any other resources are freed.
     312             :  */
     313             : void
     314          22 : end_heap_rewrite(RewriteState state)
     315             : {
     316             :     HASH_SEQ_STATUS seq_status;
     317             :     UnresolvedTup unresolved;
     318             : 
     319             :     /*
     320             :      * Write any remaining tuples in the UnresolvedTups table. If we have any
     321             :      * left, they should in fact be dead, but let's err on the safe side.
     322             :      */
     323          22 :     hash_seq_init(&seq_status, state->rs_unresolved_tups);
     324             : 
     325          44 :     while ((unresolved = hash_seq_search(&seq_status)) != NULL)
     326             :     {
     327           0 :         ItemPointerSetInvalid(&unresolved->tuple->t_data->t_ctid);
     328           0 :         raw_heap_insert(state, unresolved->tuple);
     329             :     }
     330             : 
     331             :     /* Write the last page, if any */
     332          22 :     if (state->rs_buffer_valid)
     333             :     {
     334          20 :         if (state->rs_use_wal)
     335          19 :             log_newpage(&state->rs_new_rel->rd_node,
     336             :                         MAIN_FORKNUM,
     337             :                         state->rs_blockno,
     338             :                         state->rs_buffer,
     339             :                         true);
     340          20 :         RelationOpenSmgr(state->rs_new_rel);
     341             : 
     342          20 :         PageSetChecksumInplace(state->rs_buffer, state->rs_blockno);
     343             : 
     344          20 :         smgrextend(state->rs_new_rel->rd_smgr, MAIN_FORKNUM, state->rs_blockno,
     345             :                    (char *) state->rs_buffer, true);
     346             :     }
     347             : 
     348             :     /*
     349             :      * If the rel is WAL-logged, must fsync before commit.  We use heap_sync
     350             :      * to ensure that the toast table gets fsync'd too.
     351             :      *
     352             :      * It's obvious that we must do this when not WAL-logging. It's less
     353             :      * obvious that we have to do it even if we did WAL-log the pages. The
     354             :      * reason is the same as in tablecmds.c's copy_relation_data(): we're
     355             :      * writing data that's not in shared buffers, and so a CHECKPOINT
     356             :      * occurring during the rewriteheap operation won't have fsync'd data we
     357             :      * wrote before the checkpoint.
     358             :      */
     359          22 :     if (RelationNeedsWAL(state->rs_new_rel))
     360          21 :         heap_sync(state->rs_new_rel);
     361             : 
     362          22 :     logical_end_heap_rewrite(state);
     363             : 
     364             :     /* Deleting the context frees everything */
     365          22 :     MemoryContextDelete(state->rs_cxt);
     366          22 : }
     367             : 
     368             : /*
     369             :  * Add a tuple to the new heap.
     370             :  *
     371             :  * Visibility information is copied from the original tuple, except that
     372             :  * we "freeze" very-old tuples.  Note that since we scribble on new_tuple,
     373             :  * it had better be temp storage not a pointer to the original tuple.
     374             :  *
     375             :  * state        opaque state as returned by begin_heap_rewrite
     376             :  * old_tuple    original tuple in the old heap
     377             :  * new_tuple    new, rewritten tuple to be inserted to new heap
     378             :  */
     379             : void
     380       22761 : rewrite_heap_tuple(RewriteState state,
     381             :                    HeapTuple old_tuple, HeapTuple new_tuple)
     382             : {
     383             :     MemoryContext old_cxt;
     384             :     ItemPointerData old_tid;
     385             :     TidHashKey  hashkey;
     386             :     bool        found;
     387             :     bool        free_new;
     388             : 
     389       22761 :     old_cxt = MemoryContextSwitchTo(state->rs_cxt);
     390             : 
     391             :     /*
     392             :      * Copy the original tuple's visibility information into new_tuple.
     393             :      *
     394             :      * XXX we might later need to copy some t_infomask2 bits, too? Right now,
     395             :      * we intentionally clear the HOT status bits.
     396             :      */
     397       22761 :     memcpy(&new_tuple->t_data->t_choice.t_heap,
     398       22761 :            &old_tuple->t_data->t_choice.t_heap,
     399             :            sizeof(HeapTupleFields));
     400             : 
     401       22761 :     new_tuple->t_data->t_infomask &= ~HEAP_XACT_MASK;
     402       22761 :     new_tuple->t_data->t_infomask2 &= ~HEAP2_XACT_MASK;
     403       45522 :     new_tuple->t_data->t_infomask |=
     404       22761 :         old_tuple->t_data->t_infomask & HEAP_XACT_MASK;
     405             : 
     406             :     /*
     407             :      * While we have our hands on the tuple, we may as well freeze any
     408             :      * eligible xmin or xmax, so that future VACUUM effort can be saved.
     409             :      */
     410       22761 :     heap_freeze_tuple(new_tuple->t_data, state->rs_freeze_xid,
     411             :                       state->rs_cutoff_multi);
     412             : 
     413             :     /*
     414             :      * Invalid ctid means that ctid should point to the tuple itself. We'll
     415             :      * override it later if the tuple is part of an update chain.
     416             :      */
     417       22761 :     ItemPointerSetInvalid(&new_tuple->t_data->t_ctid);
     418             : 
     419             :     /*
     420             :      * If the tuple has been updated, check the old-to-new mapping hash table.
     421             :      */
     422       24822 :     if (!((old_tuple->t_data->t_infomask & HEAP_XMAX_INVALID) ||
     423        4122 :           HeapTupleHeaderIsOnlyLocked(old_tuple->t_data)) &&
     424        2061 :         !(ItemPointerEquals(&(old_tuple->t_self),
     425        2061 :                             &(old_tuple->t_data->t_ctid))))
     426             :     {
     427             :         OldToNewMapping mapping;
     428             : 
     429           5 :         memset(&hashkey, 0, sizeof(hashkey));
     430           5 :         hashkey.xmin = HeapTupleHeaderGetUpdateXid(old_tuple->t_data);
     431           5 :         hashkey.tid = old_tuple->t_data->t_ctid;
     432             : 
     433           5 :         mapping = (OldToNewMapping)
     434           5 :             hash_search(state->rs_old_new_tid_map, &hashkey,
     435             :                         HASH_FIND, NULL);
     436             : 
     437           5 :         if (mapping != NULL)
     438             :         {
     439             :             /*
     440             :              * We've already copied the tuple that t_ctid points to, so we can
     441             :              * set the ctid of this tuple to point to the new location, and
     442             :              * insert it right away.
