Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * xlogutils.c
4 : *
5 : * PostgreSQL write-ahead log manager utility routines
6 : *
7 : * This file contains support routines that are used by XLOG replay functions.
8 : * None of this code is used during normal system operation.
9 : *
10 : *
11 : * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
12 : * Portions Copyright (c) 1994, Regents of the University of California
13 : *
14 : * src/backend/access/transam/xlogutils.c
15 : *
16 : *-------------------------------------------------------------------------
17 : */
18 : #include "postgres.h"
19 :
20 : #include <unistd.h>
21 :
22 : #include "access/timeline.h"
23 : #include "access/xlog.h"
24 : #include "access/xlog_internal.h"
25 : #include "access/xlogutils.h"
26 : #include "catalog/catalog.h"
27 : #include "miscadmin.h"
28 : #include "pgstat.h"
29 : #include "storage/smgr.h"
30 : #include "utils/guc.h"
31 : #include "utils/hsearch.h"
32 : #include "utils/rel.h"
33 :
34 :
35 : /*
36 : * During XLOG replay, we may see XLOG records for incremental updates of
37 : * pages that no longer exist, because their relation was later dropped or
38 : * truncated. (Note: this is only possible when full_page_writes = OFF,
39 : * since when it's ON, the first reference we see to a page should always
40 : * be a full-page rewrite not an incremental update.) Rather than simply
41 : * ignoring such records, we make a note of the referenced page, and then
42 : * complain if we don't actually see a drop or truncate covering the page
43 : * later in replay.
44 : */
45 : typedef struct xl_invalid_page_key
46 : {
47 : RelFileNode node; /* the relation */
48 : ForkNumber forkno; /* the fork number */
49 : BlockNumber blkno; /* the page */
50 : } xl_invalid_page_key;
51 :
52 : typedef struct xl_invalid_page
53 : {
54 : xl_invalid_page_key key; /* hash key ... must be first */
55 : bool present; /* page existed but contained zeroes */
56 : } xl_invalid_page;
57 :
58 : static HTAB *invalid_page_tab = NULL;
59 :
60 :
61 : /* Report a reference to an invalid page */
62 : static void
63 0 : report_invalid_page(int elevel, RelFileNode node, ForkNumber forkno,
64 : BlockNumber blkno, bool present)
65 : {
66 0 : char *path = relpathperm(node, forkno);
67 :
68 0 : if (present)
69 0 : elog(elevel, "page %u of relation %s is uninitialized",
70 : blkno, path);
71 : else
72 0 : elog(elevel, "page %u of relation %s does not exist",
73 : blkno, path);
74 0 : pfree(path);
75 0 : }
76 :
77 : /* Log a reference to an invalid page */
78 : static void
79 0 : log_invalid_page(RelFileNode node, ForkNumber forkno, BlockNumber blkno,
80 : bool present)
81 : {
82 : xl_invalid_page_key key;
83 : xl_invalid_page *hentry;
84 : bool found;
85 :
86 : /*
87 : * Once recovery has reached a consistent state, the invalid-page table
88 : * should be empty and remain so. If a reference to an invalid page is
89 : * found after consistency is reached, PANIC immediately. This might seem
90 : * aggressive, but it's better than letting the invalid reference linger
91 : * in the hash table until the end of recovery and PANIC there, which
92 : * might come only much later if this is a standby server.
93 : */
94 0 : if (reachedConsistency)
95 : {
96 0 : report_invalid_page(WARNING, node, forkno, blkno, present);
97 0 : elog(PANIC, "WAL contains references to invalid pages");
98 : }
99 :
100 : /*
101 : * Log references to invalid pages at DEBUG1 level. This allows some
102 : * tracing of the cause (note the elog context mechanism will tell us
103 : * something about the XLOG record that generated the reference).
