LCOV - code coverage report
Current view: top level - src/backend/optimizer/path - costsize.c (source / functions) Hit Total Coverage
Test: PostgreSQL Lines: 1419 1464 96.9 %
Date: 2017-09-29 15:12:54 Functions: 61 62 98.4 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * costsize.c
       4             :  *    Routines to compute (and set) relation sizes and path costs
       5             :  *
       6             :  * Path costs are measured in arbitrary units established by these basic
       7             :  * parameters:
       8             :  *
       9             :  *  seq_page_cost       Cost of a sequential page fetch
      10             :  *  random_page_cost    Cost of a non-sequential page fetch
      11             :  *  cpu_tuple_cost      Cost of typical CPU time to process a tuple
      12             :  *  cpu_index_tuple_cost  Cost of typical CPU time to process an index tuple
      13             :  *  cpu_operator_cost   Cost of CPU time to execute an operator or function
      14             :  *  parallel_tuple_cost Cost of CPU time to pass a tuple from worker to master backend
      15             :  *  parallel_setup_cost Cost of setting up shared memory for parallelism
      16             :  *
      17             :  * We expect that the kernel will typically do some amount of read-ahead
      18             :  * optimization; this in conjunction with seek costs means that seq_page_cost
      19             :  * is normally considerably less than random_page_cost.  (However, if the
      20             :  * database is fully cached in RAM, it is reasonable to set them equal.)
      21             :  *
      22             :  * We also use a rough estimate "effective_cache_size" of the number of
      23             :  * disk pages in Postgres + OS-level disk cache.  (We can't simply use
      24             :  * NBuffers for this purpose because that would ignore the effects of
      25             :  * the kernel's disk cache.)
      26             :  *
      27             :  * Obviously, taking constants for these values is an oversimplification,
      28             :  * but it's tough enough to get any useful estimates even at this level of
      29             :  * detail.  Note that all of these parameters are user-settable, in case
      30             :  * the default values are drastically off for a particular platform.
      31             :  *
      32             :  * seq_page_cost and random_page_cost can also be overridden for an individual
      33             :  * tablespace, in case some data is on a fast disk and other data is on a slow
      34             :  * disk.  Per-tablespace overrides never apply to temporary work files such as
      35             :  * an external sort or a materialize node that overflows work_mem.
      36             :  *
      37             :  * We compute two separate costs for each path:
      38             :  *      total_cost: total estimated cost to fetch all tuples
      39             :  *      startup_cost: cost that is expended before first tuple is fetched
      40             :  * In some scenarios, such as when there is a LIMIT or we are implementing
      41             :  * an EXISTS(...) sub-select, it is not necessary to fetch all tuples of the
      42             :  * path's result.  A caller can estimate the cost of fetching a partial
      43             :  * result by interpolating between startup_cost and total_cost.  In detail:
      44             :  *      actual_cost = startup_cost +
      45             :  *          (total_cost - startup_cost) * tuples_to_fetch / path->rows;
      46             :  * Note that a base relation's rows count (and, by extension, plan_rows for
      47             :  * plan nodes below the LIMIT node) are set without regard to any LIMIT, so
      48             :  * that this equation works properly.  (Note: while path->rows is never zero
      49             :  * for ordinary relations, it is zero for paths for provably-empty relations,
      50             :  * so beware of division-by-zero.)  The LIMIT is applied as a top-level
      51             :  * plan node.
      52             :  *
      53             :  * For largely historical reasons, most of the routines in this module use
      54             :  * the passed result Path only to store their results (rows, startup_cost and
      55             :  * total_cost) into.  All the input data they need is passed as separate
      56             :  * parameters, even though much of it could be extracted from the Path.
      57             :  * An exception is made for the cost_XXXjoin() routines, which expect all
      58             :  * the other fields of the passed XXXPath to be filled in, and similarly
      59             :  * cost_index() assumes the passed IndexPath is valid except for its output
      60             :  * values.
      61             :  *
      62             :  *
      63             :  * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
      64             :  * Portions Copyright (c) 1994, Regents of the University of California
      65             :  *
      66             :  * IDENTIFICATION
      67             :  *    src/backend/optimizer/path/costsize.c
      68             :  *
      69             :  *-------------------------------------------------------------------------
      70             :  */
      71             : 
      72             : #include "postgres.h"
      73             : 
      74             : #ifdef _MSC_VER
      75             : #include <float.h>                /* for _isnan */
      76             : #endif
      77             : #include <math.h>
      78             : 
      79             : #include "access/amapi.h"
      80             : #include "access/htup_details.h"
      81             : #include "access/tsmapi.h"
      82             : #include "executor/executor.h"
      83             : #include "executor/nodeHash.h"
      84             : #include "miscadmin.h"
      85             : #include "nodes/nodeFuncs.h"
      86             : #include "optimizer/clauses.h"
      87             : #include "optimizer/cost.h"
      88             : #include "optimizer/pathnode.h"
      89             : #include "optimizer/paths.h"
      90             : #include "optimizer/placeholder.h"
      91             : #include "optimizer/plancat.h"
      92             : #include "optimizer/planmain.h"
      93             : #include "optimizer/restrictinfo.h"
      94             : #include "parser/parsetree.h"
      95             : #include "utils/lsyscache.h"
      96             : #include "utils/selfuncs.h"
      97             : #include "utils/spccache.h"
      98             : #include "utils/tuplesort.h"
      99             : 
     100             : 
     101             : #define LOG2(x)  (log(x) / 0.693147180559945)
     102             : 
     103             : 
     104             : double      seq_page_cost = DEFAULT_SEQ_PAGE_COST;
     105             : double      random_page_cost = DEFAULT_RANDOM_PAGE_COST;
     106             : double      cpu_tuple_cost = DEFAULT_CPU_TUPLE_COST;
     107             : double      cpu_index_tuple_cost = DEFAULT_CPU_INDEX_TUPLE_COST;
     108             : double      cpu_operator_cost = DEFAULT_CPU_OPERATOR_COST;
     109             : double      parallel_tuple_cost = DEFAULT_PARALLEL_TUPLE_COST;
     110             : double      parallel_setup_cost = DEFAULT_PARALLEL_SETUP_COST;
     111             : 
     112             : int         effective_cache_size = DEFAULT_EFFECTIVE_CACHE_SIZE;
     113             : 
     114             : Cost        disable_cost = 1.0e10;
     115             : 
     116             : int         max_parallel_workers_per_gather = 2;
     117             : 
     118             : bool        enable_seqscan = true;
     119             : bool        enable_indexscan = true;
     120             : bool        enable_indexonlyscan = true;
     121             : bool        enable_bitmapscan = true;
     122             : bool        enable_tidscan = true;
     123             : bool        enable_sort = true;
     124             : bool        enable_hashagg = true;
     125             : bool        enable_nestloop = true;
     126             : bool        enable_material = true;
     127             : bool        enable_mergejoin = true;
     128             : bool        enable_hashjoin = true;
     129             : bool        enable_gathermerge = true;
     130             : 
     131             : typedef struct
     132             : {
     133             :     PlannerInfo *root;
     134             :     QualCost    total;
     135             : } cost_qual_eval_context;
     136             : 
     137             : static List *extract_nonindex_conditions(List *qual_clauses, List *indexquals);
     138             : static MergeScanSelCache *cached_scansel(PlannerInfo *root,
     139             :                RestrictInfo *rinfo,
     140             :                PathKey *pathkey);
     141             : static void cost_rescan(PlannerInfo *root, Path *path,
     142             :             Cost *rescan_startup_cost, Cost *rescan_total_cost);
     143             : static bool cost_qual_eval_walker(Node *node, cost_qual_eval_context *context);
     144             : static void get_restriction_qual_cost(PlannerInfo *root, RelOptInfo *baserel,
     145             :                           ParamPathInfo *param_info,
     146             :                           QualCost *qpqual_cost);
     147             : static bool has_indexed_join_quals(NestPath *joinpath);
     148             : static double approx_tuple_count(PlannerInfo *root, JoinPath *path,
     149             :                    List *quals);
     150             : static double calc_joinrel_size_estimate(PlannerInfo *root,
     151             :                            RelOptInfo *outer_rel,
     152             :                            RelOptInfo *inner_rel,
     153             :                            double outer_rows,
     154             :                            double inner_rows,
     155             :                            SpecialJoinInfo *sjinfo,
     156             :                            List *restrictlist);
     157             : static Selectivity get_foreign_key_join_selectivity(PlannerInfo *root,
     158             :                                  Relids outer_relids,
     159             :                                  Relids inner_relids,
     160             :                                  SpecialJoinInfo *sjinfo,
     161             :                                  List **restrictlist);
     162             : static void set_rel_width(PlannerInfo *root, RelOptInfo *rel);
     163             : static double relation_byte_size(double tuples, int width);
     164             : static double page_size(double tuples, int width);
     165             : static double get_parallel_divisor(Path *path);
     166             : 
     167             : 
     168             : /*
     169             :  * clamp_row_est
     170             :  *      Force a row-count estimate to a sane value.
     171             :  */
     172             : double
     173      169354 : clamp_row_est(double nrows)
     174             : {
     175             :     /*
     176             :      * Force estimate to be at least one row, to make explain output look
     177             :      * better and to avoid possible divide-by-zero when interpolating costs.
     178             :      * Make it an integer, too.
     179             :      */
     180      169354 :     if (nrows <= 1.0)
     181       62423 :         nrows = 1.0;
     182             :     else
     183      106931 :         nrows = rint(nrows);
     184             : 
     185      169354 :     return nrows;
     186             : }
     187             : 
     188             : 
     189             : /*
     190             :  * cost_seqscan
     191             :  *    Determines and returns the cost of scanning a relation sequentially.
     192             :  *
     193             :  * 'baserel' is the relation to be scanned
     194             :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
     195             :  */
     196             : void
     197       16197 : cost_seqscan(Path *path, PlannerInfo *root,
     198             :              RelOptInfo *baserel, ParamPathInfo *param_info)
     199             : {
     200       16197 :     Cost        startup_cost = 0;
     201             :     Cost        cpu_run_cost;
     202             :     Cost        disk_run_cost;
     203             :     double      spc_seq_page_cost;
     204             :     QualCost    qpqual_cost;
     205             :     Cost        cpu_per_tuple;
     206             : 
     207             :     /* Should only be applied to base relations */
     208       16197 :     Assert(baserel->relid > 0);
     209       16197 :     Assert(baserel->rtekind == RTE_RELATION);
     210             : 
     211             :     /* Mark the path with the correct row estimate */
     212       16197 :     if (param_info)
     213          38 :         path->rows = param_info->ppi_rows;
     214             :     else
     215       16159 :         path->rows = baserel->rows;
     216             : 
     217       16197 :     if (!enable_seqscan)
     218        1085 :         startup_cost += disable_cost;
     219             : 
     220             :     /* fetch estimated page cost for tablespace containing table */
     221       16197 :     get_tablespace_page_costs(baserel->reltablespace,
     222             :                               NULL,
     223             :                               &spc_seq_page_cost);
     224             : 
     225             :     /*
     226             :      * disk costs
     227             :      */
     228       16197 :     disk_run_cost = spc_seq_page_cost * baserel->pages;
     229             : 
     230             :     /* CPU costs */
     231       16197 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
     232             : 
     233       16197 :     startup_cost += qpqual_cost.startup;
     234       16197 :     cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
     235       16197 :     cpu_run_cost = cpu_per_tuple * baserel->tuples;
     236             :     /* tlist eval costs are paid per output row, not per tuple scanned */
     237       16197 :     startup_cost += path->pathtarget->cost.startup;
     238       16197 :     cpu_run_cost += path->pathtarget->cost.per_tuple * path->rows;
     239             : 
     240             :     /* Adjust costing for parallelism, if used. */
     241       16197 :     if (path->parallel_workers > 0)
     242             :     {
     243         654 :         double      parallel_divisor = get_parallel_divisor(path);
     244             : 
     245             :         /* The CPU cost is divided among all the workers. */
     246         654 :         cpu_run_cost /= parallel_divisor;
     247             : 
     248             :         /*
     249             :          * It may be possible to amortize some of the I/O cost, but probably
     250             :          * not very much, because most operating systems already do aggressive
     251             :          * prefetching.  For now, we assume that the disk run cost can't be
     252             :          * amortized at all.
     253             :          */
     254             : 
     255             :         /*
     256             :          * In the case of a parallel plan, the row count needs to represent
     257             :          * the number of tuples processed per worker.