     443             :              */
     444           1 :             new_tuple->t_data->t_ctid = mapping->new_tid;
     445             : 
     446             :             /* We don't need the mapping entry anymore */
     447           1 :             hash_search(state->rs_old_new_tid_map, &hashkey,
     448             :                         HASH_REMOVE, &found);
     449           1 :             Assert(found);
     450             :         }
     451             :         else
     452             :         {
     453             :             /*
     454             :              * We haven't seen the tuple t_ctid points to yet. Stash this
     455             :              * tuple into unresolved_tups to be written later.
     456             :              */
     457             :             UnresolvedTup unresolved;
     458             : 
     459           4 :             unresolved = hash_search(state->rs_unresolved_tups, &hashkey,
     460             :                                      HASH_ENTER, &found);
     461           4 :             Assert(!found);
     462             : 
     463           4 :             unresolved->old_tid = old_tuple->t_self;
     464           4 :             unresolved->tuple = heap_copytuple(new_tuple);
     465             : 
     466             :             /*
     467             :              * We can't do anything more now, since we don't know where the
     468             :              * tuple will be written.
     469             :              */
     470           4 :             MemoryContextSwitchTo(old_cxt);
     471           4 :             return;
     472             :         }
     473             :     }
     474             : 
     475             :     /*
     476             :      * Now we will write the tuple, and then check to see if it is the B tuple
     477             :      * in any new or known pair.  When we resolve a known pair, we will be
     478             :      * able to write that pair's A tuple, and then we have to check if it
     479             :      * resolves some other pair.  Hence, we need a loop here.
     480             :      */
     481       22757 :     old_tid = old_tuple->t_self;
     482       22757 :     free_new = false;
     483             : 
     484             :     for (;;)
     485             :     {
     486             :         ItemPointerData new_tid;
     487             : 
     488             :         /* Insert the tuple and find out where it's put in new_heap */
     489       22761 :         raw_heap_insert(state, new_tuple);
     490       22761 :         new_tid = new_tuple->t_self;
     491             : 
     492       22761 :         logical_rewrite_heap_tuple(state, old_tid, new_tuple);
     493             : 
     494             :         /*
     495             :          * If the tuple is the updated version of a row, and the prior version
     496             :          * wouldn't be DEAD yet, then we need to either resolve the prior
     497             :          * version (if it's waiting in rs_unresolved_tups), or make an entry
     498             :          * in rs_old_new_tid_map (so we can resolve it when we do see it). The
     499             :          * previous tuple's xmax would equal this one's xmin, so it's
     500             :          * RECENTLY_DEAD if and only if the xmin is not before OldestXmin.
     501             :          */
     502       23027 :         if ((new_tuple->t_data->t_infomask & HEAP_UPDATED) &&
     503         266 :             !TransactionIdPrecedes(HeapTupleHeaderGetXmin(new_tuple->t_data),
     504             :                                    state->rs_oldest_xmin))
     505             :         {
     506             :             /*
     507             :              * Okay, this is B in an update pair.  See if we've seen A.
     508             :              */
     509             :             UnresolvedTup unresolved;
     510             : 
     511           5 :             memset(&hashkey, 0, sizeof(hashkey));
     512           5 :             hashkey.xmin = HeapTupleHeaderGetXmin(new_tuple->t_data);
     513           5 :             hashkey.tid = old_tid;
     514             : 
     515           5 :             unresolved = hash_search(state->rs_unresolved_tups, &hashkey,
     516             :                                      HASH_FIND, NULL);
     517             : 
     518           5 :             if (unresolved != NULL)
     519             :             {
     520             :                 /*
     521             :                  * We have seen and memorized the previous tuple already. Now
     522             :                  * that we know where we inserted the tuple its t_ctid points
     523             :                  * to, fix its t_ctid and insert it to the new heap.
     524             :                  */
     525           4 :                 if (free_new)
     526           2 :                     heap_freetuple(new_tuple);
     527           4 :                 new_tuple = unresolved->tuple;
     528           4 :                 free_new = true;
     529           4 :                 old_tid = unresolved->old_tid;
     530           4 :                 new_tuple->t_data->t_ctid = new_tid;
     531             : 
     532             :                 /*
     533             :                  * We don't need the hash entry anymore, but don't free its
     534             :                  * tuple just yet.
     535             :                  */
     536           4 :                 hash_search(state->rs_unresolved_tups, &hashkey,
     537             :                             HASH_REMOVE, &found);
     538           4 :                 Assert(found);
     539             : 
     540             :                 /* loop back to insert the previous tuple in the chain */
     541           4 :                 continue;
     542             :             }
     543             :             else
     544             :             {
     545             :                 /*
     546             :                  * Remember the new tid of this tuple. We'll use it to set the
     547             :                  * ctid when we find the previous tuple in the chain.
     548             :                  */
     549             :                 OldToNewMapping mapping;
     550             : 
     551           1 :                 mapping = hash_search(state->rs_old_new_tid_map, &hashkey,
     552             :                                       HASH_ENTER, &found);
     553           1 :                 Assert(!found);
     554             : 
     555           1 :                 mapping->new_tid = new_tid;
     556             :             }
     557             :         }
     558             : 
     559             :         /* Done with this (chain of) tuples, for now */
     560       22757 :         if (free_new)
     561           2 :             heap_freetuple(new_tuple);
     562       22757 :         break;
     563           4 :     }
     564             : 
     565       22757 :     MemoryContextSwitchTo(old_cxt);
     566             : }
     567             : 
     568             : /*
     569             :  * Register a dead tuple with an ongoing rewrite. Dead tuples are not
     570             :  * copied to the new table, but we still make note of them so that we
     571             :  * can release some resources earlier.