104 : */
105 0 : if (log_min_messages <= DEBUG1 || client_min_messages <= DEBUG1)
106 0 : report_invalid_page(DEBUG1, node, forkno, blkno, present);
107 :
108 0 : if (invalid_page_tab == NULL)
109 : {
110 : /* create hash table when first needed */
111 : HASHCTL ctl;
112 :
113 0 : memset(&ctl, 0, sizeof(ctl));
114 0 : ctl.keysize = sizeof(xl_invalid_page_key);
115 0 : ctl.entrysize = sizeof(xl_invalid_page);
116 :
117 0 : invalid_page_tab = hash_create("XLOG invalid-page table",
118 : 100,
119 : &ctl,
120 : HASH_ELEM | HASH_BLOBS);
121 : }
122 :
123 : /* we currently assume xl_invalid_page_key contains no padding */
124 0 : key.node = node;
125 0 : key.forkno = forkno;
126 0 : key.blkno = blkno;
127 0 : hentry = (xl_invalid_page *)
128 0 : hash_search(invalid_page_tab, (void *) &key, HASH_ENTER, &found);
129 :
130 0 : if (!found)
131 : {
132 : /* hash_search already filled in the key */
133 0 : hentry->present = present;
134 : }
135 : else
136 : {
137 : /* repeat reference ... leave "present" as it was */
138 : }
139 0 : }
140 :
141 : /* Forget any invalid pages >= minblkno, because they've been dropped */
142 : static void
143 0 : forget_invalid_pages(RelFileNode node, ForkNumber forkno, BlockNumber minblkno)
144 : {
145 : HASH_SEQ_STATUS status;
146 : xl_invalid_page *hentry;
147 :
148 0 : if (invalid_page_tab == NULL)
149 0 : return; /* nothing to do */
150 :
151 0 : hash_seq_init(&status, invalid_page_tab);
152 :
153 0 : while ((hentry = (xl_invalid_page *) hash_seq_search(&status)) != NULL)
154 : {
155 0 : if (RelFileNodeEquals(hentry->key.node, node) &&
156 0 : hentry->key.forkno == forkno &&
157 0 : hentry->key.blkno >= minblkno)
158 : {
159 0 : if (log_min_messages <= DEBUG2 || client_min_messages <= DEBUG2)
160 : {
161 0 : char *path = relpathperm(hentry->key.node, forkno);
162 :
163 0 : elog(DEBUG2, "page %u of relation %s has been dropped",
164 : hentry->key.blkno, path);
165 0 : pfree(path);
166 : }
167 :
168 0 : if (hash_search(invalid_page_tab,
169 0 : (void *) &hentry->key,
170 : HASH_REMOVE, NULL) == NULL)
171 0 : elog(ERROR, "hash table corrupted");
172 : }
173 : }
174 : }
175 :
176 : /* Forget any invalid pages in a whole database */
177 : static void
178 0 : forget_invalid_pages_db(Oid dbid)
179 : {
180 : HASH_SEQ_STATUS status;
181 : xl_invalid_page *hentry;
182 :
183 0 : if (invalid_page_tab == NULL)
184 0 : return; /* nothing to do */
185 :
186 0 : hash_seq_init(&status, invalid_page_tab);
187 :
188 0 : while ((hentry = (xl_invalid_page *) hash_seq_search(&status)) != NULL)
189 : {
190 0 : if (hentry->key.node.dbNode == dbid)
191 : {
192 0 : if (log_min_messages <= DEBUG2 || client_min_messages <= DEBUG2)
193 : {
194 0 : char *path = relpathperm(hentry->key.node, hentry->key.forkno);
195 :
196 0 : elog(DEBUG2, "page %u of relation %s has been dropped",
197 : hentry->key.blkno, path);
198 0 : pfree(path);
199 : }
200 :
201 0 : if (hash_search(invalid_page_tab,
202 0 : (void *) &hentry->key,
203 : HASH_REMOVE, NULL) == NULL)
204 0 : elog(ERROR, "hash table corrupted");
205 : }
206 : }
207 : }
208 :
209 : /* Are there any unresolved references to invalid pages? */
210 : bool
211 0 : XLogHaveInvalidPages(void)
212 : {
213 0 : if (invalid_page_tab != NULL &&
214 0 : hash_get_num_entries(invalid_page_tab) > 0)
215 0 : return true;
216 0 : return false;
217 : }
218 :
219 : /* Complain about any remaining invalid-page entries */
220 : void
221 0 : XLogCheckInvalidPages(void)
222 : {
223 : HASH_SEQ_STATUS status;
224 : xl_invalid_page *hentry;
225 0 : bool foundone = false;
226 :
227 0 : if (invalid_page_tab == NULL)
228 0 : return; /* nothing to do */
229 :
230 0 : hash_seq_init(&status, invalid_page_tab);
231 :
232 : /*
233 : * Our strategy is to emit WARNING messages for all remaining entries and
234 : * only PANIC after we've dumped all the available info.
235 : */
236 0 : while ((hentry = (xl_invalid_page *) hash_seq_search(&status)) != NULL)
237 : {
238 0 : report_invalid_page(WARNING, hentry->key.node, hentry->key.forkno,
239 0 : hentry->key.blkno, hentry->present);
240 0 : foundone = true;
241 : }
242 :
243 0 : if (foundone)
244 0 : elog(PANIC, "WAL contains references to invalid pages");
245 :
246 0 : hash_destroy(invalid_page_tab);
247 0 : invalid_page_tab = NULL;
248 : }
249 :
250 :
251 : /*
252 : * XLogReadBufferForRedo
253 : * Read a page during XLOG replay
254 : *
255 : * Reads a block referenced by a WAL record into shared buffer cache, and
256 : * determines what needs to be done to redo the changes to it. If the WAL
257 : * record includes a full-page image of the page, it is restored.
258 : *
259 : * 'lsn' is the LSN of the record being replayed. It is compared with the
260 : * page's LSN to determine if the record has already been replayed.
261 : * 'block_id' is the ID number the block was registered with, when the WAL
262 : * record was created.
263 : *
264 : * Returns one of the following:
265 : *
266 : * BLK_NEEDS_REDO - changes from the WAL record need to be applied
267 : * BLK_DONE - block doesn't need replaying
268 : * BLK_RESTORED - block was restored from a full-page image included in
269 : * the record
270 : * BLK_NOTFOUND - block was not found (because it was truncated away by
271 : * an operation later in the WAL stream)
272 : *
273 : * On return, the buffer is locked in exclusive-mode, and returned in *buf.