     258             :          */
     259         654 :         path->rows = clamp_row_est(path->rows / parallel_divisor);
     260             :     }
     261             : 
     262       16197 :     path->startup_cost = startup_cost;
     263       16197 :     path->total_cost = startup_cost + cpu_run_cost + disk_run_cost;
     264       16197 : }
     265             : 
     266             : /*
     267             :  * cost_samplescan
     268             :  *    Determines and returns the cost of scanning a relation using sampling.
     269             :  *
     270             :  * 'baserel' is the relation to be scanned
     271             :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
     272             :  */
     273             : void
     274          36 : cost_samplescan(Path *path, PlannerInfo *root,
     275             :                 RelOptInfo *baserel, ParamPathInfo *param_info)
     276             : {
     277          36 :     Cost        startup_cost = 0;
     278          36 :     Cost        run_cost = 0;
     279             :     RangeTblEntry *rte;
     280             :     TableSampleClause *tsc;
     281             :     TsmRoutine *tsm;
     282             :     double      spc_seq_page_cost,
     283             :                 spc_random_page_cost,
     284             :                 spc_page_cost;
     285             :     QualCost    qpqual_cost;
     286             :     Cost        cpu_per_tuple;
     287             : 
     288             :     /* Should only be applied to base relations with tablesample clauses */
     289          36 :     Assert(baserel->relid > 0);
     290          36 :     rte = planner_rt_fetch(baserel->relid, root);
     291          36 :     Assert(rte->rtekind == RTE_RELATION);
     292          36 :     tsc = rte->tablesample;
     293          36 :     Assert(tsc != NULL);
     294          36 :     tsm = GetTsmRoutine(tsc->tsmhandler);
     295             : 
     296             :     /* Mark the path with the correct row estimate */
     297          36 :     if (param_info)
     298           3 :         path->rows = param_info->ppi_rows;
     299             :     else
     300          33 :         path->rows = baserel->rows;
     301             : 
     302             :     /* fetch estimated page cost for tablespace containing table */
     303          36 :     get_tablespace_page_costs(baserel->reltablespace,
     304             :                               &spc_random_page_cost,
     305             :                               &spc_seq_page_cost);
     306             : 
     307             :     /* if NextSampleBlock is used, assume random access, else sequential */
     308          72 :     spc_page_cost = (tsm->NextSampleBlock != NULL) ?
     309          36 :         spc_random_page_cost : spc_seq_page_cost;
     310             : 
     311             :     /*
     312             :      * disk costs (recall that baserel->pages has already been set to the
     313             :      * number of pages the sampling method will visit)
     314             :      */
     315          36 :     run_cost += spc_page_cost * baserel->pages;
     316             : 
     317             :     /*
     318             :      * CPU costs (recall that baserel->tuples has already been set to the
     319             :      * number of tuples the sampling method will select).  Note that we ignore
     320             :      * execution cost of the TABLESAMPLE parameter expressions; they will be
     321             :      * evaluated only once per scan, and in most usages they'll likely be
     322             :      * simple constants anyway.  We also don't charge anything for the
     323             :      * calculations the sampling method might do internally.
     324             :      */
     325          36 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
     326             : 
     327          36 :     startup_cost += qpqual_cost.startup;
     328          36 :     cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
     329          36 :     run_cost += cpu_per_tuple * baserel->tuples;
     330             :     /* tlist eval costs are paid per output row, not per tuple scanned */
     331          36 :     startup_cost += path->pathtarget->cost.startup;
     332          36 :     run_cost += path->pathtarget->cost.per_tuple * path->rows;
     333             : 
     334          36 :     path->startup_cost = startup_cost;
     335          36 :     path->total_cost = startup_cost + run_cost;
     336          36 : }
     337             : 
     338             : /*
     339             :  * cost_gather
     340             :  *    Determines and returns the cost of gather path.
     341             :  *
     342             :  * 'rel' is the relation to be operated upon
     343             :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
     344             :  * 'rows' may be used to point to a row estimate; if non-NULL, it overrides
     345             :  * both 'rel' and 'param_info'.  This is useful when the path doesn't exactly
     346             :  * correspond to any particular RelOptInfo.
     347             :  */
     348             : void
     349         314 : cost_gather(GatherPath *path, PlannerInfo *root,
     350             :             RelOptInfo *rel, ParamPathInfo *param_info,
     351             :             double *rows)
     352             : {
     353         314 :     Cost        startup_cost = 0;
     354         314 :     Cost        run_cost = 0;
     355             : 
     356             :     /* Mark the path with the correct row estimate */
     357         314 :     if (rows)
     358          56 :         path->path.rows = *rows;
     359         258 :     else if (param_info)
     360           0 :         path->path.rows = param_info->ppi_rows;
     361             :     else
     362         258 :         path->path.rows = rel->rows;
     363             : 
     364         314 :     startup_cost = path->subpath->startup_cost;
     365             : 
     366         314 :     run_cost = path->subpath->total_cost - path->subpath->startup_cost;
     367             : 
     368             :     /* Parallel setup and communication cost. */
     369         314 :     startup_cost += parallel_setup_cost;
     370         314 :     run_cost += parallel_tuple_cost * path->path.rows;
     371             : 
     372         314 :     path->path.startup_cost = startup_cost;
     373         314 :     path->path.total_cost = (startup_cost + run_cost);
     374         314 : }
     375             : 
     376             : /*
     377             :  * cost_gather_merge
     378             :  *    Determines and returns the cost of gather merge path.
     379             :  *
     380             :  * GatherMerge merges several pre-sorted input streams, using a heap that at
     381             :  * any given instant holds the next tuple from each stream. If there are N
     382             :  * streams, we need about N*log2(N) tuple comparisons to construct the heap at
     383             :  * startup, and then for each output tuple, about log2(N) comparisons to
     384             :  * replace the top heap entry with the next tuple from the same stream.
     385             :  */
     386             : void
     387          46 : cost_gather_merge(GatherMergePath *path, PlannerInfo *root,
     388             :                   RelOptInfo *rel, ParamPathInfo *param_info,
     389             :                   Cost input_startup_cost, Cost input_total_cost,
     390             :                   double *rows)
     391             : {
     392          46 :     Cost        startup_cost = 0;
     393          46 :     Cost        run_cost = 0;
     394             :     Cost        comparison_cost;
     395             :     double      N;
     396             :     double      logN;
     397             : 
     398             :     /* Mark the path with the correct row estimate */
     399          46 :     if (rows)
     400          43 :         path->path.rows = *rows;
     401           3 :     else if (param_info)
     402           0 :         path->path.rows = param_info->ppi_rows;
     403             :     else
     404           3 :         path->path.rows = rel->rows;
     405             : 
     406          46 :     if (!enable_gathermerge)
     407           0 :         startup_cost += disable_cost;
     408             : 
     409             :     /*
     410             :      * Add one to the number of workers to account for the leader.  This might
     411             :      * be overgenerous since the leader will do less work than other workers
     412             :      * in typical cases, but we'll go with it for now.
     413             :      */
     414          46 :     Assert(path->num_workers > 0);
     415          46 :     N = (double) path->num_workers + 1;
     416          46 :     logN = LOG2(N);
     417             : 
     418             :     /* Assumed cost per tuple comparison */
     419          46 :     comparison_cost = 2.0 * cpu_operator_cost;
     420             : 
     421             :     /* Heap creation cost */
     422          46 :     startup_cost += comparison_cost * N * logN;
     423             : 
     424             :     /* Per-tuple heap maintenance cost */
     425          46 :     run_cost += path->path.rows * comparison_cost * logN;
     426             : 
     427             :     /* small cost for heap management, like cost_merge_append */
     428          46 :     run_cost += cpu_operator_cost * path->path.rows;
     429             : 
     430             :     /*
     431             :      * Parallel setup and communication cost.  Since Gather Merge, unlike
     432             :      * Gather, requires us to block until a tuple is available from every
     433             :      * worker, we bump the IPC cost up a little bit as compared with Gather.
     434             :      * For lack of a better idea, charge an extra 5%.
     435             :      */
     436          46 :     startup_cost += parallel_setup_cost;
     437          46 :     run_cost += parallel_tuple_cost * path->path.rows * 1.05;
     438             : 
     439          46 :     path->path.startup_cost = startup_cost + input_startup_cost;
     440          46 :     path->path.total_cost = (startup_cost + run_cost + input_total_cost);
     441          46 : }
     442             : 
     443             : /*
     444             :  * cost_index
     445             :  *    Determines and returns the cost of scanning a relation using an index.
     446             :  *
     447             :  * 'path' describes the indexscan under consideration, and is complete
     448             :  *      except for the fields to be set by this routine
     449             :  * 'loop_count' is the number of repetitions of the indexscan to factor into
     450             :  *      estimates of caching behavior
     451             :  *
     452             :  * In addition to rows, startup_cost and total_cost, cost_index() sets the
     453             :  * path's indextotalcost and indexselectivity fields.  These values will be
     454             :  * needed if the IndexPath is used in a BitmapIndexScan.
     455             :  *
     456             :  * NOTE: path->indexquals must contain only clauses usable as index
     457             :  * restrictions.  Any additional quals evaluated as qpquals may reduce the
     458             :  * number of returned tuples, but they won't reduce the number of tuples
     459             :  * we have to fetch from the table, so they don't reduce the scan cost.
     460             :  */
     461             : void
     462       22002 : cost_index(IndexPath *path, PlannerInfo *root, double loop_count,
     463             :            bool partial_path)
     464             : {
     465       22002 :     IndexOptInfo *index = path->indexinfo;
     466       22002 :     RelOptInfo *baserel = index->rel;
     467       22002 :     bool        indexonly = (path->path.pathtype == T_IndexOnlyScan);
     468             :     amcostestimate_function amcostestimate;
     469             :     List       *qpquals;
     470       22002 :     Cost        startup_cost = 0;
     471       22002 :     Cost        run_cost = 0;
     472       22002 :     Cost        cpu_run_cost = 0;
     473             :     Cost        indexStartupCost;
     474             :     Cost        indexTotalCost;
     475             :     Selectivity indexSelectivity;
     476             :     double      indexCorrelation,
     477             :                 csquared;
     478             :     double      spc_seq_page_cost,
     479             :                 spc_random_page_cost;
     480             :     Cost        min_IO_cost,
     481             :                 max_IO_cost;
     482             :     QualCost    qpqual_cost;
     483             :     Cost        cpu_per_tuple;
     484             :     double      tuples_fetched;
     485             :     double      pages_fetched;
     486             :     double      rand_heap_pages;
     487             :     double      index_pages;
     488             : 
     489             :     /* Should only be applied to base relations */
     490       22002 :     Assert(IsA(baserel, RelOptInfo) &&
     491             :            IsA(index, IndexOptInfo));
     492       22002 :     Assert(baserel->relid > 0);
     493       22002 :     Assert(baserel->rtekind == RTE_RELATION);
     494             : 
     495             :     /*
     496             :      * Mark the path with the correct row estimate, and identify which quals
     497             :      * will need to be enforced as qpquals.  We need not check any quals that
     498             :      * are implied by the index's predicate, so we can use indrestrictinfo not
     499             :      * baserestrictinfo as the list of relevant restriction clauses for the
     500             :      * rel.
     501             :      */
     502       22002 :     if (path->path.param_info)
     503             :     {
     504        3578 :         path->path.rows = path->path.param_info->ppi_rows;
     505             :         /* qpquals come from the rel's restriction clauses and ppi_clauses */
     506       10734 :         qpquals = list_concat(
     507        3578 :                               extract_nonindex_conditions(path->indexinfo->indrestrictinfo,
     508             :                                                           path->indexquals),
     509        3578 :                               extract_nonindex_conditions(path->path.param_info->ppi_clauses,
     510             :                                                           path->indexquals));
     511             :     }
     512             :     else
     513             :     {
     514       18424 :         path->path.rows = baserel->rows;
     515             :         /* qpquals come from just the rel's restriction clauses */
     516       18424 :         qpquals = extract_nonindex_conditions(path->indexinfo->indrestrictinfo,
     517             :                                               path->indexquals);
     518             :     }
     519             : 
     520       22002 :     if (!enable_indexscan)
     521         261 :         startup_cost += disable_cost;
     522             :     /* we don't need to check enable_indexonlyscan; indxpath.c does that */
     523             : 
     524             :     /*
     525             :      * Call index-access-method-specific code to estimate the processing cost
     526             :      * for scanning the index, as well as the selectivity of the index (ie,
     527             :      * the fraction of main-table tuples we will have to retrieve) and its
     528             :      * correlation to the main-table tuple order.  We need a cast here because
     529             :      * relation.h uses a weak function type to avoid including amapi.h.