     572             :  *
     573             :  * Returns true if a tuple was removed from the unresolved_tups table.
     574             :  * This indicates that that tuple, previously thought to be "recently dead",
     575             :  * is now known really dead and won't be written to the output.
     576             :  */
     577             : bool
     578        4373 : rewrite_heap_dead_tuple(RewriteState state, HeapTuple old_tuple)
     579             : {
     580             :     /*
     581             :      * If we have already seen an earlier tuple in the update chain that
     582             :      * points to this tuple, let's forget about that earlier tuple. It's in
     583             :      * fact dead as well, our simple xmax < OldestXmin test in
     584             :      * HeapTupleSatisfiesVacuum just wasn't enough to detect it. It happens
     585             :      * when xmin of a tuple is greater than xmax, which sounds
     586             :      * counter-intuitive but is perfectly valid.
     587             :      *
     588             :      * We don't bother to try to detect the situation the other way round,
     589             :      * when we encounter the dead tuple first and then the recently dead one
     590             :      * that points to it. If that happens, we'll have some unmatched entries
     591             :      * in the UnresolvedTups hash table at the end. That can happen anyway,
     592             :      * because a vacuum might have removed the dead tuple in the chain before
     593             :      * us.
     594             :      */
     595             :     UnresolvedTup unresolved;
     596             :     TidHashKey  hashkey;
     597             :     bool        found;
     598             : 
     599        4373 :     memset(&hashkey, 0, sizeof(hashkey));
     600        4373 :     hashkey.xmin = HeapTupleHeaderGetXmin(old_tuple->t_data);
     601        4373 :     hashkey.tid = old_tuple->t_self;
     602             : 
     603        4373 :     unresolved = hash_search(state->rs_unresolved_tups, &hashkey,
     604             :                              HASH_FIND, NULL);
     605             : 
     606        4373 :     if (unresolved != NULL)
     607             :     {
     608             :         /* Need to free the contained tuple as well as the hashtable entry */
     609           0 :         heap_freetuple(unresolved->tuple);
     610           0 :         hash_search(state->rs_unresolved_tups, &hashkey,
     611             :                     HASH_REMOVE, &found);
     612           0 :         Assert(found);
     613           0 :         return true;
     614             :     }
     615             : 
     616        4373 :     return false;
     617             : }
     618             : 
     619             : /*
     620             :  * Insert a tuple to the new relation.  This has to track heap_insert
     621             :  * and its subsidiary functions!
     622             :  *
     623             :  * t_self of the tuple is set to the new TID of the tuple. If t_ctid of the
     624             :  * tuple is invalid on entry, it's replaced with the new TID as well (in
     625             :  * the inserted data only, not in the caller's copy).
     626             :  */
     627             : static void
     628       22761 : raw_heap_insert(RewriteState state, HeapTuple tup)
     629             : {
     630       22761 :     Page        page = state->rs_buffer;
     631             :     Size        pageFreeSpace,
     632             :                 saveFreeSpace;
     633             :     Size        len;
     634             :     OffsetNumber newoff;
     635             :     HeapTuple   heaptup;
     636             : 
     637             :     /*
     638             :      * If the new tuple is too big for storage or contains already toasted
     639             :      * out-of-line attributes from some other relation, invoke the toaster.
     640             :      *
     641             :      * Note: below this point, heaptup is the data we actually intend to store
     642             :      * into the relation; tup is the caller's original untoasted data.
     643             :      */
     644       22761 :     if (state->rs_new_rel->rd_rel->relkind == RELKIND_TOASTVALUE)
     645             :     {
     646             :         /* toast table entries should never be recursively toasted */
     647           0 :         Assert(!HeapTupleHasExternal(tup));
     648           0 :         heaptup = tup;
     649             :     }
     650       22761 :     else if (HeapTupleHasExternal(tup) || tup->t_len > TOAST_TUPLE_THRESHOLD)
     651           1 :         heaptup = toast_insert_or_update(state->rs_new_rel, tup, NULL,
     652             :                                          HEAP_INSERT_SKIP_FSM |
     653           1 :                                          (state->rs_use_wal ?
     654             :                                           0 : HEAP_INSERT_SKIP_WAL));
     655             :     else
     656       22760 :         heaptup = tup;
     657             : 
     658       22761 :     len = MAXALIGN(heaptup->t_len); /* be conservative */
     659             : 
     660             :     /*
     661             :      * If we're gonna fail for oversize tuple, do it right away
     662             :      */
     663       22761 :     if (len > MaxHeapTupleSize)
     664           0 :         ereport(ERROR,
     665             :                 (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
     666             :                  errmsg("row is too big: size %zu, maximum size %zu",
     667             :                         len, MaxHeapTupleSize)));
     668             : 
     669             :     /* Compute desired extra freespace due to fillfactor option */
     670       22761 :     saveFreeSpace = RelationGetTargetPageFreeSpace(state->rs_new_rel,
     671             :                                                    HEAP_DEFAULT_FILLFACTOR);
     672             : 
     673             :     /* Now we can check to see if there's enough free space already. */
     674       22761 :     if (state->rs_buffer_valid)
     675             :     {
     676       22741 :         pageFreeSpace = PageGetHeapFreeSpace(page);
     677             : 
     678       22741 :         if (len + saveFreeSpace > pageFreeSpace)
     679             :         {
     680             :             /* Doesn't fit, so write out the existing page */
     681             : 
     682             :             /* XLOG stuff */
     683         689 :             if (state->rs_use_wal)
     684         689 :                 log_newpage(&state->rs_new_rel->rd_node,
     685             :                             MAIN_FORKNUM,
     686             :                             state->rs_blockno,
     687             :                             page,
     688             :                             true);
     689             : 
     690             :             /*
     691             :              * Now write the page. We say isTemp = true even if it's not a
     692             :              * temp table, because there's no need for smgr to schedule an
     693             :              * fsync for this write; we'll do it ourselves in
     694             :              * end_heap_rewrite.