274 : * Note that the buffer is locked and returned even if it doesn't need
275 : * replaying. (Getting the buffer lock is not really necessary during
276 : * single-process crash recovery, but some subroutines such as MarkBufferDirty
277 : * will complain if we don't have the lock. In hot standby mode it's
278 : * definitely necessary.)
279 : *
280 : * Note: when a backup block is available in XLOG with the BKPIMAGE_APPLY flag
281 : * set, we restore it, even if the page in the database appears newer. This
282 : * is to protect ourselves against database pages that were partially or
283 : * incorrectly written during a crash. We assume that the XLOG data must be
284 : * good because it has passed a CRC check, while the database page might not
285 : * be. This will force us to replay all subsequent modifications of the page
286 : * that appear in XLOG, rather than possibly ignoring them as already
287 : * applied, but that's not a huge drawback.
288 : */
289 : XLogRedoAction
290 0 : XLogReadBufferForRedo(XLogReaderState *record, uint8 block_id,
291 : Buffer *buf)
292 : {
293 0 : return XLogReadBufferForRedoExtended(record, block_id, RBM_NORMAL,
294 : false, buf);
295 : }
296 :
297 : /*
298 : * Pin and lock a buffer referenced by a WAL record, for the purpose of
299 : * re-initializing it.
300 : */
301 : Buffer
302 0 : XLogInitBufferForRedo(XLogReaderState *record, uint8 block_id)
303 : {
304 : Buffer buf;
305 :
306 0 : XLogReadBufferForRedoExtended(record, block_id, RBM_ZERO_AND_LOCK, false,
307 : &buf);
308 0 : return buf;
309 : }
310 :
311 : /*
312 : * XLogReadBufferForRedoExtended
313 : * Like XLogReadBufferForRedo, but with extra options.
314 : *
315 : * In RBM_ZERO_* modes, if the page doesn't exist, the relation is extended
316 : * with all-zeroes pages up to the referenced block number. In
317 : * RBM_ZERO_AND_LOCK and RBM_ZERO_AND_CLEANUP_LOCK modes, the return value
318 : * is always BLK_NEEDS_REDO.
319 : *
320 : * (The RBM_ZERO_AND_CLEANUP_LOCK mode is redundant with the get_cleanup_lock
321 : * parameter. Do not use an inconsistent combination!)
322 : *
323 : * If 'get_cleanup_lock' is true, a "cleanup lock" is acquired on the buffer
324 : * using LockBufferForCleanup(), instead of a regular exclusive lock.
325 : */
326 : XLogRedoAction
327 0 : XLogReadBufferForRedoExtended(XLogReaderState *record,
328 : uint8 block_id,
329 : ReadBufferMode mode, bool get_cleanup_lock,
330 : Buffer *buf)
331 : {
332 0 : XLogRecPtr lsn = record->EndRecPtr;
333 : RelFileNode rnode;
334 : ForkNumber forknum;
335 : BlockNumber blkno;
336 : Page page;
337 : bool zeromode;
338 : bool willinit;
339 :
340 0 : if (!XLogRecGetBlockTag(record, block_id, &rnode, &forknum, &blkno))
341 : {
342 : /* Caller specified a bogus block_id */
343 0 : elog(PANIC, "failed to locate backup block with ID %d", block_id);
344 : }
345 :
346 : /*
347 : * Make sure that if the block is marked with WILL_INIT, the caller is
348 : * going to initialize it. And vice versa.
349 : */
350 0 : zeromode = (mode == RBM_ZERO_AND_LOCK || mode == RBM_ZERO_AND_CLEANUP_LOCK);
351 0 : willinit = (record->blocks[block_id].flags & BKPBLOCK_WILL_INIT) != 0;
352 0 : if (willinit && !zeromode)
353 0 : elog(PANIC, "block with WILL_INIT flag in WAL record must be zeroed by redo routine");
354 0 : if (!willinit && zeromode)
355 0 : elog(PANIC, "block to be initialized in redo routine must be marked with WILL_INIT flag in the WAL record");
356 :
357 : /* If it has a full-page image and it should be restored, do it. */
358 0 : if (XLogRecBlockImageApply(record, block_id))
359 : {
360 0 : Assert(XLogRecHasBlockImage(record, block_id));
361 0 : *buf = XLogReadBufferExtended(rnode, forknum, blkno,
362 : get_cleanup_lock ? RBM_ZERO_AND_CLEANUP_LOCK : RBM_ZERO_AND_LOCK);
363 0 : page = BufferGetPage(*buf);
364 0 : if (!RestoreBlockImage(record, block_id, page))
365 0 : elog(ERROR, "failed to restore block image");
366 :
367 : /*
368 : * The page may be uninitialized. If so, we can't set the LSN because
369 : * that would corrupt the page.
370 : */
371 0 : if (!PageIsNew(page))
372 : {
373 0 : PageSetLSN(page, lsn);
374 : }
375 :
376 0 : MarkBufferDirty(*buf);
377 :
378 : /*
379 : * At the end of crash recovery the init forks of unlogged relations
380 : * are copied, without going through shared buffers. So we need to
381 : * force the on-disk state of init forks to always be in sync with the
382 : * state in shared buffers.