     530             :      */
     531       22002 :     amcostestimate = (amcostestimate_function) index->amcostestimate;
     532       22002 :     amcostestimate(root, path, loop_count,
     533             :                    &indexStartupCost, &indexTotalCost,
     534             :                    &indexSelectivity, &indexCorrelation,
     535             :                    &index_pages);
     536             : 
     537             :     /*
     538             :      * Save amcostestimate's results for possible use in bitmap scan planning.
     539             :      * We don't bother to save indexStartupCost or indexCorrelation, because a
     540             :      * bitmap scan doesn't care about either.
     541             :      */
     542       22002 :     path->indextotalcost = indexTotalCost;
     543       22002 :     path->indexselectivity = indexSelectivity;
     544             : 
     545             :     /* all costs for touching index itself included here */
     546       22002 :     startup_cost += indexStartupCost;
     547       22002 :     run_cost += indexTotalCost - indexStartupCost;
     548             : 
     549             :     /* estimate number of main-table tuples fetched */
     550       22002 :     tuples_fetched = clamp_row_est(indexSelectivity * baserel->tuples);
     551             : 
     552             :     /* fetch estimated page costs for tablespace containing table */
     553       22002 :     get_tablespace_page_costs(baserel->reltablespace,
     554             :                               &spc_random_page_cost,
     555             :                               &spc_seq_page_cost);
     556             : 
     557             :     /*----------
     558             :      * Estimate number of main-table pages fetched, and compute I/O cost.
     559             :      *
     560             :      * When the index ordering is uncorrelated with the table ordering,
     561             :      * we use an approximation proposed by Mackert and Lohman (see
     562             :      * index_pages_fetched() for details) to compute the number of pages
     563             :      * fetched, and then charge spc_random_page_cost per page fetched.
     564             :      *
     565             :      * When the index ordering is exactly correlated with the table ordering
     566             :      * (just after a CLUSTER, for example), the number of pages fetched should
     567             :      * be exactly selectivity * table_size.  What's more, all but the first
     568             :      * will be sequential fetches, not the random fetches that occur in the
     569             :      * uncorrelated case.  So if the number of pages is more than 1, we
     570             :      * ought to charge
     571             :      *      spc_random_page_cost + (pages_fetched - 1) * spc_seq_page_cost
     572             :      * For partially-correlated indexes, we ought to charge somewhere between
     573             :      * these two estimates.  We currently interpolate linearly between the
     574             :      * estimates based on the correlation squared (XXX is that appropriate?).
     575             :      *
     576             :      * If it's an index-only scan, then we will not need to fetch any heap
     577             :      * pages for which the visibility map shows all tuples are visible.
     578             :      * Hence, reduce the estimated number of heap fetches accordingly.
     579             :      * We use the measured fraction of the entire heap that is all-visible,
     580             :      * which might not be particularly relevant to the subset of the heap
     581             :      * that this query will fetch; but it's not clear how to do better.
     582             :      *----------
     583             :      */
     584       22002 :     if (loop_count > 1)
     585             :     {
     586             :         /*
     587             :          * For repeated indexscans, the appropriate estimate for the
     588             :          * uncorrelated case is to scale up the number of tuples fetched in
     589             :          * the Mackert and Lohman formula by the number of scans, so that we
     590             :          * estimate the number of pages fetched by all the scans; then
     591             :          * pro-rate the costs for one scan.  In this case we assume all the
     592             :          * fetches are random accesses.
     593             :          */
     594        2440 :         pages_fetched = index_pages_fetched(tuples_fetched * loop_count,
     595             :                                             baserel->pages,
     596        2440 :                                             (double) index->pages,
     597             :                                             root);
     598             : 
     599        2440 :         if (indexonly)
     600         550 :             pages_fetched = ceil(pages_fetched * (1.0 - baserel->allvisfrac));
     601             : 
     602        2440 :         rand_heap_pages = pages_fetched;
     603             : 
     604        2440 :         max_IO_cost = (pages_fetched * spc_random_page_cost) / loop_count;
     605             : 
     606             :         /*
     607             :          * In the perfectly correlated case, the number of pages touched by
     608             :          * each scan is selectivity * table_size, and we can use the Mackert
     609             :          * and Lohman formula at the page level to estimate how much work is
     610             :          * saved by caching across scans.  We still assume all the fetches are
     611             :          * random, though, which is an overestimate that's hard to correct for
     612             :          * without double-counting the cache effects.  (But in most cases
     613             :          * where such a plan is actually interesting, only one page would get
     614             :          * fetched per scan anyway, so it shouldn't matter much.)
     615             :          */
     616        2440 :         pages_fetched = ceil(indexSelectivity * (double) baserel->pages);
     617             : 
     618        2440 :         pages_fetched = index_pages_fetched(pages_fetched * loop_count,
     619             :                                             baserel->pages,
     620        2440 :                                             (double) index->pages,
     621             :                                             root);
     622             : 
     623        2440 :         if (indexonly)
     624         550 :             pages_fetched = ceil(pages_fetched * (1.0 - baserel->allvisfrac));
     625             : 
     626        2440 :         min_IO_cost = (pages_fetched * spc_random_page_cost) / loop_count;
     627             :     }
     628             :     else
     629             :     {
     630             :         /*
     631             :          * Normal case: apply the Mackert and Lohman formula, and then
     632             :          * interpolate between that and the correlation-derived result.
     633             :          */
     634       19562 :         pages_fetched = index_pages_fetched(tuples_fetched,
     635             :                                             baserel->pages,
     636       19562 :                                             (double) index->pages,
     637             :                                             root);
     638             : 
     639       19562 :         if (indexonly)
     640        3008 :             pages_fetched = ceil(pages_fetched * (1.0 - baserel->allvisfrac));
     641             : 
     642       19562 :         rand_heap_pages = pages_fetched;
     643             : 
     644             :         /* max_IO_cost is for the perfectly uncorrelated case (csquared=0) */
     645       19562 :         max_IO_cost = pages_fetched * spc_random_page_cost;
     646             : 
     647             :         /* min_IO_cost is for the perfectly correlated case (csquared=1) */
     648       19562 :         pages_fetched = ceil(indexSelectivity * (double) baserel->pages);
     649             : 
     650       19562 :         if (indexonly)
     651        3008 :             pages_fetched = ceil(pages_fetched * (1.0 - baserel->allvisfrac));
     652             : 
     653       19562 :         if (pages_fetched > 0)
     654             :         {
     655       17964 :             min_IO_cost = spc_random_page_cost;
     656       17964 :             if (pages_fetched > 1)
     657        5985 :                 min_IO_cost += (pages_fetched - 1) * spc_seq_page_cost;
     658             :         }
     659             :         else
     660        1598 :             min_IO_cost = 0;
     661             :     }
     662             : 
     663       22002 :     if (partial_path)
     664             :     {
     665             :         /*
     666             :          * For index only scans compute workers based on number of index pages
     667             :          * fetched; the number of heap pages we fetch might be so small as to
     668             :          * effectively rule out parallelism, which we don't want to do.
     669             :          */
     670        6818 :         if (indexonly)
     671        1160 :             rand_heap_pages = -1;
     672             : 
     673             :         /*
     674             :          * Estimate the number of parallel workers required to scan index. Use
     675             :          * the number of heap pages computed considering heap fetches won't be
     676             :          * sequential as for parallel scans the pages are accessed in random
     677             :          * order.
     678             :          */
     679        6818 :         path->path.parallel_workers = compute_parallel_worker(baserel,
     680             :                                                               rand_heap_pages, index_pages);
     681             : 
     682             :         /*
     683             :          * Fall out if workers can't be assigned for parallel scan, because in
     684             :          * such a case this path will be rejected.  So there is no benefit in
     685             :          * doing extra computation.
     686             :          */
     687        6818 :         if (path->path.parallel_workers <= 0)
     688       28588 :             return;
     689             : 
     690         232 :         path->path.parallel_aware = true;
     691             :     }
     692             : 
     693             :     /*
     694             :      * Now interpolate based on estimated index order correlation to get total
     695             :      * disk I/O cost for main table accesses.
     696             :      */
     697       15416 :     csquared = indexCorrelation * indexCorrelation;
     698             : 
     699       15416 :     run_cost += max_IO_cost + csquared * (min_IO_cost - max_IO_cost);
     700             : 
     701             :     /*
     702             :      * Estimate CPU costs per tuple.
     703             :      *
     704             :      * What we want here is cpu_tuple_cost plus the evaluation costs of any
     705             :      * qual clauses that we have to evaluate as qpquals.
     706             :      */
     707       15416 :     cost_qual_eval(&qpqual_cost, qpquals, root);
     708             : 
     709       15416 :     startup_cost += qpqual_cost.startup;
     710       15416 :     cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
     711             : 
     712       15416 :     cpu_run_cost += cpu_per_tuple * tuples_fetched;
     713             : 
     714             :     /* tlist eval costs are paid per output row, not per tuple scanned */
     715       15416 :     startup_cost += path->path.pathtarget->cost.startup;
     716       15416 :     cpu_run_cost += path->path.pathtarget->cost.per_tuple * path->path.rows;
     717             : 
     718             :     /* Adjust costing for parallelism, if used. */
     719       15416 :     if (path->path.parallel_workers > 0)
     720             :     {
     721         232 :         double      parallel_divisor = get_parallel_divisor(&path->path);
     722             : 
     723         232 :         path->path.rows = clamp_row_est(path->path.rows / parallel_divisor);
     724             : 
     725             :         /* The CPU cost is divided among all the workers. */
     726         232 :         cpu_run_cost /= parallel_divisor;
     727             :     }
     728             : 
     729       15416 :     run_cost += cpu_run_cost;
     730             : 
     731       15416 :     path->path.startup_cost = startup_cost;
     732       15416 :     path->path.total_cost = startup_cost + run_cost;
     733             : }
     734             : 
     735             : /*
     736             :  * extract_nonindex_conditions
     737             :  *
     738             :  * Given a list of quals to be enforced in an indexscan, extract the ones that
     739             :  * will have to be applied as qpquals (ie, the index machinery won't handle
     740             :  * them).  The actual rules for this appear in create_indexscan_plan() in
     741             :  * createplan.c, but the full rules are fairly expensive and we don't want to
     742             :  * go to that much effort for index paths that don't get selected for the
     743             :  * final plan.  So we approximate it as quals that don't appear directly in
     744             :  * indexquals and also are not redundant children of the same EquivalenceClass
     745             :  * as some indexqual.  This method neglects some infrequently-relevant
     746             :  * considerations, specifically clauses that needn't be checked because they
     747             :  * are implied by an indexqual.  It does not seem worth the cycles to try to
     748             :  * factor that in at this stage, even though createplan.c will take pains to
     749             :  * remove such unnecessary clauses from the qpquals list if this path is
     750             :  * selected for use.
     751             :  */
     752             : static List *
     753       25580 : extract_nonindex_conditions(List *qual_clauses, List *indexquals)
     754             : {
     755       25580 :     List       *result = NIL;
     756             :     ListCell   *lc;
     757             : 
     758       51781 :     foreach(lc, qual_clauses)
     759             :     {
     760       26201 :         RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);
     761             : 
     762       26201 :         if (rinfo->pseudoconstant)
     763         262 :             continue;           /* we may drop pseudoconstants here */
     764       25939 :         if (list_member_ptr(indexquals, rinfo))
     765       13550 :             continue;           /* simple duplicate */
     766       12389 :         if (is_redundant_derived_clause(rinfo, indexquals))
     767        2682 :             continue;           /* derived from same EquivalenceClass */
     768             :         /* ... skip the predicate proof attempt createplan.c will try ... */
     769        9707 :         result = lappend(result, rinfo);
     770             :     }
     771       25580 :     return result;
     772             : }
     773             : 
     774             : /*
     775             :  * index_pages_fetched
     776             :  *    Estimate the number of pages actually fetched after accounting for
     777             :  *    cache effects.
     778             :  *
     779             :  * We use an approximation proposed by Mackert and Lohman, "Index Scans
     780             :  * Using a Finite LRU Buffer: A Validated I/O Model", ACM Transactions
     781             :  * on Database Systems, Vol. 14, No. 3, September 1989, Pages 401-424.