     695             :              */
     696         689 :             RelationOpenSmgr(state->rs_new_rel);
     697             : 
     698         689 :             PageSetChecksumInplace(page, state->rs_blockno);
     699             : 
     700         689 :             smgrextend(state->rs_new_rel->rd_smgr, MAIN_FORKNUM,
     701             :                        state->rs_blockno, (char *) page, true);
     702             : 
     703         689 :             state->rs_blockno++;
     704         689 :             state->rs_buffer_valid = false;
     705             :         }
     706             :     }
     707             : 
     708       22761 :     if (!state->rs_buffer_valid)
     709             :     {
     710             :         /* Initialize a new empty page */
     711         709 :         PageInit(page, BLCKSZ, 0);
     712         709 :         state->rs_buffer_valid = true;
     713             :     }
     714             : 
     715             :     /* And now we can insert the tuple into the page */
     716       22761 :     newoff = PageAddItem(page, (Item) heaptup->t_data, heaptup->t_len,
     717             :                          InvalidOffsetNumber, false, true);
     718       22761 :     if (newoff == InvalidOffsetNumber)
     719           0 :         elog(ERROR, "failed to add tuple");
     720             : 
     721             :     /* Update caller's t_self to the actual position where it was stored */
     722       22761 :     ItemPointerSet(&(tup->t_self), state->rs_blockno, newoff);
     723             : 
     724             :     /*
     725             :      * Insert the correct position into CTID of the stored tuple, too, if the
     726             :      * caller didn't supply a valid CTID.
     727             :      */
     728       22761 :     if (!ItemPointerIsValid(&tup->t_data->t_ctid))
     729             :     {
     730             :         ItemId      newitemid;
     731             :         HeapTupleHeader onpage_tup;
     732             : 
     733       22756 :         newitemid = PageGetItemId(page, newoff);
     734       22756 :         onpage_tup = (HeapTupleHeader) PageGetItem(page, newitemid);
     735             : 
     736       22756 :         onpage_tup->t_ctid = tup->t_self;
     737             :     }
     738             : 
     739             :     /* If heaptup is a private copy, release it. */
     740       22761 :     if (heaptup != tup)
     741           1 :         heap_freetuple(heaptup);
     742       22761 : }
     743             : 
     744             : /* ------------------------------------------------------------------------
     745             :  * Logical rewrite support
     746             :  *
     747             :  * When doing logical decoding - which relies on using cmin/cmax of catalog
     748             :  * tuples, via xl_heap_new_cid records - heap rewrites have to log enough
     749             :  * information to allow the decoding backend to updates its internal mapping
     750             :  * of (relfilenode,ctid) => (cmin, cmax) to be correct for the rewritten heap.
     751             :  *
     752             :  * For that, every time we find a tuple that's been modified in a catalog
     753             :  * relation within the xmin horizon of any decoding slot, we log a mapping
     754             :  * from the old to the new location.
     755             :  *
     756             :  * To deal with rewrites that abort the filename of a mapping file contains
     757             :  * the xid of the transaction performing the rewrite, which then can be
     758             :  * checked before being read in.
     759             :  *
     760             :  * For efficiency we don't immediately spill every single map mapping for a
     761             :  * row to disk but only do so in batches when we've collected several of them
     762             :  * in memory or when end_heap_rewrite() has been called.
     763             :  *
     764             :  * Crash-Safety: This module diverts from the usual patterns of doing WAL
     765             :  * since it cannot rely on checkpoint flushing out all buffers and thus
     766             :  * waiting for exclusive locks on buffers. Usually the XLogInsert() covering
     767             :  * buffer modifications is performed while the buffer(s) that are being
     768             :  * modified are exclusively locked guaranteeing that both the WAL record and
     769             :  * the modified heap are on either side of the checkpoint. But since the
     770             :  * mapping files we log aren't in shared_buffers that interlock doesn't work.
     771             :  *
     772             :  * Instead we simply write the mapping files out to disk, *before* the
     773             :  * XLogInsert() is performed. That guarantees that either the XLogInsert() is
     774             :  * inserted after the checkpoint's redo pointer or that the checkpoint (via
     775             :  * LogicalRewriteHeapCheckpoint()) has flushed the (partial) mapping file to
     776             :  * disk. That leaves the tail end that has not yet been flushed open to
     777             :  * corruption, which is solved by including the current offset in the
     778             :  * xl_heap_rewrite_mapping records and truncating the mapping file to it
     779             :  * during replay. Every time a rewrite is finished all generated mapping files
     780             :  * are synced to disk.
     781             :  *
     782             :  * Note that if we were only concerned about crash safety we wouldn't have to
     783             :  * deal with WAL logging at all - an fsync() at the end of a rewrite would be
     784             :  * sufficient for crash safety. Any mapping that hasn't been safely flushed to
     785             :  * disk has to be by an aborted (explicitly or via a crash) transaction and is
     786             :  * ignored by virtue of the xid in its name being subject to a
     787             :  * TransactionDidCommit() check. But we want to support having standbys via
     788             :  * physical replication, both for availability and to do logical decoding
     789             :  * there.
     790             :  * ------------------------------------------------------------------------
     791             :  */
     792             : 
     793             : /*
     794             :  * Do preparations for logging logical mappings during a rewrite if
     795             :  * necessary. If we detect that we don't need to log anything we'll prevent
     796             :  * any further action by the various logical rewrite functions.
     797             :  */
     798             : static void
     799          22 : logical_begin_heap_rewrite(RewriteState state)
     800             : {
     801             :     HASHCTL     hash_ctl;
     802             :     TransactionId logical_xmin;
     803             : 
     804             :     /*
     805             :      * We only need to persist these mappings if the rewritten table can be
     806             :      * accessed during logical decoding, if not, we can skip doing any
     807             :      * additional work.