383 : */
384 0 : if (forknum == INIT_FORKNUM)
385 0 : FlushOneBuffer(*buf);
386 :
387 0 : return BLK_RESTORED;
388 : }
389 : else
390 : {
391 0 : *buf = XLogReadBufferExtended(rnode, forknum, blkno, mode);
392 0 : if (BufferIsValid(*buf))
393 : {
394 0 : if (mode != RBM_ZERO_AND_LOCK && mode != RBM_ZERO_AND_CLEANUP_LOCK)
395 : {
396 0 : if (get_cleanup_lock)
397 0 : LockBufferForCleanup(*buf);
398 : else
399 0 : LockBuffer(*buf, BUFFER_LOCK_EXCLUSIVE);
400 : }
401 0 : if (lsn <= PageGetLSN(BufferGetPage(*buf)))
402 0 : return BLK_DONE;
403 : else
404 0 : return BLK_NEEDS_REDO;
405 : }
406 : else
407 0 : return BLK_NOTFOUND;
408 : }
409 : }
410 :
411 : /*
412 : * XLogReadBufferExtended
413 : * Read a page during XLOG replay
414 : *
415 : * This is functionally comparable to ReadBufferExtended. There's some
416 : * differences in the behavior wrt. the "mode" argument:
417 : *
418 : * In RBM_NORMAL mode, if the page doesn't exist, or contains all-zeroes, we
419 : * return InvalidBuffer. In this case the caller should silently skip the
420 : * update on this page. (In this situation, we expect that the page was later
421 : * dropped or truncated. If we don't see evidence of that later in the WAL
422 : * sequence, we'll complain at the end of WAL replay.)
423 : *
424 : * In RBM_ZERO_* modes, if the page doesn't exist, the relation is extended
425 : * with all-zeroes pages up to the given block number.
426 : *
427 : * In RBM_NORMAL_NO_LOG mode, we return InvalidBuffer if the page doesn't
428 : * exist, and we don't check for all-zeroes. Thus, no log entry is made
429 : * to imply that the page should be dropped or truncated later.
430 : *
431 : * NB: A redo function should normally not call this directly. To get a page
432 : * to modify, use XLogReadBufferForRedoExtended instead. It is important that
433 : * all pages modified by a WAL record are registered in the WAL records, or
434 : * they will be invisible to tools that that need to know which pages are
435 : * modified.
436 : */
437 : Buffer
438 0 : XLogReadBufferExtended(RelFileNode rnode, ForkNumber forknum,
439 : BlockNumber blkno, ReadBufferMode mode)
440 : {
441 : BlockNumber lastblock;
442 : Buffer buffer;
443 : SMgrRelation smgr;
444 :
445 0 : Assert(blkno != P_NEW);
446 :
447 : /* Open the relation at smgr level */
448 0 : smgr = smgropen(rnode, InvalidBackendId);
449 :
450 : /*
451 : * Create the target file if it doesn't already exist. This lets us cope
452 : * if the replay sequence contains writes to a relation that is later
453 : * deleted. (The original coding of this routine would instead suppress
454 : * the writes, but that seems like it risks losing valuable data if the
455 : * filesystem loses an inode during a crash. Better to write the data
456 : * until we are actually told to delete the file.)
457 : */
458 0 : smgrcreate(smgr, forknum, true);
459 :
460 0 : lastblock = smgrnblocks(smgr, forknum);
461 :
462 0 : if (blkno < lastblock)
463 : {
464 : /* page exists in file */
465 0 : buffer = ReadBufferWithoutRelcache(rnode, forknum, blkno,
466 : mode, NULL);
467 : }
468 : else
469 : {
470 : /* hm, page doesn't exist in file */
471 0 : if (mode == RBM_NORMAL)
472 : {
473 0 : log_invalid_page(rnode, forknum, blkno, false);
474 0 : return InvalidBuffer;
475 : }
476 0 : if (mode == RBM_NORMAL_NO_LOG)
477 0 : return InvalidBuffer;
478 : /* OK to extend the file */
479 : /* we do this in recovery only - no rel-extension lock needed */
480 0 : Assert(InRecovery);
481 0 : buffer = InvalidBuffer;
482 : do
483 : {
484 0 : if (buffer != InvalidBuffer)
485 : {
486 0 : if (mode == RBM_ZERO_AND_LOCK || mode == RBM_ZERO_AND_CLEANUP_LOCK)
487 0 : LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
488 0 : ReleaseBuffer(buffer);
489 : }
490 0 : buffer = ReadBufferWithoutRelcache(rnode, forknum,
491 : P_NEW, mode, NULL);
492 : }
493 0 : while (BufferGetBlockNumber(buffer) < blkno);
494 : /* Handle the corner case that P_NEW returns non-consecutive pages */
495 0 : if (BufferGetBlockNumber(buffer) != blkno)
496 : {
497 0 : if (mode == RBM_ZERO_AND_LOCK || mode == RBM_ZERO_AND_CLEANUP_LOCK)
498 0 : LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
499 0 : ReleaseBuffer(buffer);
500 0 : buffer = ReadBufferWithoutRelcache(rnode, forknum, blkno,
501 : mode, NULL);
502 : }
503 : }
504 :
505 0 : if (mode == RBM_NORMAL)
506 : {
507 : /* check that page has been initialized */
508 0 : Page page = (Page) BufferGetPage(buffer);
509 :
510 : /*
511 : * We assume that PageIsNew is safe without a lock. During recovery,
512 : * there should be no other backends that could modify the buffer at
513 : * the same time.