     782             :  * The Mackert and Lohman approximation is that the number of pages
     783             :  * fetched is
     784             :  *  PF =
     785             :  *      min(2TNs/(2T+Ns), T)            when T <= b
     786             :  *      2TNs/(2T+Ns)                    when T > b and Ns <= 2Tb/(2T-b)
     787             :  *      b + (Ns - 2Tb/(2T-b))*(T-b)/T   when T > b and Ns > 2Tb/(2T-b)
     788             :  * where
     789             :  *      T = # pages in table
     790             :  *      N = # tuples in table
     791             :  *      s = selectivity = fraction of table to be scanned
     792             :  *      b = # buffer pages available (we include kernel space here)
     793             :  *
     794             :  * We assume that effective_cache_size is the total number of buffer pages
     795             :  * available for the whole query, and pro-rate that space across all the
     796             :  * tables in the query and the index currently under consideration.  (This
     797             :  * ignores space needed for other indexes used by the query, but since we
     798             :  * don't know which indexes will get used, we can't estimate that very well;
     799             :  * and in any case counting all the tables may well be an overestimate, since
     800             :  * depending on the join plan not all the tables may be scanned concurrently.)
     801             :  *
     802             :  * The product Ns is the number of tuples fetched; we pass in that
     803             :  * product rather than calculating it here.  "pages" is the number of pages
     804             :  * in the object under consideration (either an index or a table).
     805             :  * "index_pages" is the amount to add to the total table space, which was
     806             :  * computed for us by query_planner.
     807             :  *
     808             :  * Caller is expected to have ensured that tuples_fetched is greater than zero
     809             :  * and rounded to integer (see clamp_row_est).  The result will likewise be
     810             :  * greater than zero and integral.
     811             :  */
     812             : double
     813       31139 : index_pages_fetched(double tuples_fetched, BlockNumber pages,
     814             :                     double index_pages, PlannerInfo *root)
     815             : {
     816             :     double      pages_fetched;
     817             :     double      total_pages;
     818             :     double      T,
     819             :                 b;
     820             : 
     821             :     /* T is # pages in table, but don't allow it to be zero */
     822       31139 :     T = (pages > 1) ? (double) pages : 1.0;
     823             : 
     824             :     /* Compute number of pages assumed to be competing for cache space */
     825       31139 :     total_pages = root->total_table_pages + index_pages;
     826       31139 :     total_pages = Max(total_pages, 1.0);
     827       31139 :     Assert(T <= total_pages);
     828             : 
     829             :     /* b is pro-rated share of effective_cache_size */
     830       31139 :     b = (double) effective_cache_size * T / total_pages;
     831             : 
     832             :     /* force it positive and integral */
     833       31139 :     if (b <= 1.0)
     834           0 :         b = 1.0;
     835             :     else
     836       31139 :         b = ceil(b);
     837             : 
     838             :     /* This part is the Mackert and Lohman formula */
     839       31139 :     if (T <= b)
     840             :     {
     841       31139 :         pages_fetched =
     842             :             (2.0 * T * tuples_fetched) / (2.0 * T + tuples_fetched);
     843       31139 :         if (pages_fetched >= T)
     844       16836 :             pages_fetched = T;
     845             :         else
     846       14303 :             pages_fetched = ceil(pages_fetched);
     847             :     }
     848             :     else
     849             :     {
     850             :         double      lim;
     851             : 
     852           0 :         lim = (2.0 * T * b) / (2.0 * T - b);
     853           0 :         if (tuples_fetched <= lim)
     854             :         {
     855           0 :             pages_fetched =
     856             :                 (2.0 * T * tuples_fetched) / (2.0 * T + tuples_fetched);
     857             :         }
     858             :         else
     859             :         {
     860           0 :             pages_fetched =
     861             :                 b + (tuples_fetched - lim) * (T - b) / T;
     862             :         }
     863           0 :         pages_fetched = ceil(pages_fetched);
     864             :     }
     865       31139 :     return pages_fetched;
     866             : }
     867             : 
     868             : /*
     869             :  * get_indexpath_pages
     870             :  *      Determine the total size of the indexes used in a bitmap index path.
     871             :  *
     872             :  * Note: if the same index is used more than once in a bitmap tree, we will
     873             :  * count it multiple times, which perhaps is the wrong thing ... but it's
     874             :  * not completely clear, and detecting duplicates is difficult, so ignore it
     875             :  * for now.
     876             :  */
     877             : static double
     878        5126 : get_indexpath_pages(Path *bitmapqual)
     879             : {
     880        5126 :     double      result = 0;
     881             :     ListCell   *l;
     882             : 
     883        5126 :     if (IsA(bitmapqual, BitmapAndPath))
     884             :     {
     885         583 :         BitmapAndPath *apath = (BitmapAndPath *) bitmapqual;
     886             : 
     887        1749 :         foreach(l, apath->bitmapquals)
     888             :         {
     889        1166 :             result += get_indexpath_pages((Path *) lfirst(l));
     890             :         }
     891             :     }
     892        4543 :     else if (IsA(bitmapqual, BitmapOrPath))
     893             :     {
     894           0 :         BitmapOrPath *opath = (BitmapOrPath *) bitmapqual;
     895             : 
     896           0 :         foreach(l, opath->bitmapquals)
     897             :         {
     898           0 :             result += get_indexpath_pages((Path *) lfirst(l));
     899             :         }
     900             :     }
     901        4543 :     else if (IsA(bitmapqual, IndexPath))
     902             :     {
     903        4543 :         IndexPath  *ipath = (IndexPath *) bitmapqual;
     904             : 
     905        4543 :         result = (double) ipath->indexinfo->pages;
     906             :     }
     907             :     else
     908           0 :         elog(ERROR, "unrecognized node type: %d", nodeTag(bitmapqual));
     909             : 
     910        5126 :     return result;
     911             : }
     912             : 
     913             : /*
     914             :  * cost_bitmap_heap_scan
     915             :  *    Determines and returns the cost of scanning a relation using a bitmap
     916             :  *    index-then-heap plan.
     917             :  *
     918             :  * 'baserel' is the relation to be scanned
     919             :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
     920             :  * 'bitmapqual' is a tree of IndexPaths, BitmapAndPaths, and BitmapOrPaths
     921             :  * 'loop_count' is the number of repetitions of the indexscan to factor into
     922             :  *      estimates of caching behavior
     923             :  *
     924             :  * Note: the component IndexPaths in bitmapqual should have been costed
     925             :  * using the same loop_count.
     926             :  */
     927             : void
     928       14743 : cost_bitmap_heap_scan(Path *path, PlannerInfo *root, RelOptInfo *baserel,
     929             :                       ParamPathInfo *param_info,
     930             :                       Path *bitmapqual, double loop_count)
     931             : {
     932       14743 :     Cost        startup_cost = 0;
     933       14743 :     Cost        run_cost = 0;
     934             :     Cost        indexTotalCost;
     935             :     QualCost    qpqual_cost;
     936             :     Cost        cpu_per_tuple;
     937             :     Cost        cost_per_page;
     938             :     Cost        cpu_run_cost;
     939             :     double      tuples_fetched;
     940             :     double      pages_fetched;
     941             :     double      spc_seq_page_cost,
     942             :                 spc_random_page_cost;
     943             :     double      T;
     944             : 
     945             :     /* Should only be applied to base relations */
     946       14743 :     Assert(IsA(baserel, RelOptInfo));
     947       14743 :     Assert(baserel->relid > 0);
     948       14743 :     Assert(baserel->rtekind == RTE_RELATION);
     949             : 
     950             :     /* Mark the path with the correct row estimate */
     951       14743 :     if (param_info)
     952        5282 :         path->rows = param_info->ppi_rows;
     953             :     else
     954        9461 :         path->rows = baserel->rows;
     955             : 
     956       14743 :     if (!enable_bitmapscan)
     957         799 :         startup_cost += disable_cost;
     958             : 
     959       14743 :     pages_fetched = compute_bitmap_pages(root, baserel, bitmapqual,
     960             :                                          loop_count, &indexTotalCost,
     961             :                                          &tuples_fetched);
     962             : 
     963       14743 :     startup_cost += indexTotalCost;
     964       14743 :     T = (baserel->pages > 1) ? (double) baserel->pages : 1.0;
     965             : 
     966             :     /* Fetch estimated page costs for tablespace containing table. */
     967       14743 :     get_tablespace_page_costs(baserel->reltablespace,
     968             :                               &spc_random_page_cost,
     969             :                               &spc_seq_page_cost);
     970             : 
     971             :     /*
     972             :      * For small numbers of pages we should charge spc_random_page_cost
     973             :      * apiece, while if nearly all the table's pages are being read, it's more
     974             :      * appropriate to charge spc_seq_page_cost apiece.  The effect is
     975             :      * nonlinear, too. For lack of a better idea, interpolate like this to
     976             :      * determine the cost per page.
     977             :      */
     978       14743 :     if (pages_fetched >= 2.0)
     979        9730 :         cost_per_page = spc_random_page_cost -
     980             :             (spc_random_page_cost - spc_seq_page_cost)
     981        4865 :             * sqrt(pages_fetched / T);
     982             :     else
     983        9878 :         cost_per_page = spc_random_page_cost;
     984             : 
     985       14743 :     run_cost += pages_fetched * cost_per_page;
     986             : 
     987             :     /*
     988             :      * Estimate CPU costs per tuple.
     989             :      *
     990             :      * Often the indexquals don't need to be rechecked at each tuple ... but
     991             :      * not always, especially not if there are enough tuples involved that the
     992             :      * bitmaps become lossy.  For the moment, just assume they will be
     993             :      * rechecked always.  This means we charge the full freight for all the
     994             :      * scan clauses.
     995             :      */
     996       14743 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
     997             : 
     998       14743 :     startup_cost += qpqual_cost.startup;
     999       14743 :     cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
    1000       14743 :     cpu_run_cost = cpu_per_tuple * tuples_fetched;
    1001             : 
    1002             :     /* Adjust costing for parallelism, if used. */
    1003       14743 :     if (path->parallel_workers > 0)
    1004             :     {
    1005         143 :         double      parallel_divisor = get_parallel_divisor(path);
    1006             : 
    1007             :         /* The CPU cost is divided among all the workers. */
    1008         143 :         cpu_run_cost /= parallel_divisor;
    1009             : 
    1010         143 :         path->rows = clamp_row_est(path->rows / parallel_divisor);
    1011             :     }
    1012             : 
    1013             : 
    1014       14743 :     run_cost += cpu_run_cost;
    1015             : 
    1016             :     /* tlist eval costs are paid per output row, not per tuple scanned */
    1017       14743 :     startup_cost += path->pathtarget->cost.startup;
    1018       14743 :     run_cost += path->pathtarget->cost.per_tuple * path->rows;
    1019             : 
    1020       14743 :     path->startup_cost = startup_cost;
    1021       14743 :     path->total_cost = startup_cost + run_cost;
    1022       14743 : }
    1023             : 
    1024             : /*
    1025             :  * cost_bitmap_tree_node
    1026             :  *      Extract cost and selectivity from a bitmap tree node (index/and/or)
    1027             :  */
    1028             : void
    1029       25652 : cost_bitmap_tree_node(Path *path, Cost *cost, Selectivity *selec)
    1030             : {
    1031       25652 :     if (IsA(path, IndexPath))
    1032             :     {
    1033       24729 :         *cost = ((IndexPath *) path)->indextotalcost;
    1034       24729 :         *selec = ((IndexPath *) path)->indexselectivity;
    1035             : 
    1036             :         /*
    1037             :          * Charge a small amount per retrieved tuple to reflect the costs of
    1038             :          * manipulating the bitmap.  This is mostly to make sure that a bitmap
    1039             :          * scan doesn't look to be the same cost as an indexscan to retrieve a
    1040             :          * single tuple.
    1041             :          */
    1042       24729 :         *cost += 0.1 * cpu_operator_cost * path->rows;
    1043             :     }
    1044         923 :     else if (IsA(path, BitmapAndPath))
    1045             :     {
    1046         817 :         *cost = path->total_cost;
    1047         817 :         *selec = ((BitmapAndPath *) path)->bitmapselectivity;
    1048             :     }
    1049         106 :     else if (IsA(path, BitmapOrPath))
    1050             :     {
    1051         106 :         *cost = path->total_cost;
    1052         106 :         *selec = ((BitmapOrPath *) path)->bitmapselectivity;
    1053             :     }
    1054             :     else
    1055             :     {
    1056           0 :         elog(ERROR, "unrecognized node type: %d", nodeTag(path));
    1057             :         *cost = *selec = 0;     /* keep compiler quiet */
    1058             :     }
    1059       25652 : }
    1060             : 
    1061             : /*
    1062             :  * cost_bitmap_and_node
    1063             :  *      Estimate the cost of a BitmapAnd node
    1064             :  *
    1065             :  * Note that this considers only the costs of index scanning and bitmap
    1066             :  * creation, not the eventual heap access.  In that sense the object isn't
    1067             :  * truly a Path, but it has enough path-like properties (costs in particular)
    1068             :  * to warrant treating it as one.  We don't bother to set the path rows field,
    1069             :  * however.