     808             :      */
     809          22 :     state->rs_logical_rewrite =
     810          22 :         RelationIsAccessibleInLogicalDecoding(state->rs_old_rel);
     811             : 
     812          22 :     if (!state->rs_logical_rewrite)
     813          44 :         return;
     814             : 
     815           0 :     ProcArrayGetReplicationSlotXmin(NULL, &logical_xmin);
     816             : 
     817             :     /*
     818             :      * If there are no logical slots in progress we don't need to do anything,
     819             :      * there cannot be any remappings for relevant rows yet. The relation's
     820             :      * lock protects us against races.
     821             :      */
     822           0 :     if (logical_xmin == InvalidTransactionId)
     823             :     {
     824           0 :         state->rs_logical_rewrite = false;
     825           0 :         return;
     826             :     }
     827             : 
     828           0 :     state->rs_logical_xmin = logical_xmin;
     829           0 :     state->rs_begin_lsn = GetXLogInsertRecPtr();
     830           0 :     state->rs_num_rewrite_mappings = 0;
     831             : 
     832           0 :     memset(&hash_ctl, 0, sizeof(hash_ctl));
     833           0 :     hash_ctl.keysize = sizeof(TransactionId);
     834           0 :     hash_ctl.entrysize = sizeof(RewriteMappingFile);
     835           0 :     hash_ctl.hcxt = state->rs_cxt;
     836             : 
     837           0 :     state->rs_logical_mappings =
     838           0 :         hash_create("Logical rewrite mapping",
     839             :                     128,        /* arbitrary initial size */
     840             :                     &hash_ctl,
     841             :                     HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
     842             : }
     843             : 
     844             : /*
     845             :  * Flush all logical in-memory mappings to disk, but don't fsync them yet.
     846             :  */
     847             : static void
     848           0 : logical_heap_rewrite_flush_mappings(RewriteState state)
     849             : {
     850             :     HASH_SEQ_STATUS seq_status;
     851             :     RewriteMappingFile *src;
     852             :     dlist_mutable_iter iter;
     853             : 
     854           0 :     Assert(state->rs_logical_rewrite);
     855             : 
     856             :     /* no logical rewrite in progress, no need to iterate over mappings */
     857           0 :     if (state->rs_num_rewrite_mappings == 0)
     858           0 :         return;
     859             : 
     860           0 :     elog(DEBUG1, "flushing %u logical rewrite mapping entries",
     861             :          state->rs_num_rewrite_mappings);
     862             : 
     863           0 :     hash_seq_init(&seq_status, state->rs_logical_mappings);
     864           0 :     while ((src = (RewriteMappingFile *) hash_seq_search(&seq_status)) != NULL)
     865             :     {
     866             :         char       *waldata;
     867             :         char       *waldata_start;
     868             :         xl_heap_rewrite_mapping xlrec;
     869             :         Oid         dboid;
     870             :         uint32      len;
     871             :         int         written;
     872             : 
     873             :         /* this file hasn't got any new mappings */
     874           0 :         if (src->num_mappings == 0)
     875           0 :             continue;
     876             : 
     877           0 :         if (state->rs_old_rel->rd_rel->relisshared)
     878           0 :             dboid = InvalidOid;
     879             :         else
     880           0 :             dboid = MyDatabaseId;
     881             : 
     882           0 :         xlrec.num_mappings = src->num_mappings;
     883           0 :         xlrec.mapped_rel = RelationGetRelid(state->rs_old_rel);
     884           0 :         xlrec.mapped_xid = src->xid;
     885           0 :         xlrec.mapped_db = dboid;
     886           0 :         xlrec.offset = src->off;
     887           0 :         xlrec.start_lsn = state->rs_begin_lsn;
     888             : 
     889             :         /* write all mappings consecutively */
     890           0 :         len = src->num_mappings * sizeof(LogicalRewriteMappingData);
     891           0 :         waldata_start = waldata = palloc(len);
     892             : 
     893             :         /*
     894             :          * collect data we need to write out, but don't modify ondisk data yet
     895             :          */
     896           0 :         dlist_foreach_modify(iter, &src->mappings)
     897             :         {
     898             :             RewriteMappingDataEntry *pmap;
     899             : 
     900           0 :             pmap = dlist_container(RewriteMappingDataEntry, node, iter.cur);
     901             : 
     902           0 :             memcpy(waldata, &pmap->map, sizeof(pmap->map));
     903           0 :             waldata += sizeof(pmap->map);
     904             : 
     905             :             /* remove from the list and free */
     906           0 :             dlist_delete(&pmap->node);
     907           0 :             pfree(pmap);
     908             : 
     909             :             /* update bookkeeping */
     910           0 :             state->rs_num_rewrite_mappings--;
     911           0 :             src->num_mappings--;
     912             :         }
     913             : 
     914           0 :         Assert(src->num_mappings == 0);
     915           0 :         Assert(waldata == waldata_start + len);
     916             : 
     917             :         /*
     918             :          * Note that we deviate from the usual WAL coding practices here,
     919             :          * check the above "Logical rewrite support" comment for reasoning.
     920             :          */
     921           0 :         written = FileWrite(src->vfd, waldata_start, len,
     922             :                             WAIT_EVENT_LOGICAL_REWRITE_WRITE);
     923           0 :         if (written != len)
     924           0 :             ereport(ERROR,
     925             :                     (errcode_for_file_access(),
     926             :                      errmsg("could not write to file \"%s\", wrote %d of %d: %m", src->path,
     927             :                             written, len)));
     928           0 :         src->off += len;
     929             : 
     930           0 :         XLogBeginInsert();
     931           0 :         XLogRegisterData((char *) (&xlrec), sizeof(xlrec));
     932           0 :         XLogRegisterData(waldata_start, len);
     933             : 
     934             :         /* write xlog record */
     935           0 :         XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_REWRITE);
     936             : 
     937           0 :         pfree(waldata_start);
     938             :     }
     939           0 :     Assert(state->rs_num_rewrite_mappings == 0);
     940             : }
     941             : 
     942             : /*
     943             :  * Logical remapping part of end_heap_rewrite().