514 : */
515 0 : if (PageIsNew(page))
516 : {
517 0 : ReleaseBuffer(buffer);
518 0 : log_invalid_page(rnode, forknum, blkno, true);
519 0 : return InvalidBuffer;
520 : }
521 : }
522 :
523 0 : return buffer;
524 : }
525 :
526 : /*
527 : * Struct actually returned by XLogFakeRelcacheEntry, though the declared
528 : * return type is Relation.
529 : */
530 : typedef struct
531 : {
532 : RelationData reldata; /* Note: this must be first */
533 : FormData_pg_class pgc;
534 : } FakeRelCacheEntryData;
535 :
536 : typedef FakeRelCacheEntryData *FakeRelCacheEntry;
537 :
538 : /*
539 : * Create a fake relation cache entry for a physical relation
540 : *
541 : * It's often convenient to use the same functions in XLOG replay as in the
542 : * main codepath, but those functions typically work with a relcache entry.
543 : * We don't have a working relation cache during XLOG replay, but this
544 : * function can be used to create a fake relcache entry instead. Only the
545 : * fields related to physical storage, like rd_rel, are initialized, so the
546 : * fake entry is only usable in low-level operations like ReadBuffer().
547 : *
548 : * Caller must free the returned entry with FreeFakeRelcacheEntry().
549 : */
550 : Relation
551 0 : CreateFakeRelcacheEntry(RelFileNode rnode)
552 : {
553 : FakeRelCacheEntry fakeentry;
554 : Relation rel;
555 :
556 0 : Assert(InRecovery);
557 :
558 : /* Allocate the Relation struct and all related space in one block. */
559 0 : fakeentry = palloc0(sizeof(FakeRelCacheEntryData));
560 0 : rel = (Relation) fakeentry;
561 :
562 0 : rel->rd_rel = &fakeentry->pgc;
563 0 : rel->rd_node = rnode;
564 : /* We will never be working with temp rels during recovery */
565 0 : rel->rd_backend = InvalidBackendId;
566 :
567 : /* It must be a permanent table if we're in recovery. */
568 0 : rel->rd_rel->relpersistence = RELPERSISTENCE_PERMANENT;
569 :
570 : /* We don't know the name of the relation; use relfilenode instead */
571 0 : sprintf(RelationGetRelationName(rel), "%u", rnode.relNode);
572 :
573 : /*
574 : * We set up the lockRelId in case anything tries to lock the dummy
575 : * relation. Note that this is fairly bogus since relNode may be
576 : * different from the relation's OID. It shouldn't really matter though,
577 : * since we are presumably running by ourselves and can't have any lock
578 : * conflicts ...
579 : */
580 0 : rel->rd_lockInfo.lockRelId.dbId = rnode.dbNode;
581 0 : rel->rd_lockInfo.lockRelId.relId = rnode.relNode;
582 :
583 0 : rel->rd_smgr = NULL;
584 :
585 0 : return rel;
586 : }
587 :
588 : /*
589 : * Free a fake relation cache entry.
590 : */
591 : void
592 0 : FreeFakeRelcacheEntry(Relation fakerel)
593 : {
594 : /* make sure the fakerel is not referenced by the SmgrRelation anymore */
595 0 : if (fakerel->rd_smgr != NULL)
596 0 : smgrclearowner(&fakerel->rd_smgr, fakerel->rd_smgr);
597 0 : pfree(fakerel);
598 0 : }
599 :
600 : /*
601 : * Drop a relation during XLOG replay
602 : *
603 : * This is called when the relation is about to be deleted; we need to remove
604 : * any open "invalid-page" records for the relation.
605 : */
606 : void
607 0 : XLogDropRelation(RelFileNode rnode, ForkNumber forknum)
608 : {
609 0 : forget_invalid_pages(rnode, forknum, 0);
610 0 : }
611 :
612 : /*
613 : * Drop a whole database during XLOG replay
614 : *
615 : * As above, but for DROP DATABASE instead of dropping a single rel
616 : */
617 : void
618 0 : XLogDropDatabase(Oid dbid)
619 : {
620 : /*
621 : * This is unnecessarily heavy-handed, as it will close SMgrRelation
622 : * objects for other databases as well. DROP DATABASE occurs seldom enough
623 : * that it's not worth introducing a variant of smgrclose for just this
624 : * purpose. XXX: Or should we rather leave the smgr entries dangling?
625 : */
626 0 : smgrcloseall();
627 :
628 0 : forget_invalid_pages_db(dbid);
629 0 : }
630 :
631 : /*
632 : * Truncate a relation during XLOG replay
633 : *
634 : * We need to clean up any open "invalid-page" records for the dropped pages.