    1070             :  */
    1071             : void
    1072         814 : cost_bitmap_and_node(BitmapAndPath *path, PlannerInfo *root)
    1073             : {
    1074             :     Cost        totalCost;
    1075             :     Selectivity selec;
    1076             :     ListCell   *l;
    1077             : 
    1078             :     /*
    1079             :      * We estimate AND selectivity on the assumption that the inputs are
    1080             :      * independent.  This is probably often wrong, but we don't have the info
    1081             :      * to do better.
    1082             :      *
    1083             :      * The runtime cost of the BitmapAnd itself is estimated at 100x
    1084             :      * cpu_operator_cost for each tbm_intersect needed.  Probably too small,
    1085             :      * definitely too simplistic?
    1086             :      */
    1087         814 :     totalCost = 0.0;
    1088         814 :     selec = 1.0;
    1089        2442 :     foreach(l, path->bitmapquals)
    1090             :     {
    1091        1628 :         Path       *subpath = (Path *) lfirst(l);
    1092             :         Cost        subCost;
    1093             :         Selectivity subselec;
    1094             : 
    1095        1628 :         cost_bitmap_tree_node(subpath, &subCost, &subselec);
    1096             : 
    1097        1628 :         selec *= subselec;
    1098             : 
    1099        1628 :         totalCost += subCost;
    1100        1628 :         if (l != list_head(path->bitmapquals))
    1101         814 :             totalCost += 100.0 * cpu_operator_cost;
    1102             :     }
    1103         814 :     path->bitmapselectivity = selec;
    1104         814 :     path->path.rows = 0;     /* per above, not used */
    1105         814 :     path->path.startup_cost = totalCost;
    1106         814 :     path->path.total_cost = totalCost;
    1107         814 : }
    1108             : 
    1109             : /*
    1110             :  * cost_bitmap_or_node
    1111             :  *      Estimate the cost of a BitmapOr node
    1112             :  *
    1113             :  * See comments for cost_bitmap_and_node.
    1114             :  */
    1115             : void
    1116          45 : cost_bitmap_or_node(BitmapOrPath *path, PlannerInfo *root)
    1117             : {
    1118             :     Cost        totalCost;
    1119             :     Selectivity selec;
    1120             :     ListCell   *l;
    1121             : 
    1122             :     /*
    1123             :      * We estimate OR selectivity on the assumption that the inputs are
    1124             :      * non-overlapping, since that's often the case in "x IN (list)" type
    1125             :      * situations.  Of course, we clamp to 1.0 at the end.
    1126             :      *
    1127             :      * The runtime cost of the BitmapOr itself is estimated at 100x
    1128             :      * cpu_operator_cost for each tbm_union needed.  Probably too small,
    1129             :      * definitely too simplistic?  We are aware that the tbm_unions are
    1130             :      * optimized out when the inputs are BitmapIndexScans.
    1131             :      */
    1132          45 :     totalCost = 0.0;
    1133          45 :     selec = 0.0;
    1134         140 :     foreach(l, path->bitmapquals)
    1135             :     {
    1136          95 :         Path       *subpath = (Path *) lfirst(l);
    1137             :         Cost        subCost;
    1138             :         Selectivity subselec;
    1139             : 
    1140          95 :         cost_bitmap_tree_node(subpath, &subCost, &subselec);
    1141             : 
    1142          95 :         selec += subselec;
    1143             : 
    1144          95 :         totalCost += subCost;
    1145         145 :         if (l != list_head(path->bitmapquals) &&
    1146          50 :             !IsA(subpath, IndexPath))
    1147           4 :             totalCost += 100.0 * cpu_operator_cost;
    1148             :     }
    1149          45 :     path->bitmapselectivity = Min(selec, 1.0);
    1150          45 :     path->path.rows = 0;     /* per above, not used */
    1151          45 :     path->path.startup_cost = totalCost;
    1152          45 :     path->path.total_cost = totalCost;
    1153          45 : }
    1154             : 
    1155             : /*
    1156             :  * cost_tidscan
    1157             :  *    Determines and returns the cost of scanning a relation using TIDs.
    1158             :  *
    1159             :  * 'baserel' is the relation to be scanned
    1160             :  * 'tidquals' is the list of TID-checkable quals
    1161             :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
    1162             :  */
    1163             : void
    1164          66 : cost_tidscan(Path *path, PlannerInfo *root,
    1165             :              RelOptInfo *baserel, List *tidquals, ParamPathInfo *param_info)
    1166             : {
    1167          66 :     Cost        startup_cost = 0;
    1168          66 :     Cost        run_cost = 0;
    1169          66 :     bool        isCurrentOf = false;
    1170             :     QualCost    qpqual_cost;
    1171             :     Cost        cpu_per_tuple;
    1172             :     QualCost    tid_qual_cost;
    1173             :     int         ntuples;
    1174             :     ListCell   *l;
    1175             :     double      spc_random_page_cost;
    1176             : 
    1177             :     /* Should only be applied to base relations */
    1178          66 :     Assert(baserel->relid > 0);
    1179          66 :     Assert(baserel->rtekind == RTE_RELATION);
    1180             : 
    1181             :     /* Mark the path with the correct row estimate */
    1182          66 :     if (param_info)
    1183           0 :         path->rows = param_info->ppi_rows;
    1184             :     else
    1185          66 :         path->rows = baserel->rows;
    1186             : 
    1187             :     /* Count how many tuples we expect to retrieve */
    1188          66 :     ntuples = 0;
    1189         134 :     foreach(l, tidquals)
    1190             :     {
    1191          68 :         if (IsA(lfirst(l), ScalarArrayOpExpr))
    1192             :         {
    1193             :             /* Each element of the array yields 1 tuple */
    1194           5 :             ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) lfirst(l);
    1195           5 :             Node       *arraynode = (Node *) lsecond(saop->args);
    1196             : 
    1197           5 :             ntuples += estimate_array_length(arraynode);
    1198             :         }
    1199          63 :         else if (IsA(lfirst(l), CurrentOfExpr))
    1200             :         {
    1201             :             /* CURRENT OF yields 1 tuple */
    1202          57 :             isCurrentOf = true;
    1203          57 :             ntuples++;
    1204             :         }
    1205             :         else
    1206             :         {
    1207             :             /* It's just CTID = something, count 1 tuple */
    1208           6 :             ntuples++;
    1209             :         }
    1210             :     }
    1211             : 
    1212             :     /*
    1213             :      * We must force TID scan for WHERE CURRENT OF, because only nodeTidscan.c
    1214             :      * understands how to do it correctly.  Therefore, honor enable_tidscan
    1215             :      * only when CURRENT OF isn't present.  Also note that cost_qual_eval
    1216             :      * counts a CurrentOfExpr as having startup cost disable_cost, which we
    1217             :      * subtract off here; that's to prevent other plan types such as seqscan
    1218             :      * from winning.
    1219             :      */
    1220          66 :     if (isCurrentOf)
    1221             :     {
    1222          57 :         Assert(baserel->baserestrictcost.startup >= disable_cost);
    1223          57 :         startup_cost -= disable_cost;
    1224             :     }
    1225           9 :     else if (!enable_tidscan)
    1226           0 :         startup_cost += disable_cost;
    1227             : 
    1228             :     /*
    1229             :      * The TID qual expressions will be computed once, any other baserestrict
    1230             :      * quals once per retrieved tuple.
    1231             :      */
    1232          66 :     cost_qual_eval(&tid_qual_cost, tidquals, root);
    1233             : 
    1234             :     /* fetch estimated page cost for tablespace containing table */
    1235          66 :     get_tablespace_page_costs(baserel->reltablespace,
    1236             :                               &spc_random_page_cost,
    1237             :                               NULL);
    1238             : 
    1239             :     /* disk costs --- assume each tuple on a different page */
    1240          66 :     run_cost += spc_random_page_cost * ntuples;
    1241             : 
    1242             :     /* Add scanning CPU costs */
    1243          66 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1244             : 
    1245             :     /* XXX currently we assume TID quals are a subset of qpquals */
    1246          66 :     startup_cost += qpqual_cost.startup + tid_qual_cost.per_tuple;
    1247         132 :     cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple -
    1248          66 :         tid_qual_cost.per_tuple;
    1249          66 :     run_cost += cpu_per_tuple * ntuples;
    1250             : 
    1251             :     /* tlist eval costs are paid per output row, not per tuple scanned */
    1252          66 :     startup_cost += path->pathtarget->cost.startup;
    1253          66 :     run_cost += path->pathtarget->cost.per_tuple * path->rows;
    1254             : 
    1255          66 :     path->startup_cost = startup_cost;
    1256          66 :     path->total_cost = startup_cost + run_cost;
    1257          66 : }
    1258             : 
    1259             : /*
    1260             :  * cost_subqueryscan
    1261             :  *    Determines and returns the cost of scanning a subquery RTE.
    1262             :  *
    1263             :  * 'baserel' is the relation to be scanned
    1264             :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
    1265             :  */
    1266             : void
    1267        1111 : cost_subqueryscan(SubqueryScanPath *path, PlannerInfo *root,
    1268             :                   RelOptInfo *baserel, ParamPathInfo *param_info)
    1269             : {
    1270             :     Cost        startup_cost;
    1271             :     Cost        run_cost;
    1272             :     QualCost    qpqual_cost;
    1273             :     Cost        cpu_per_tuple;
    1274             : 
    1275             :     /* Should only be applied to base relations that are subqueries */
    1276        1111 :     Assert(baserel->relid > 0);
    1277        1111 :     Assert(baserel->rtekind == RTE_SUBQUERY);
    1278             : 
    1279             :     /* Mark the path with the correct row estimate */
    1280        1111 :     if (param_info)
    1281          61 :         path->path.rows = param_info->ppi_rows;
    1282             :     else
    1283        1050 :         path->path.rows = baserel->rows;
    1284             : 
    1285             :     /*
    1286             :      * Cost of path is cost of evaluating the subplan, plus cost of evaluating
    1287             :      * any restriction clauses and tlist that will be attached to the
    1288             :      * SubqueryScan node, plus cpu_tuple_cost to account for selection and
    1289             :      * projection overhead.
    1290             :      */
    1291        1111 :     path->path.startup_cost = path->subpath->startup_cost;
    1292        1111 :     path->path.total_cost = path->subpath->total_cost;
    1293             : 
    1294        1111 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1295             : 
    1296        1111 :     startup_cost = qpqual_cost.startup;
    1297        1111 :     cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
    1298        1111 :     run_cost = cpu_per_tuple * baserel->tuples;
    1299             : 
    1300             :     /* tlist eval costs are paid per output row, not per tuple scanned */
    1301        1111 :     startup_cost += path->path.pathtarget->cost.startup;
    1302        1111 :     run_cost += path->path.pathtarget->cost.per_tuple * path->path.rows;
    1303             : 
    1304        1111 :     path->path.startup_cost += startup_cost;
    1305        1111 :     path->path.total_cost += startup_cost + run_cost;
    1306        1111 : }
    1307             : 
    1308             : /*
    1309             :  * cost_functionscan
    1310             :  *    Determines and returns the cost of scanning a function RTE.
    1311             :  *
    1312             :  * 'baserel' is the relation to be scanned
    1313             :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
    1314             :  */
    1315             : void
    1316        1327 : cost_functionscan(Path *path, PlannerInfo *root,
    1317             :                   RelOptInfo *baserel, ParamPathInfo *param_info)
    1318             : {
    1319        1327 :     Cost        startup_cost = 0;
    1320        1327 :     Cost        run_cost = 0;
    1321             :     QualCost    qpqual_cost;
    1322             :     Cost        cpu_per_tuple;
    1323             :     RangeTblEntry *rte;
    1324             :     QualCost    exprcost;
    1325             : 
    1326             :     /* Should only be applied to base relations that are functions */
    1327        1327 :     Assert(baserel->relid > 0);
    1328        1327 :     rte = planner_rt_fetch(baserel->relid, root);
    1329        1327 :     Assert(rte->rtekind == RTE_FUNCTION);
    1330             : 
    1331             :     /* Mark the path with the correct row estimate */
    1332        1327 :     if (param_info)
    1333          51 :         path->rows = param_info->ppi_rows;
    1334             :     else
    1335        1276 :         path->rows = baserel->rows;
    1336             : 
    1337             :     /*
    1338             :      * Estimate costs of executing the function expression(s).
    1339             :      *
    1340             :      * Currently, nodeFunctionscan.c always executes the functions to
    1341             :      * completion before returning any rows, and caches the results in a
    1342             :      * tuplestore.  So the function eval cost is all startup cost, and per-row
    1343             :      * costs are minimal.