     944             :  */
     945             : static void
     946          22 : logical_end_heap_rewrite(RewriteState state)
     947             : {
     948             :     HASH_SEQ_STATUS seq_status;
     949             :     RewriteMappingFile *src;
     950             : 
     951             :     /* done, no logical rewrite in progress */
     952          22 :     if (!state->rs_logical_rewrite)
     953          44 :         return;
     954             : 
     955             :     /* writeout remaining in-memory entries */
     956           0 :     if (state->rs_num_rewrite_mappings > 0)
     957           0 :         logical_heap_rewrite_flush_mappings(state);
     958             : 
     959             :     /* Iterate over all mappings we have written and fsync the files. */
     960           0 :     hash_seq_init(&seq_status, state->rs_logical_mappings);
     961           0 :     while ((src = (RewriteMappingFile *) hash_seq_search(&seq_status)) != NULL)
     962             :     {
     963           0 :         if (FileSync(src->vfd, WAIT_EVENT_LOGICAL_REWRITE_SYNC) != 0)
     964           0 :             ereport(ERROR,
     965             :                     (errcode_for_file_access(),
     966             :                      errmsg("could not fsync file \"%s\": %m", src->path)));
     967           0 :         FileClose(src->vfd);
     968             :     }
     969             :     /* memory context cleanup will deal with the rest */
     970             : }
     971             : 
     972             : /*
     973             :  * Log a single (old->new) mapping for 'xid'.
     974             :  */
     975             : static void
     976           0 : logical_rewrite_log_mapping(RewriteState state, TransactionId xid,
     977             :                             LogicalRewriteMappingData *map)
     978             : {
     979             :     RewriteMappingFile *src;
     980             :     RewriteMappingDataEntry *pmap;
     981             :     Oid         relid;
     982             :     bool        found;
     983             : 
     984           0 :     relid = RelationGetRelid(state->rs_old_rel);
     985             : 
     986             :     /* look for existing mappings for this 'mapped' xid */
     987           0 :     src = hash_search(state->rs_logical_mappings, &xid,
     988             :                       HASH_ENTER, &found);
     989             : 
     990             :     /*
     991             :      * We haven't yet had the need to map anything for this xid, create
     992             :      * per-xid data structures.
     993             :      */
     994           0 :     if (!found)
     995             :     {
     996             :         char        path[MAXPGPATH];
     997             :         Oid         dboid;
     998             : 
     999           0 :         if (state->rs_old_rel->rd_rel->relisshared)
    1000           0 :             dboid = InvalidOid;
    1001             :         else
    1002           0 :             dboid = MyDatabaseId;
    1003             : 
    1004           0 :         snprintf(path, MAXPGPATH,
    1005             :                  "pg_logical/mappings/" LOGICAL_REWRITE_FORMAT,
    1006             :                  dboid, relid,
    1007           0 :                  (uint32) (state->rs_begin_lsn >> 32),
    1008           0 :                  (uint32) state->rs_begin_lsn,
    1009             :                  xid, GetCurrentTransactionId());
    1010             : 
    1011           0 :         dlist_init(&src->mappings);
    1012           0 :         src->num_mappings = 0;
    1013           0 :         src->off = 0;
    1014           0 :         memcpy(src->path, path, sizeof(path));
    1015           0 :         src->vfd = PathNameOpenFile(path,
    1016             :                                     O_CREAT | O_EXCL | O_WRONLY | PG_BINARY,
    1017             :                                     S_IRUSR | S_IWUSR);
    1018           0 :         if (src->vfd < 0)
    1019           0 :             ereport(ERROR,
    1020             :                     (errcode_for_file_access(),
    1021             :                      errmsg("could not create file \"%s\": %m", path)));
    1022             :     }
    1023             : 
    1024           0 :     pmap = MemoryContextAlloc(state->rs_cxt,
    1025             :                               sizeof(RewriteMappingDataEntry));
    1026           0 :     memcpy(&pmap->map, map, sizeof(LogicalRewriteMappingData));
    1027           0 :     dlist_push_tail(&src->mappings, &pmap->node);
    1028           0 :     src->num_mappings++;
    1029           0 :     state->rs_num_rewrite_mappings++;
    1030             : 
    1031             :     /*
    1032             :      * Write out buffer every time we've too many in-memory entries across all
    1033             :      * mapping files.
    1034             :      */
    1035           0 :     if (state->rs_num_rewrite_mappings >= 1000 /* arbitrary number */ )
    1036           0 :         logical_heap_rewrite_flush_mappings(state);
    1037           0 : }
    1038             : 
    1039             : /*
    1040             :  * Perform logical remapping for a tuple that's mapped from old_tid to
    1041             :  * new_tuple->t_self by rewrite_heap_tuple() if necessary for the tuple.
    1042             :  */
    1043             : static void
    1044       22761 : logical_rewrite_heap_tuple(RewriteState state, ItemPointerData old_tid,
    1045             :                            HeapTuple new_tuple)
    1046             : {
    1047       22761 :     ItemPointerData new_tid = new_tuple->t_self;
    1048       22761 :     TransactionId cutoff = state->rs_logical_xmin;
    1049             :     TransactionId xmin;
    1050             :     TransactionId xmax;
    1051       22761 :     bool        do_log_xmin = false;
    1052       22761 :     bool        do_log_xmax = false;
    1053             :     LogicalRewriteMappingData map;
    1054             : 
    1055             :     /* no logical rewrite in progress, we don't need to log anything */
    1056       22761 :     if (!state->rs_logical_rewrite)
    1057       45522 :         return;
    1058             : 
    1059           0 :     xmin = HeapTupleHeaderGetXmin(new_tuple->t_data);
    1060             :     /* use *GetUpdateXid to correctly deal with multixacts */
    1061           0 :     xmax = HeapTupleHeaderGetUpdateXid(new_tuple->t_data);
    1062             : 
    1063             :     /*
    1064             :      * Log the mapping iff the tuple has been created recently.