635 : */
636 : void
637 0 : XLogTruncateRelation(RelFileNode rnode, ForkNumber forkNum,
638 : BlockNumber nblocks)
639 : {
640 0 : forget_invalid_pages(rnode, forkNum, nblocks);
641 0 : }
642 :
643 : /*
644 : * Read 'count' bytes from WAL into 'buf', starting at location 'startptr'
645 : * in timeline 'tli'.
646 : *
647 : * Will open, and keep open, one WAL segment stored in the static file
648 : * descriptor 'sendFile'. This means if XLogRead is used once, there will
649 : * always be one descriptor left open until the process ends, but never
650 : * more than one.
651 : *
652 : * XXX This is very similar to pg_waldump's XLogDumpXLogRead and to XLogRead
653 : * in walsender.c but for small differences (such as lack of elog() in
654 : * frontend). Probably these should be merged at some point.
655 : */
656 : static void
657 13 : XLogRead(char *buf, TimeLineID tli, XLogRecPtr startptr, Size count)
658 : {
659 : char *p;
660 : XLogRecPtr recptr;
661 : Size nbytes;
662 :
663 : /* state maintained across calls */
664 : static int sendFile = -1;
665 : static XLogSegNo sendSegNo = 0;
666 : static TimeLineID sendTLI = 0;
667 : static uint32 sendOff = 0;
668 :
669 13 : p = buf;
670 13 : recptr = startptr;
671 13 : nbytes = count;
672 :
673 39 : while (nbytes > 0)
674 : {
675 : uint32 startoff;
676 : int segbytes;
677 : int readbytes;
678 :
679 13 : startoff = recptr % XLogSegSize;
680 :
681 : /* Do we need to switch to a different xlog segment? */
682 24 : if (sendFile < 0 || !XLByteInSeg(recptr, sendSegNo) ||
683 11 : sendTLI != tli)
684 : {
685 : char path[MAXPGPATH];
686 :
687 2 : if (sendFile >= 0)
688 0 : close(sendFile);
689 :
690 2 : XLByteToSeg(recptr, sendSegNo);
691 :
692 2 : XLogFilePath(path, tli, sendSegNo);
693 :
694 2 : sendFile = BasicOpenFile(path, O_RDONLY | PG_BINARY, 0);
695 :
696 2 : if (sendFile < 0)
697 : {
698 0 : if (errno == ENOENT)
699 0 : ereport(ERROR,
700 : (errcode_for_file_access(),
701 : errmsg("requested WAL segment %s has already been removed",
702 : path)));
703 : else
704 0 : ereport(ERROR,
705 : (errcode_for_file_access(),
706 : errmsg("could not open file \"%s\": %m",
707 : path)));
708 : }
709 2 : sendOff = 0;
710 2 : sendTLI = tli;
711 : }
712 :
713 : /* Need to seek in the file? */
714 13 : if (sendOff != startoff)
715 : {
716 10 : if (lseek(sendFile, (off_t) startoff, SEEK_SET) < 0)
717 : {
718 : char path[MAXPGPATH];
719 :
720 0 : XLogFilePath(path, tli, sendSegNo);
721 :
722 0 : ereport(ERROR,
723 : (errcode_for_file_access(),
724 : errmsg("could not seek in log segment %s to offset %u: %m",
725 : path, startoff)));
726 : }
727 10 : sendOff = startoff;
728 : }
729 :
730 : /* How many bytes are within this segment? */
731 13 : if (nbytes > (XLogSegSize - startoff))
732 0 : segbytes = XLogSegSize - startoff;
733 : else
734 13 : segbytes = nbytes;
735 :
736 13 : pgstat_report_wait_start(WAIT_EVENT_WAL_READ);
737 13 : readbytes = read(sendFile, p, segbytes);
738 13 : pgstat_report_wait_end();
739 13 : if (readbytes <= 0)
740 : {
741 : char path[MAXPGPATH];
742 :
743 0 : XLogFilePath(path, tli, sendSegNo);
744 :
745 0 : ereport(ERROR,
746 : (errcode_for_file_access(),
747 : errmsg("could not read from log segment %s, offset %u, length %lu: %m",
748 : path, sendOff, (unsigned long) segbytes)));
749 : }
750 :
751 : /* Update state for read */
752 13 : recptr += readbytes;
753 :
754 13 : sendOff += readbytes;
755 13 : nbytes -= readbytes;
756 13 : p += readbytes;
757 : }
758 13 : }
759 :
760 : /*
761 : * Determine which timeline to read an xlog page from and set the
762 : * XLogReaderState's currTLI to that timeline ID.
763 : *
764 : * We care about timelines in xlogreader when we might be reading xlog
765 : * generated prior to a promotion, either if we're currently a standby in
766 : * recovery or if we're a promoted master reading xlogs generated by the old
767 : * master before our promotion.
768 : *
769 : * wantPage must be set to the start address of the page to read and
770 : * wantLength to the amount of the page that will be read, up to
771 : * XLOG_BLCKSZ. If the amount to be read isn't known, pass XLOG_BLCKSZ.
772 : *
773 : * We switch to an xlog segment from the new timeline eagerly when on a
774 : * historical timeline, as soon as we reach the start of the xlog segment
775 : * containing the timeline switch. The server copied the segment to the new
776 : * timeline so all the data up to the switch point is the same, but there's no
777 : * guarantee the old segment will still exist. It may have been deleted or
778 : * renamed with a .partial suffix so we can't necessarily keep reading from
779 : * the old TLI even though tliSwitchPoint says it's OK.