    1344             :      *
    1345             :      * XXX in principle we ought to charge tuplestore spill costs if the
    1346             :      * number of rows is large.  However, given how phony our rowcount
    1347             :      * estimates for functions tend to be, there's not a lot of point in that
    1348             :      * refinement right now.
    1349             :      */
    1350        1327 :     cost_qual_eval_node(&exprcost, (Node *) rte->functions, root);
    1351             : 
    1352        1327 :     startup_cost += exprcost.startup + exprcost.per_tuple;
    1353             : 
    1354             :     /* Add scanning CPU costs */
    1355        1327 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1356             : 
    1357        1327 :     startup_cost += qpqual_cost.startup;
    1358        1327 :     cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
    1359        1327 :     run_cost += cpu_per_tuple * baserel->tuples;
    1360             : 
    1361             :     /* tlist eval costs are paid per output row, not per tuple scanned */
    1362        1327 :     startup_cost += path->pathtarget->cost.startup;
    1363        1327 :     run_cost += path->pathtarget->cost.per_tuple * path->rows;
    1364             : 
    1365        1327 :     path->startup_cost = startup_cost;
    1366        1327 :     path->total_cost = startup_cost + run_cost;
    1367        1327 : }
    1368             : 
    1369             : /*
    1370             :  * cost_tablefuncscan
    1371             :  *    Determines and returns the cost of scanning a table function.
    1372             :  *
    1373             :  * 'baserel' is the relation to be scanned
    1374             :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
    1375             :  */
    1376             : void
    1377          22 : cost_tablefuncscan(Path *path, PlannerInfo *root,
    1378             :                    RelOptInfo *baserel, ParamPathInfo *param_info)
    1379             : {
    1380          22 :     Cost        startup_cost = 0;
    1381          22 :     Cost        run_cost = 0;
    1382             :     QualCost    qpqual_cost;
    1383             :     Cost        cpu_per_tuple;
    1384             :     RangeTblEntry *rte;
    1385             :     QualCost    exprcost;
    1386             : 
    1387             :     /* Should only be applied to base relations that are functions */
    1388          22 :     Assert(baserel->relid > 0);
    1389          22 :     rte = planner_rt_fetch(baserel->relid, root);
    1390          22 :     Assert(rte->rtekind == RTE_TABLEFUNC);
    1391             : 
    1392             :     /* Mark the path with the correct row estimate */
    1393          22 :     if (param_info)
    1394          22 :         path->rows = param_info->ppi_rows;
    1395             :     else
    1396           0 :         path->rows = baserel->rows;
    1397             : 
    1398             :     /*
    1399             :      * Estimate costs of executing the table func expression(s).
    1400             :      *
    1401             :      * XXX in principle we ought to charge tuplestore spill costs if the
    1402             :      * number of rows is large.  However, given how phony our rowcount
    1403             :      * estimates for tablefuncs tend to be, there's not a lot of point in that
    1404             :      * refinement right now.
    1405             :      */
    1406          22 :     cost_qual_eval_node(&exprcost, (Node *) rte->tablefunc, root);
    1407             : 
    1408          22 :     startup_cost += exprcost.startup + exprcost.per_tuple;
    1409             : 
    1410             :     /* Add scanning CPU costs */
    1411          22 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1412             : 
    1413          22 :     startup_cost += qpqual_cost.startup;
    1414          22 :     cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
    1415          22 :     run_cost += cpu_per_tuple * baserel->tuples;
    1416             : 
    1417             :     /* tlist eval costs are paid per output row, not per tuple scanned */
    1418          22 :     startup_cost += path->pathtarget->cost.startup;
    1419          22 :     run_cost += path->pathtarget->cost.per_tuple * path->rows;
    1420             : 
    1421          22 :     path->startup_cost = startup_cost;
    1422          22 :     path->total_cost = startup_cost + run_cost;
    1423          22 : }
    1424             : 
    1425             : /*
    1426             :  * cost_valuesscan
    1427             :  *    Determines and returns the cost of scanning a VALUES RTE.
    1428             :  *
    1429             :  * 'baserel' is the relation to be scanned
    1430             :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
    1431             :  */
    1432             : void
    1433         463 : cost_valuesscan(Path *path, PlannerInfo *root,
    1434             :                 RelOptInfo *baserel, ParamPathInfo *param_info)
    1435             : {
    1436         463 :     Cost        startup_cost = 0;
    1437         463 :     Cost        run_cost = 0;
    1438             :     QualCost    qpqual_cost;
    1439             :     Cost        cpu_per_tuple;
    1440             : 
    1441             :     /* Should only be applied to base relations that are values lists */
    1442         463 :     Assert(baserel->relid > 0);
    1443         463 :     Assert(baserel->rtekind == RTE_VALUES);
    1444             : 
    1445             :     /* Mark the path with the correct row estimate */
    1446         463 :     if (param_info)
    1447           6 :         path->rows = param_info->ppi_rows;
    1448             :     else
    1449         457 :         path->rows = baserel->rows;
    1450             : 
    1451             :     /*
    1452             :      * For now, estimate list evaluation cost at one operator eval per list
    1453             :      * (probably pretty bogus, but is it worth being smarter?)
    1454             :      */
    1455         463 :     cpu_per_tuple = cpu_operator_cost;
    1456             : 
    1457             :     /* Add scanning CPU costs */
    1458         463 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1459             : 
    1460         463 :     startup_cost += qpqual_cost.startup;
    1461         463 :     cpu_per_tuple += cpu_tuple_cost + qpqual_cost.per_tuple;
    1462         463 :     run_cost += cpu_per_tuple * baserel->tuples;
    1463             : 
    1464             :     /* tlist eval costs are paid per output row, not per tuple scanned */
    1465         463 :     startup_cost += path->pathtarget->cost.startup;
    1466         463 :     run_cost += path->pathtarget->cost.per_tuple * path->rows;
    1467             : 
    1468         463 :     path->startup_cost = startup_cost;
    1469         463 :     path->total_cost = startup_cost + run_cost;
    1470         463 : }
    1471             : 
    1472             : /*
    1473             :  * cost_ctescan
    1474             :  *    Determines and returns the cost of scanning a CTE RTE.
    1475             :  *
    1476             :  * Note: this is used for both self-reference and regular CTEs; the
    1477             :  * possible cost differences are below the threshold of what we could
    1478             :  * estimate accurately anyway.  Note that the costs of evaluating the
    1479             :  * referenced CTE query are added into the final plan as initplan costs,
    1480             :  * and should NOT be counted here.
    1481             :  */
    1482             : void
    1483         202 : cost_ctescan(Path *path, PlannerInfo *root,
    1484             :              RelOptInfo *baserel, ParamPathInfo *param_info)
    1485             : {
    1486         202 :     Cost        startup_cost = 0;
    1487         202 :     Cost        run_cost = 0;
    1488             :     QualCost    qpqual_cost;
    1489             :     Cost        cpu_per_tuple;
    1490             : 
    1491             :     /* Should only be applied to base relations that are CTEs */
    1492         202 :     Assert(baserel->relid > 0);
    1493         202 :     Assert(baserel->rtekind == RTE_CTE);
    1494             : 
    1495             :     /* Mark the path with the correct row estimate */
    1496         202 :     if (param_info)
    1497           0 :         path->rows = param_info->ppi_rows;
    1498             :     else
    1499         202 :         path->rows = baserel->rows;
    1500             : 
    1501             :     /* Charge one CPU tuple cost per row for tuplestore manipulation */
    1502         202 :     cpu_per_tuple = cpu_tuple_cost;
    1503             : 
    1504             :     /* Add scanning CPU costs */
    1505         202 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1506             : 
    1507         202 :     startup_cost += qpqual_cost.startup;
    1508         202 :     cpu_per_tuple += cpu_tuple_cost + qpqual_cost.per_tuple;
    1509         202 :     run_cost += cpu_per_tuple * baserel->tuples;
    1510             : 
    1511             :     /* tlist eval costs are paid per output row, not per tuple scanned */
    1512         202 :     startup_cost += path->pathtarget->cost.startup;
    1513         202 :     run_cost += path->pathtarget->cost.per_tuple * path->rows;
    1514             : 
    1515         202 :     path->startup_cost = startup_cost;
    1516         202 :     path->total_cost = startup_cost + run_cost;
    1517         202 : }
    1518             : 
    1519             : /*
    1520             :  * cost_namedtuplestorescan
    1521             :  *    Determines and returns the cost of scanning a named tuplestore.
    1522             :  */
    1523             : void
    1524          43 : cost_namedtuplestorescan(Path *path, PlannerInfo *root,
    1525             :                          RelOptInfo *baserel, ParamPathInfo *param_info)
    1526             : {
    1527          43 :     Cost        startup_cost = 0;
    1528          43 :     Cost        run_cost = 0;
    1529             :     QualCost    qpqual_cost;
    1530             :     Cost        cpu_per_tuple;
    1531             : 
    1532             :     /* Should only be applied to base relations that are Tuplestores */
    1533          43 :     Assert(baserel->relid > 0);
    1534          43 :     Assert(baserel->rtekind == RTE_NAMEDTUPLESTORE);
    1535             : 
    1536             :     /* Mark the path with the correct row estimate */
    1537          43 :     if (param_info)
    1538           0 :         path->rows = param_info->ppi_rows;
    1539             :     else
    1540          43 :         path->rows = baserel->rows;
    1541             : 
    1542             :     /* Charge one CPU tuple cost per row for tuplestore manipulation */
    1543          43 :     cpu_per_tuple = cpu_tuple_cost;
    1544             : 
    1545             :     /* Add scanning CPU costs */
    1546          43 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1547             : 
    1548          43 :     startup_cost += qpqual_cost.startup;
    1549          43 :     cpu_per_tuple += cpu_tuple_cost + qpqual_cost.per_tuple;
    1550          43 :     run_cost += cpu_per_tuple * baserel->tuples;
    1551             : 
    1552          43 :     path->startup_cost = startup_cost;
    1553          43 :     path->total_cost = startup_cost + run_cost;
    1554          43 : }
    1555             : 
    1556             : /*
    1557             :  * cost_recursive_union
    1558             :  *    Determines and returns the cost of performing a recursive union,
    1559             :  *    and also the estimated output size.
    1560             :  *
    1561             :  * We are given Paths for the nonrecursive and recursive terms.
    1562             :  */
    1563             : void
    1564          40 : cost_recursive_union(Path *runion, Path *nrterm, Path *rterm)
    1565             : {
    1566             :     Cost        startup_cost;
    1567             :     Cost        total_cost;
    1568             :     double      total_rows;
    1569             : 
    1570             :     /* We probably have decent estimates for the non-recursive term */
    1571          40 :     startup_cost = nrterm->startup_cost;
    1572          40 :     total_cost = nrterm->total_cost;
    1573          40 :     total_rows = nrterm->rows;
    1574             : 
    1575             :     /*
    1576             :      * We arbitrarily assume that about 10 recursive iterations will be
    1577             :      * needed, and that we've managed to get a good fix on the cost and output
    1578             :      * size of each one of them.  These are mighty shaky assumptions but it's
    1579             :      * hard to see how to do better.
    1580             :      */
    1581          40 :     total_cost += 10 * rterm->total_cost;
    1582          40 :     total_rows += 10 * rterm->rows;
    1583             : 
    1584             :     /*
    1585             :      * Also charge cpu_tuple_cost per row to account for the costs of
    1586             :      * manipulating the tuplestores.  (We don't worry about possible
    1587             :      * spill-to-disk costs.)
    1588             :      */
    1589          40 :     total_cost += cpu_tuple_cost * total_rows;
    1590             : 
    1591          40 :     runion->startup_cost = startup_cost;
    1592          40 :     runion->total_cost = total_cost;
    1593          40 :     runion->rows = total_rows;
    1594          40 :     runion->pathtarget->width = Max(nrterm->pathtarget->width,
    1595             :                                     rterm->pathtarget->width);
    1596          40 : }
    1597             : 
    1598             : /*
    1599             :  * cost_sort
    1600             :  *    Determines and returns the cost of sorting a relation, including
    1601             :  *    the cost of reading the input data.
    1602             :  *
    1603             :  * If the total volume of data to sort is less than sort_mem, we will do
    1604             :  * an in-memory sort, which requires no I/O and about t*log2(t) tuple
    1605             :  * comparisons for t tuples.