    1065             :      */
    1066           0 :     if (TransactionIdIsNormal(xmin) && !TransactionIdPrecedes(xmin, cutoff))
    1067           0 :         do_log_xmin = true;
    1068             : 
    1069           0 :     if (!TransactionIdIsNormal(xmax))
    1070             :     {
    1071             :         /*
    1072             :          * no xmax is set, can't have any permanent ones, so this check is
    1073             :          * sufficient
    1074             :          */
    1075             :     }
    1076           0 :     else if (HEAP_XMAX_IS_LOCKED_ONLY(new_tuple->t_data->t_infomask))
    1077             :     {
    1078             :         /* only locked, we don't care */
    1079             :     }
    1080           0 :     else if (!TransactionIdPrecedes(xmax, cutoff))
    1081             :     {
    1082             :         /* tuple has been deleted recently, log */
    1083           0 :         do_log_xmax = true;
    1084             :     }
    1085             : 
    1086             :     /* if neither needs to be logged, we're done */
    1087           0 :     if (!do_log_xmin && !do_log_xmax)
    1088           0 :         return;
    1089             : 
    1090             :     /* fill out mapping information */
    1091           0 :     map.old_node = state->rs_old_rel->rd_node;
    1092           0 :     map.old_tid = old_tid;
    1093           0 :     map.new_node = state->rs_new_rel->rd_node;
    1094           0 :     map.new_tid = new_tid;
    1095             : 
    1096             :     /* ---
    1097             :      * Now persist the mapping for the individual xids that are affected. We
    1098             :      * need to log for both xmin and xmax if they aren't the same transaction
    1099             :      * since the mapping files are per "affected" xid.
    1100             :      * We don't muster all that much effort detecting whether xmin and xmax
    1101             :      * are actually the same transaction, we just check whether the xid is the
    1102             :      * same disregarding subtransactions. Logging too much is relatively
    1103             :      * harmless and we could never do the check fully since subtransaction
    1104             :      * data is thrown away during restarts.
    1105             :      * ---
    1106             :      */
    1107           0 :     if (do_log_xmin)
    1108           0 :         logical_rewrite_log_mapping(state, xmin, &map);
    1109             :     /* separately log mapping for xmax unless it'd be redundant */
    1110           0 :     if (do_log_xmax && !TransactionIdEquals(xmin, xmax))
    1111           0 :         logical_rewrite_log_mapping(state, xmax, &map);
    1112             : }
    1113             : 
    1114             : /*
    1115             :  * Replay XLOG_HEAP2_REWRITE records
    1116             :  */
    1117             : void
    1118           0 : heap_xlog_logical_rewrite(XLogReaderState *r)
    1119             : {
    1120             :     char        path[MAXPGPATH];
    1121             :     int         fd;
    1122             :     xl_heap_rewrite_mapping *xlrec;
    1123             :     uint32      len;
    1124             :     char       *data;
    1125             : 
    1126           0 :     xlrec = (xl_heap_rewrite_mapping *) XLogRecGetData(r);
    1127             : 
    1128           0 :     snprintf(path, MAXPGPATH,
    1129             :              "pg_logical/mappings/" LOGICAL_REWRITE_FORMAT,
    1130             :              xlrec->mapped_db, xlrec->mapped_rel,
    1131           0 :              (uint32) (xlrec->start_lsn >> 32),
    1132           0 :              (uint32) xlrec->start_lsn,
    1133           0 :              xlrec->mapped_xid, XLogRecGetXid(r));
    1134             : 
    1135           0 :     fd = OpenTransientFile(path,
    1136             :                            O_CREAT | O_WRONLY | PG_BINARY,
    1137             :                            S_IRUSR | S_IWUSR);
    1138           0 :     if (fd < 0)
    1139           0 :         ereport(ERROR,
    1140             :                 (errcode_for_file_access(),
    1141             :                  errmsg("could not create file \"%s\": %m", path)));
    1142             : 
    1143             :     /*
    1144             :      * Truncate all data that's not guaranteed to have been safely fsynced (by
    1145             :      * previous record or by the last checkpoint).
    1146             :      */
    1147           0 :     pgstat_report_wait_start(WAIT_EVENT_LOGICAL_REWRITE_TRUNCATE);
    1148           0 :     if (ftruncate(fd, xlrec->offset) != 0)
    1149           0 :         ereport(ERROR,
    1150             :                 (errcode_for_file_access(),
    1151             :                  errmsg("could not truncate file \"%s\" to %u: %m",
    1152             :                         path, (uint32) xlrec->offset)));
    1153           0 :     pgstat_report_wait_end();
    1154             : 
    1155             :     /* now seek to the position we want to write our data to */
    1156           0 :     if (lseek(fd, xlrec->offset, SEEK_SET) != xlrec->offset)
    1157           0 :         ereport(ERROR,
    1158             :                 (errcode_for_file_access(),
    1159             :                  errmsg("could not seek to end of file \"%s\": %m",
    1160             :                         path)));
    1161             : 
    1162           0 :     data = XLogRecGetData(r) + sizeof(*xlrec);
    1163             : 
    1164           0 :     len = xlrec->num_mappings * sizeof(LogicalRewriteMappingData);
    1165             : 
    1166             :     /* write out tail end of mapping file (again) */
    1167           0 :     pgstat_report_wait_start(WAIT_EVENT_LOGICAL_REWRITE_MAPPING_WRITE);
    1168           0 :     if (write(fd, data, len) != len)
    1169           0 :         ereport(ERROR,
    1170             :                 (errcode_for_file_access(),
    1171             :                  errmsg("could not write to file \"%s\": %m", path)));
    1172           0 :     pgstat_report_wait_end();
    1173             : 
    1174             :     /*
    1175             :      * Now fsync all previously written data. We could improve things and only
    1176             :      * do this for the last write to a file, but the required bookkeeping
    1177             :      * doesn't seem worth the trouble.