780 : *
781 : * We can't just check the timeline when we read a page on a different segment
782 : * to the last page. We could've received a timeline switch from a cascading
783 : * upstream, so the current segment ends abruptly (possibly getting renamed to
784 : * .partial) and we have to switch to a new one. Even in the middle of reading
785 : * a page we could have to dump the cached page and switch to a new TLI.
786 : *
787 : * Because of this, callers MAY NOT assume that currTLI is the timeline that
788 : * will be in a page's xlp_tli; the page may begin on an older timeline or we
789 : * might be reading from historical timeline data on a segment that's been
790 : * copied to a new timeline.
791 : *
792 : * The caller must also make sure it doesn't read past the current replay
793 : * position (using GetWalRcvWriteRecPtr) if executing in recovery, so it
794 : * doesn't fail to notice that the current timeline became historical. The
795 : * caller must also update ThisTimeLineID with the result of
796 : * GetWalRcvWriteRecPtr and must check RecoveryInProgress().
797 : */
798 : void
799 13 : XLogReadDetermineTimeline(XLogReaderState *state, XLogRecPtr wantPage, uint32 wantLength)
800 : {
801 13 : const XLogRecPtr lastReadPage = state->readSegNo * XLogSegSize + state->readOff;
802 :
803 13 : Assert(wantPage != InvalidXLogRecPtr && wantPage % XLOG_BLCKSZ == 0);
804 13 : Assert(wantLength <= XLOG_BLCKSZ);
805 13 : Assert(state->readLen == 0 || state->readLen <= XLOG_BLCKSZ);
806 :
807 : /*
808 : * If the desired page is currently read in and valid, we have nothing to
809 : * do.
810 : *
811 : * The caller should've ensured that it didn't previously advance readOff
812 : * past the valid limit of this timeline, so it doesn't matter if the
813 : * current TLI has since become historical.
814 : */
815 13 : if (lastReadPage == wantPage &&
816 0 : state->readLen != 0 &&
817 0 : lastReadPage + state->readLen >= wantPage + Min(wantLength, XLOG_BLCKSZ - 1))
818 0 : return;
819 :
820 : /*
821 : * If we're reading from the current timeline, it hasn't become historical
822 : * and the page we're reading is after the last page read, we can again
823 : * just carry on. (Seeking backwards requires a check to make sure the
824 : * older page isn't on a prior timeline).
825 : *
826 : * ThisTimeLineID might've become historical since we last looked, but the
827 : * caller is required not to read past the flush limit it saw at the time
828 : * it looked up the timeline. There's nothing we can do about it if
829 : * StartupXLOG() renames it to .partial concurrently.
830 : */
831 13 : if (state->currTLI == ThisTimeLineID && wantPage >= lastReadPage)
832 : {
833 7 : Assert(state->currTLIValidUntil == InvalidXLogRecPtr);
834 7 : return;
835 : }
836 :
837 : /*
838 : * If we're just reading pages from a previously validated historical
839 : * timeline and the timeline we're reading from is valid until the end of
840 : * the current segment we can just keep reading.
841 : */
842 6 : if (state->currTLIValidUntil != InvalidXLogRecPtr &&
843 0 : state->currTLI != ThisTimeLineID &&
844 0 : state->currTLI != 0 &&
845 0 : (wantPage + wantLength) / XLogSegSize < state->currTLIValidUntil / XLogSegSize)
846 0 : return;
847 :
848 : /*
849 : * If we reach this point we're either looking up a page for random
850 : * access, the current timeline just became historical, or we're reading
851 : * from a new segment containing a timeline switch. In all cases we need
852 : * to determine the newest timeline on the segment.
853 : *
854 : * If it's the current timeline we can just keep reading from here unless
855 : * we detect a timeline switch that makes the current timeline historical.
856 : * If it's a historical timeline we can read all the segment on the newest
857 : * timeline because it contains all the old timelines' data too. So only
858 : * one switch check is required.
859 : */
860 : {
861 : /*
862 : * We need to re-read the timeline history in case it's been changed
863 : * by a promotion or replay from a cascaded replica.
864 : */
865 6 : List *timelineHistory = readTimeLineHistory(ThisTimeLineID);
866 :
867 6 : XLogRecPtr endOfSegment = (((wantPage / XLogSegSize) + 1) * XLogSegSize) - 1;
868 :
869 6 : Assert(wantPage / XLogSegSize == endOfSegment / XLogSegSize);
870 :
871 : /*
872 : * Find the timeline of the last LSN on the segment containing
873 : * wantPage.
874 : */
875 6 : state->currTLI = tliOfPointInHistory(endOfSegment, timelineHistory);
876 6 : state->currTLIValidUntil = tliSwitchPoint(state->currTLI, timelineHistory,
877 : &state->nextTLI);
878 :
879 6 : Assert(state->currTLIValidUntil == InvalidXLogRecPtr ||
880 : wantPage + wantLength < state->currTLIValidUntil);
881 :
882 6 : list_free_deep(timelineHistory);
883 :
884 6 : elog(DEBUG3, "switched to timeline %u valid until %X/%X",
885 : state->currTLI,
886 : (uint32) (state->currTLIValidUntil >> 32),
887 : (uint32) (state->currTLIValidUntil));
888 : }
889 : }
890 :
891 : /*
892 : * read_page callback for reading local xlog files
893 : *
894 : * Public because it would likely be very helpful for someone writing another
895 : * output method outside walsender, e.g. in a bgworker.