    1606             :  *
    1607             :  * If the total volume exceeds sort_mem, we switch to a tape-style merge
    1608             :  * algorithm.  There will still be about t*log2(t) tuple comparisons in
    1609             :  * total, but we will also need to write and read each tuple once per
    1610             :  * merge pass.  We expect about ceil(logM(r)) merge passes where r is the
    1611             :  * number of initial runs formed and M is the merge order used by tuplesort.c.
    1612             :  * Since the average initial run should be about sort_mem, we have
    1613             :  *      disk traffic = 2 * relsize * ceil(logM(p / sort_mem))
    1614             :  *      cpu = comparison_cost * t * log2(t)
    1615             :  *
    1616             :  * If the sort is bounded (i.e., only the first k result tuples are needed)
    1617             :  * and k tuples can fit into sort_mem, we use a heap method that keeps only
    1618             :  * k tuples in the heap; this will require about t*log2(k) tuple comparisons.
    1619             :  *
    1620             :  * The disk traffic is assumed to be 3/4ths sequential and 1/4th random
    1621             :  * accesses (XXX can't we refine that guess?)
    1622             :  *
    1623             :  * By default, we charge two operator evals per tuple comparison, which should
    1624             :  * be in the right ballpark in most cases.  The caller can tweak this by
    1625             :  * specifying nonzero comparison_cost; typically that's used for any extra
    1626             :  * work that has to be done to prepare the inputs to the comparison operators.
    1627             :  *
    1628             :  * 'pathkeys' is a list of sort keys
    1629             :  * 'input_cost' is the total cost for reading the input data
    1630             :  * 'tuples' is the number of tuples in the relation
    1631             :  * 'width' is the average tuple width in bytes
    1632             :  * 'comparison_cost' is the extra cost per comparison, if any
    1633             :  * 'sort_mem' is the number of kilobytes of work memory allowed for the sort
    1634             :  * 'limit_tuples' is the bound on the number of output tuples; -1 if no bound
    1635             :  *
    1636             :  * NOTE: some callers currently pass NIL for pathkeys because they
    1637             :  * can't conveniently supply the sort keys.  Since this routine doesn't
    1638             :  * currently do anything with pathkeys anyway, that doesn't matter...
    1639             :  * but if it ever does, it should react gracefully to lack of key data.
    1640             :  * (Actually, the thing we'd most likely be interested in is just the number
    1641             :  * of sort keys, which all callers *could* supply.)
    1642             :  */
    1643             : void
    1644       31343 : cost_sort(Path *path, PlannerInfo *root,
    1645             :           List *pathkeys, Cost input_cost, double tuples, int width,
    1646             :           Cost comparison_cost, int sort_mem,
    1647             :           double limit_tuples)
    1648             : {
    1649       31343 :     Cost        startup_cost = input_cost;
    1650       31343 :     Cost        run_cost = 0;
    1651       31343 :     double      input_bytes = relation_byte_size(tuples, width);
    1652             :     double      output_bytes;
    1653             :     double      output_tuples;
    1654       31343 :     long        sort_mem_bytes = sort_mem * 1024L;
    1655             : 
    1656       31343 :     if (!enable_sort)
    1657          44 :         startup_cost += disable_cost;
    1658             : 
    1659       31343 :     path->rows = tuples;
    1660             : 
    1661             :     /*
    1662             :      * We want to be sure the cost of a sort is never estimated as zero, even
    1663             :      * if passed-in tuple count is zero.  Besides, mustn't do log(0)...
    1664             :      */
    1665       31343 :     if (tuples < 2.0)
    1666        7868 :         tuples = 2.0;
    1667             : 
    1668             :     /* Include the default cost-per-comparison */
    1669       31343 :     comparison_cost += 2.0 * cpu_operator_cost;
    1670             : 
    1671             :     /* Do we have a useful LIMIT? */
    1672       31343 :     if (limit_tuples > 0 && limit_tuples < tuples)
    1673             :     {
    1674          55 :         output_tuples = limit_tuples;
    1675          55 :         output_bytes = relation_byte_size(output_tuples, width);
    1676             :     }
    1677             :     else
    1678             :     {
    1679       31288 :         output_tuples = tuples;
    1680       31288 :         output_bytes = input_bytes;
    1681             :     }
    1682             : 
    1683       31343 :     if (output_bytes > sort_mem_bytes)
    1684             :     {
    1685             :         /*
    1686             :          * We'll have to use a disk-based sort of all the tuples
    1687             :          */
    1688         466 :         double      npages = ceil(input_bytes / BLCKSZ);
    1689         466 :         double      nruns = input_bytes / sort_mem_bytes;
    1690         466 :         double      mergeorder = tuplesort_merge_order(sort_mem_bytes);
    1691             :         double      log_runs;
    1692             :         double      npageaccesses;
    1693             : 
    1694             :         /*
    1695             :          * CPU costs
    1696             :          *
    1697             :          * Assume about N log2 N comparisons
    1698             :          */
    1699         466 :         startup_cost += comparison_cost * tuples * LOG2(tuples);
    1700             : 
    1701             :         /* Disk costs */
    1702             : 
    1703             :         /* Compute logM(r) as log(r) / log(M) */
    1704         466 :         if (nruns > mergeorder)
    1705         350 :             log_runs = ceil(log(nruns) / log(mergeorder));
    1706             :         else
    1707         116 :             log_runs = 1.0;
    1708         466 :         npageaccesses = 2.0 * npages * log_runs;
    1709             :         /* Assume 3/4ths of accesses are sequential, 1/4th are not */
    1710         466 :         startup_cost += npageaccesses *
    1711             :             (seq_page_cost * 0.75 + random_page_cost * 0.25);
    1712             :     }
    1713       30877 :     else if (tuples > 2 * output_tuples || input_bytes > sort_mem_bytes)
    1714             :     {
    1715             :         /*
    1716             :          * We'll use a bounded heap-sort keeping just K tuples in memory, for
    1717             :          * a total number of tuple comparisons of N log2 K; but the constant
    1718             :          * factor is a bit higher than for quicksort.  Tweak it so that the
    1719             :          * cost curve is continuous at the crossover point.
    1720             :          */
    1721          42 :         startup_cost += comparison_cost * tuples * LOG2(2.0 * output_tuples);
    1722             :     }
    1723             :     else
    1724             :     {
    1725             :         /* We'll use plain quicksort on all the input tuples */
    1726       30835 :         startup_cost += comparison_cost * tuples * LOG2(tuples);
    1727             :     }
    1728             : 
    1729             :     /*
    1730             :      * Also charge a small amount (arbitrarily set equal to operator cost) per
    1731             :      * extracted tuple.  We don't charge cpu_tuple_cost because a Sort node
    1732             :      * doesn't do qual-checking or projection, so it has less overhead than
    1733             :      * most plan nodes.  Note it's correct to use tuples not output_tuples
    1734             :      * here --- the upper LIMIT will pro-rate the run cost so we'd be double
    1735             :      * counting the LIMIT otherwise.
    1736             :      */
    1737       31343 :     run_cost += cpu_operator_cost * tuples;
    1738             : 
    1739       31343 :     path->startup_cost = startup_cost;
    1740       31343 :     path->total_cost = startup_cost + run_cost;
    1741       31343 : }
    1742             : 
    1743             : /*
    1744             :  * cost_merge_append
    1745             :  *    Determines and returns the cost of a MergeAppend node.
    1746             :  *
    1747             :  * MergeAppend merges several pre-sorted input streams, using a heap that
    1748             :  * at any given instant holds the next tuple from each stream.  If there
    1749             :  * are N streams, we need about N*log2(N) tuple comparisons to construct
    1750             :  * the heap at startup, and then for each output tuple, about log2(N)
    1751             :  * comparisons to replace the top entry.
    1752             :  *
    1753             :  * (The effective value of N will drop once some of the input streams are
    1754             :  * exhausted, but it seems unlikely to be worth trying to account for that.)
    1755             :  *
    1756             :  * The heap is never spilled to disk, since we assume N is not very large.
    1757             :  * So this is much simpler than cost_sort.
    1758             :  *
    1759             :  * As in cost_sort, we charge two operator evals per tuple comparison.
    1760             :  *
    1761             :  * 'pathkeys' is a list of sort keys
    1762             :  * 'n_streams' is the number of input streams
    1763             :  * 'input_startup_cost' is the sum of the input streams' startup costs
    1764             :  * 'input_total_cost' is the sum of the input streams' total costs
    1765             :  * 'tuples' is the number of tuples in all the streams
    1766             :  */
    1767             : void
    1768          81 : cost_merge_append(Path *path, PlannerInfo *root,
    1769             :                   List *pathkeys, int n_streams,
    1770             :                   Cost input_startup_cost, Cost input_total_cost,
    1771             :                   double tuples)
    1772             : {
    1773          81 :     Cost        startup_cost = 0;
    1774          81 :     Cost        run_cost = 0;
    1775             :     Cost        comparison_cost;
    1776             :     double      N;
    1777             :     double      logN;
    1778             : 
    1779             :     /*
    1780             :      * Avoid log(0)...
    1781             :      */
    1782          81 :     N = (n_streams < 2) ? 2.0 : (double) n_streams;
    1783          81 :     logN = LOG2(N);
    1784             : 
    1785             :     /* Assumed cost per tuple comparison */
    1786          81 :     comparison_cost = 2.0 * cpu_operator_cost;
    1787             : 
    1788             :     /* Heap creation cost */
    1789          81 :     startup_cost += comparison_cost * N * logN;
    1790             : 
    1791             :     /* Per-tuple heap maintenance cost */
    1792          81 :     run_cost += tuples * comparison_cost * logN;
    1793             : 
    1794             :     /*
    1795             :      * Also charge a small amount (arbitrarily set equal to operator cost) per
    1796             :      * extracted tuple.  We don't charge cpu_tuple_cost because a MergeAppend
    1797             :      * node doesn't do qual-checking or projection, so it has less overhead
    1798             :      * than most plan nodes.
    1799             :      */
    1800          81 :     run_cost += cpu_operator_cost * tuples;
    1801             : 
    1802          81 :     path->startup_cost = startup_cost + input_startup_cost;
    1803          81 :     path->total_cost = startup_cost + run_cost + input_total_cost;
    1804          81 : }
    1805             : 
    1806             : /*
    1807             :  * cost_material
    1808             :  *    Determines and returns the cost of materializing a relation, including
    1809             :  *    the cost of reading the input data.
    1810             :  *
    1811             :  * If the total volume of data to materialize exceeds work_mem, we will need
    1812             :  * to write it to disk, so the cost is much higher in that case.
    1813             :  *
    1814             :  * Note that here we are estimating the costs for the first scan of the
    1815             :  * relation, so the materialization is all overhead --- any savings will
    1816             :  * occur only on rescan, which is estimated in cost_rescan.
    1817             :  */
    1818             : void
    1819       12697 : cost_material(Path *path,
    1820             :               Cost input_startup_cost, Cost input_total_cost,
    1821             :               double tuples, int width)
    1822             : {
    1823       12697 :     Cost        startup_cost = input_startup_cost;
    1824       12697 :     Cost        run_cost = input_total_cost - input_startup_cost;
    1825       12697 :     double      nbytes = relation_byte_size(tuples, width);
    1826       12697 :     long        work_mem_bytes = work_mem * 1024L;
    1827             : 
    1828       12697 :     path->rows = tuples;
    1829             : 
    1830             :     /*
    1831             :      * Whether spilling or not, charge 2x cpu_operator_cost per tuple to
    1832             :      * reflect bookkeeping overhead.  (This rate must be more than what
    1833             :      * cost_rescan charges for materialize, ie, cpu_operator_cost per tuple;
    1834             :      * if it is exactly the same then there will be a cost tie between
    1835             :      * nestloop with A outer, materialized B inner and nestloop with B outer,
    1836             :      * materialized A inner.  The extra cost ensures we'll prefer
    1837             :      * materializing the smaller rel.)  Note that this is normally a good deal
    1838             :      * less than cpu_tuple_cost; which is OK because a Material plan node
    1839             :      * doesn't do qual-checking or projection, so it's got less overhead than
    1840             :      * most plan nodes.
    1841             :      */
    1842       12697 :     run_cost += 2 * cpu_operator_cost * tuples;
    1843             : 
    1844             :     /*
    1845             :      * If we will spill to disk, charge at the rate of seq_page_cost per page.
    1846             :      * This cost is assumed to be evenly spread through the plan run phase,
    1847             :      * which isn't exactly accurate but our cost model doesn't allow for
    1848             :      * nonuniform costs within the run phase.