    1178             :      */
    1179           0 :     pgstat_report_wait_start(WAIT_EVENT_LOGICAL_REWRITE_MAPPING_SYNC);
    1180           0 :     if (pg_fsync(fd) != 0)
    1181           0 :         ereport(ERROR,
    1182             :                 (errcode_for_file_access(),
    1183             :                  errmsg("could not fsync file \"%s\": %m", path)));
    1184           0 :     pgstat_report_wait_end();
    1185             : 
    1186           0 :     CloseTransientFile(fd);
    1187           0 : }
    1188             : 
    1189             : /* ---
    1190             :  * Perform a checkpoint for logical rewrite mappings
    1191             :  *
    1192             :  * This serves two tasks:
    1193             :  * 1) Remove all mappings not needed anymore based on the logical restart LSN
    1194             :  * 2) Flush all remaining mappings to disk, so that replay after a checkpoint
    1195             :  *    only has to deal with the parts of a mapping that have been written out
    1196             :  *    after the checkpoint started.
    1197             :  * ---
    1198             :  */
    1199             : void
    1200          11 : CheckPointLogicalRewriteHeap(void)
    1201             : {
    1202             :     XLogRecPtr  cutoff;
    1203             :     XLogRecPtr  redo;
    1204             :     DIR        *mappings_dir;
    1205             :     struct dirent *mapping_de;
    1206             :     char        path[MAXPGPATH + 20];
    1207             : 
    1208             :     /*
    1209             :      * We start of with a minimum of the last redo pointer. No new decoding
    1210             :      * slot will start before that, so that's a safe upper bound for removal.
    1211             :      */
    1212          11 :     redo = GetRedoRecPtr();
    1213             : 
    1214             :     /* now check for the restart ptrs from existing slots */
    1215          11 :     cutoff = ReplicationSlotsComputeLogicalRestartLSN();
    1216             : 
    1217             :     /* don't start earlier than the restart lsn */
    1218          11 :     if (cutoff != InvalidXLogRecPtr && redo < cutoff)
    1219           0 :         cutoff = redo;
    1220             : 
    1221          11 :     mappings_dir = AllocateDir("pg_logical/mappings");
    1222          44 :     while ((mapping_de = ReadDir(mappings_dir, "pg_logical/mappings")) != NULL)
    1223             :     {
    1224             :         struct stat statbuf;
    1225             :         Oid         dboid;
    1226             :         Oid         relid;
    1227             :         XLogRecPtr  lsn;
    1228             :         TransactionId rewrite_xid;
    1229             :         TransactionId create_xid;
    1230             :         uint32      hi,
    1231             :                     lo;
    1232             : 
    1233          33 :         if (strcmp(mapping_de->d_name, ".") == 0 ||
    1234          11 :             strcmp(mapping_de->d_name, "..") == 0)
    1235          44 :             continue;
    1236             : 
    1237           0 :         snprintf(path, sizeof(path), "pg_logical/mappings/%s", mapping_de->d_name);
    1238           0 :         if (lstat(path, &statbuf) == 0 && !S_ISREG(statbuf.st_mode))
    1239           0 :             continue;
    1240             : 
    1241             :         /* Skip over files that cannot be ours. */
    1242           0 :         if (strncmp(mapping_de->d_name, "map-", 4) != 0)
    1243           0 :             continue;
    1244             : 
    1245           0 :         if (sscanf(mapping_de->d_name, LOGICAL_REWRITE_FORMAT,
    1246             :                    &dboid, &relid, &hi, &lo, &rewrite_xid, &create_xid) != 6)
    1247           0 :             elog(ERROR, "could not parse filename \"%s\"", mapping_de->d_name);
    1248             : 
    1249           0 :         lsn = ((uint64) hi) << 32 | lo;
    1250             : 
    1251           0 :         if (lsn < cutoff || cutoff == InvalidXLogRecPtr)
    1252             :         {
    1253           0 :             elog(DEBUG1, "removing logical rewrite file \"%s\"", path);
    1254           0 :             if (unlink(path) < 0)
    1255           0 :                 ereport(ERROR,
    1256             :                         (errcode_for_file_access(),
    1257             :                          errmsg("could not remove file \"%s\": %m", path)));
    1258             :         }
    1259             :         else
    1260             :         {
    1261           0 :             int         fd = OpenTransientFile(path, O_RDONLY | PG_BINARY, 0);
    1262             : 
    1263             :             /*
    1264             :              * The file cannot vanish due to concurrency since this function
    1265             :              * is the only one removing logical mappings and it's run while
    1266             :              * CheckpointLock is held exclusively.
    1267             :              */
    1268           0 :             if (fd < 0)
    1269           0 :                 ereport(ERROR,
    1270             :                         (errcode_for_file_access(),
    1271             :                          errmsg("could not open file \"%s\": %m", path)));
    1272             : 
    1273             :             /*
    1274             :              * We could try to avoid fsyncing files that either haven't
    1275             :              * changed or have only been created since the checkpoint's start,
    1276             :              * but it's currently not deemed worth the effort.
    1277             :              */
    1278           0 :             pgstat_report_wait_start(WAIT_EVENT_LOGICAL_REWRITE_CHECKPOINT_SYNC);
    1279           0 :             if (pg_fsync(fd) != 0)
    1280           0 :                 ereport(ERROR,
    1281             :                         (errcode_for_file_access(),
    1282             :                          errmsg("could not fsync file \"%s\": %m", path)));
    1283           0 :             pgstat_report_wait_end();
    1284           0 :             CloseTransientFile(fd);
    1285             :         }
    1286             :     }
    1287          11 :     FreeDir(mappings_dir);
    1288          11 : }

Generated by: LCOV version 1.11