896 : *
897 : * TODO: The walsender has its own version of this, but it relies on the
898 : * walsender's latch being set whenever WAL is flushed. No such infrastructure
899 : * exists for normal backends, so we have to do a check/sleep/repeat style of
900 : * loop for now.
901 : */
902 : int
903 13 : read_local_xlog_page(XLogReaderState *state, XLogRecPtr targetPagePtr,
904 : int reqLen, XLogRecPtr targetRecPtr, char *cur_page,
905 : TimeLineID *pageTLI)
906 : {
907 : XLogRecPtr read_upto,
908 : loc;
909 : int count;
910 :
911 13 : loc = targetPagePtr + reqLen;
912 :
913 : /* Loop waiting for xlog to be available if necessary */
914 : while (1)
915 : {
916 : /*
917 : * Determine the limit of xlog we can currently read to, and what the
918 : * most recent timeline is.
919 : *
920 : * RecoveryInProgress() will update ThisTimeLineID when it first
921 : * notices recovery finishes, so we only have to maintain it for the
922 : * local process until recovery ends.
923 : */
924 13 : if (!RecoveryInProgress())
925 13 : read_upto = GetFlushRecPtr();
926 : else
927 0 : read_upto = GetXLogReplayRecPtr(&ThisTimeLineID);
928 :
929 13 : *pageTLI = ThisTimeLineID;
930 :
931 : /*
932 : * Check which timeline to get the record from.
933 : *
934 : * We have to do it each time through the loop because if we're in
935 : * recovery as a cascading standby, the current timeline might've
936 : * become historical. We can't rely on RecoveryInProgress() because in
937 : * a standby configuration like
938 : *
939 : * A => B => C
940 : *
941 : * if we're a logical decoding session on C, and B gets promoted, our
942 : * timeline will change while we remain in recovery.
943 : *
944 : * We can't just keep reading from the old timeline as the last WAL
945 : * archive in the timeline will get renamed to .partial by
946 : * StartupXLOG().
947 : *
948 : * If that happens after our caller updated ThisTimeLineID but before
949 : * we actually read the xlog page, we might still try to read from the
950 : * old (now renamed) segment and fail. There's not much we can do
951 : * about this, but it can only happen when we're a leaf of a cascading
952 : * standby whose master gets promoted while we're decoding, so a
953 : * one-off ERROR isn't too bad.
954 : */
955 13 : XLogReadDetermineTimeline(state, targetPagePtr, reqLen);
956 :
957 13 : if (state->currTLI == ThisTimeLineID)
958 : {
959 :
960 13 : if (loc <= read_upto)
961 13 : break;
962 :
963 0 : CHECK_FOR_INTERRUPTS();
964 0 : pg_usleep(1000L);
965 : }
966 : else
967 : {
968 : /*
969 : * We're on a historical timeline, so limit reading to the switch
970 : * point where we moved to the next timeline.
971 : *
972 : * We don't need to GetFlushRecPtr or GetXLogReplayRecPtr. We know
973 : * about the new timeline, so we must've received past the end of
974 : * it.
975 : */
976 0 : read_upto = state->currTLIValidUntil;
977 :
978 : /*
979 : * Setting pageTLI to our wanted record's TLI is slightly wrong;
980 : * the page might begin on an older timeline if it contains a
981 : * timeline switch, since its xlog segment will have been copied
982 : * from the prior timeline. This is pretty harmless though, as
983 : * nothing cares so long as the timeline doesn't go backwards. We
984 : * should read the page header instead; FIXME someday.
985 : */
986 0 : *pageTLI = state->currTLI;
987 :
988 : /* No need to wait on a historical timeline */
989 0 : break;
990 : }
991 0 : }
992 :
993 13 : if (targetPagePtr + XLOG_BLCKSZ <= read_upto)
994 : {
995 : /*
996 : * more than one block available; read only that block, have caller
997 : * come back if they need more.
998 : */
999 9 : count = XLOG_BLCKSZ;
1000 : }
1001 4 : else if (targetPagePtr + reqLen > read_upto)
1002 : {
1003 : /* not enough data there */
1004 0 : return -1;
1005 : }
1006 : else
1007 : {
1008 : /* enough bytes available to satisfy the request */
1009 4 : count = read_upto - targetPagePtr;
1010 : }
1011 :
1012 : /*
1013 : * Even though we just determined how much of the page can be validly read
1014 : * as 'count', read the whole page anyway. It's guaranteed to be
1015 : * zero-padded up to the page boundary if it's incomplete.
1016 : */
1017 13 : XLogRead(cur_page, *pageTLI, targetPagePtr, XLOG_BLCKSZ);
1018 :
1019 : /* number of valid bytes in the buffer */
1020 13 : return count;
1021 : }
|