    1849             :      */
    1850       12697 :     if (nbytes > work_mem_bytes)
    1851             :     {
    1852         132 :         double      npages = ceil(nbytes / BLCKSZ);
    1853             : 
    1854         132 :         run_cost += seq_page_cost * npages;
    1855             :     }
    1856             : 
    1857       12697 :     path->startup_cost = startup_cost;
    1858       12697 :     path->total_cost = startup_cost + run_cost;
    1859       12697 : }
    1860             : 
    1861             : /*
    1862             :  * cost_agg
    1863             :  *      Determines and returns the cost of performing an Agg plan node,
    1864             :  *      including the cost of its input.
    1865             :  *
    1866             :  * aggcosts can be NULL when there are no actual aggregate functions (i.e.,
    1867             :  * we are using a hashed Agg node just to do grouping).
    1868             :  *
    1869             :  * Note: when aggstrategy == AGG_SORTED, caller must ensure that input costs
    1870             :  * are for appropriately-sorted input.
    1871             :  */
    1872             : void
    1873        3589 : cost_agg(Path *path, PlannerInfo *root,
    1874             :          AggStrategy aggstrategy, const AggClauseCosts *aggcosts,
    1875             :          int numGroupCols, double numGroups,
    1876             :          Cost input_startup_cost, Cost input_total_cost,
    1877             :          double input_tuples)
    1878             : {
    1879             :     double      output_tuples;
    1880             :     Cost        startup_cost;
    1881             :     Cost        total_cost;
    1882             :     AggClauseCosts dummy_aggcosts;
    1883             : 
    1884             :     /* Use all-zero per-aggregate costs if NULL is passed */
    1885        3589 :     if (aggcosts == NULL)
    1886             :     {
    1887         456 :         Assert(aggstrategy == AGG_HASHED);
    1888         456 :         MemSet(&dummy_aggcosts, 0, sizeof(AggClauseCosts));
    1889         456 :         aggcosts = &dummy_aggcosts;
    1890             :     }
    1891             : 
    1892             :     /*
    1893             :      * The transCost.per_tuple component of aggcosts should be charged once
    1894             :      * per input tuple, corresponding to the costs of evaluating the aggregate
    1895             :      * transfns and their input expressions (with any startup cost of course
    1896             :      * charged but once).  The finalCost component is charged once per output
    1897             :      * tuple, corresponding to the costs of evaluating the finalfns.
    1898             :      *
    1899             :      * If we are grouping, we charge an additional cpu_operator_cost per
    1900             :      * grouping column per input tuple for grouping comparisons.
    1901             :      *
    1902             :      * We will produce a single output tuple if not grouping, and a tuple per
    1903             :      * group otherwise.  We charge cpu_tuple_cost for each output tuple.
    1904             :      *
    1905             :      * Note: in this cost model, AGG_SORTED and AGG_HASHED have exactly the
    1906             :      * same total CPU cost, but AGG_SORTED has lower startup cost.  If the
    1907             :      * input path is already sorted appropriately, AGG_SORTED should be
    1908             :      * preferred (since it has no risk of memory overflow).  This will happen
    1909             :      * as long as the computed total costs are indeed exactly equal --- but if
    1910             :      * there's roundoff error we might do the wrong thing.  So be sure that
    1911             :      * the computations below form the same intermediate values in the same
    1912             :      * order.
    1913             :      */
    1914        3589 :     if (aggstrategy == AGG_PLAIN)
    1915             :     {
    1916        2189 :         startup_cost = input_total_cost;
    1917        2189 :         startup_cost += aggcosts->transCost.startup;
    1918        2189 :         startup_cost += aggcosts->transCost.per_tuple * input_tuples;
    1919        2189 :         startup_cost += aggcosts->finalCost;
    1920             :         /* we aren't grouping */
    1921        2189 :         total_cost = startup_cost + cpu_tuple_cost;
    1922        2189 :         output_tuples = 1;
    1923             :     }
    1924        1400 :     else if (aggstrategy == AGG_SORTED || aggstrategy == AGG_MIXED)
    1925             :     {
    1926             :         /* Here we are able to deliver output on-the-fly */
    1927         569 :         startup_cost = input_startup_cost;
    1928         569 :         total_cost = input_total_cost;
    1929         569 :         if (aggstrategy == AGG_MIXED && !enable_hashagg)
    1930             :         {
    1931          49 :             startup_cost += disable_cost;
    1932          49 :             total_cost += disable_cost;
    1933             :         }
    1934             :         /* calcs phrased this way to match HASHED case, see note above */
    1935         569 :         total_cost += aggcosts->transCost.startup;
    1936         569 :         total_cost += aggcosts->transCost.per_tuple * input_tuples;
    1937         569 :         total_cost += (cpu_operator_cost * numGroupCols) * input_tuples;
    1938         569 :         total_cost += aggcosts->finalCost * numGroups;
    1939         569 :         total_cost += cpu_tuple_cost * numGroups;
    1940         569 :         output_tuples = numGroups;
    1941             :     }
    1942             :     else
    1943             :     {
    1944             :         /* must be AGG_HASHED */
    1945         831 :         startup_cost = input_total_cost;
    1946         831 :         if (!enable_hashagg)
    1947         118 :             startup_cost += disable_cost;
    1948         831 :         startup_cost += aggcosts->transCost.startup;
    1949         831 :         startup_cost += aggcosts->transCost.per_tuple * input_tuples;
    1950         831 :         startup_cost += (cpu_operator_cost * numGroupCols) * input_tuples;
    1951         831 :         total_cost = startup_cost;
    1952         831 :         total_cost += aggcosts->finalCost * numGroups;
    1953         831 :         total_cost += cpu_tuple_cost * numGroups;
    1954         831 :         output_tuples = numGroups;
    1955             :     }
    1956             : 
    1957        3589 :     path->rows = output_tuples;
    1958        3589 :     path->startup_cost = startup_cost;
    1959        3589 :     path->total_cost = total_cost;
    1960        3589 : }
    1961             : 
    1962             : /*
    1963             :  * cost_windowagg
    1964             :  *      Determines and returns the cost of performing a WindowAgg plan node,
    1965             :  *      including the cost of its input.
    1966             :  *
    1967             :  * Input is assumed already properly sorted.
    1968             :  */
    1969             : void
    1970         147 : cost_windowagg(Path *path, PlannerInfo *root,
    1971             :                List *windowFuncs, int numPartCols, int numOrderCols,
    1972             :                Cost input_startup_cost, Cost input_total_cost,
    1973             :                double input_tuples)
    1974             : {
    1975             :     Cost        startup_cost;
    1976             :     Cost        total_cost;
    1977             :     ListCell   *lc;
    1978             : 
    1979         147 :     startup_cost = input_startup_cost;
    1980         147 :     total_cost = input_total_cost;
    1981             : 
    1982             :     /*
    1983             :      * Window functions are assumed to cost their stated execution cost, plus
    1984             :      * the cost of evaluating their input expressions, per tuple.  Since they
    1985             :      * may in fact evaluate their inputs at multiple rows during each cycle,
    1986             :      * this could be a drastic underestimate; but without a way to know how
    1987             :      * many rows the window function will fetch, it's hard to do better.  In
    1988             :      * any case, it's a good estimate for all the built-in window functions,
    1989             :      * so we'll just do this for now.
    1990             :      */
    1991         319 :     foreach(lc, windowFuncs)
    1992             :     {
    1993         172 :         WindowFunc *wfunc = lfirst_node(WindowFunc, lc);
    1994             :         Cost        wfunccost;
    1995             :         QualCost    argcosts;
    1996             : 
    1997         172 :         wfunccost = get_func_cost(wfunc->winfnoid) * cpu_operator_cost;
    1998             : 
    1999             :         /* also add the input expressions' cost to per-input-row costs */
    2000         172 :         cost_qual_eval_node(&argcosts, (Node *) wfunc->args, root);
    2001         172 :         startup_cost += argcosts.startup;
    2002         172 :         wfunccost += argcosts.per_tuple;
    2003             : 
    2004             :         /*
    2005             :          * Add the filter's cost to per-input-row costs.  XXX We should reduce
    2006             :          * input expression costs according to filter selectivity.
    2007             :          */
    2008         172 :         cost_qual_eval_node(&argcosts, (Node *) wfunc->aggfilter, root);
    2009         172 :         startup_cost += argcosts.startup;
    2010         172 :         wfunccost += argcosts.per_tuple;
    2011             : 
    2012         172 :         total_cost += wfunccost * input_tuples;
    2013             :     }
    2014             : 
    2015             :     /*
    2016             :      * We also charge cpu_operator_cost per grouping column per tuple for
    2017             :      * grouping comparisons, plus cpu_tuple_cost per tuple for general
    2018             :      * overhead.
    2019             :      *
    2020             :      * XXX this neglects costs of spooling the data to disk when it overflows
    2021             :      * work_mem.  Sooner or later that should get accounted for.
    2022             :      */
    2023         147 :     total_cost += cpu_operator_cost * (numPartCols + numOrderCols) * input_tuples;
    2024         147 :     total_cost += cpu_tuple_cost * input_tuples;
    2025             : 
    2026         147 :     path->rows = input_tuples;
    2027         147 :     path->startup_cost = startup_cost;
    2028         147 :     path->total_cost = total_cost;
    2029         147 : }
    2030             : 
    2031             : /*
    2032             :  * cost_group
    2033             :  *      Determines and returns the cost of performing a Group plan node,
    2034             :  *      including the cost of its input.
    2035             :  *
    2036             :  * Note: caller must ensure that input costs are for appropriately-sorted
    2037             :  * input.
    2038             :  */
    2039             : void
    2040         130 : cost_group(Path *path, PlannerInfo *root,
    2041             :            int numGroupCols, double numGroups,
    2042             :            Cost input_startup_cost, Cost input_total_cost,
    2043             :            double input_tuples)
    2044             : {
    2045             :     Cost        startup_cost;
    2046             :     Cost        total_cost;
    2047             : 
    2048         130 :     startup_cost = input_startup_cost;
    2049         130 :     total_cost = input_total_cost;
    2050             : 
    2051             :     /*
    2052             :      * Charge one cpu_operator_cost per comparison per input tuple. We assume
    2053             :      * all columns get compared at most of the tuples.
    2054             :      */
    2055         130 :     total_cost += cpu_operator_cost * input_tuples * numGroupCols;
    2056             : 
    2057         130 :     path->rows = numGroups;
    2058         130 :     path->startup_cost = startup_cost;
    2059         130 :     path->total_cost = total_cost;
    2060         130 : }
    2061             : 
    2062             : /*
    2063             :  * initial_cost_nestloop
    2064             :  *    Preliminary estimate of the cost of a nestloop join path.
    2065             :  *
    2066             :  * This must quickly produce lower-bound estimates of the path's startup and
    2067             :  * total costs.  If we are unable to eliminate the proposed path from
    2068             :  * consideration using the lower bounds, final_cost_nestloop will be called
    2069             :  * to obtain the final estimates.
    2070             :  *
    2071             :  * The exact division of labor between this function and final_cost_nestloop
    2072             :  * is private to them, and represents a tradeoff between speed of the initial
    2073             :  * estimate and getting a tight lower bound.  We choose to not examine the
    2074             :  * join quals here, since that's by far the most expensive part of the
    2075             :  * calculations.  The end result is that CPU-cost considerations must be
    2076             :  * left for the second phase; and for SEMI/ANTI joins, we must also postpone
    2077             :  * incorporation of the inner path's run cost.
    2078             :  *
    2079             :  * 'workspace' is to be filled with startup_cost, total_cost, and perhaps
    2080             :  *      other data to be used by final_cost_nestloop
    2081             :  * 'jointype' is the type of join to be performed
    2082             :  * 'outer_path' is the outer input to the join
    2083             :  * 'inner_path' is the inner input to the join
    2084             :  * 'extra' contains miscellaneous information about the join
    2085             :  */
    2086             : void
    2087       49901 : initial_cost_nestloop(PlannerInfo *root, JoinCostWorkspace *workspace,
    2088             :                       JoinType jointype,
    2089             :                       Path *outer_path, Path *inner_path,
    2090             :                       JoinPathExtraData *extra)
    2091             : {
    2092       49901 :     Cost        startup_cost = 0;
    2093       49901 :     Cost        run_cost = 0;
    2094       49901 :     double      outer_path_rows = outer_path->rows;
    2095             :     Cost        inner_rescan_start_cost;
    2096             :     Cost        inner_rescan_total_cost;
    2097             :     Cost        inner_run_cost;
    2098             :     Cost        inner_rescan_run_cost;
    2099             : 
    2100             :     /* estimate costs to rescan the inner relation */
    2101       49901 :     cost_rescan(root, inner_path,
    2102             :                 &inner_rescan_start_cost,
    2103             :                 &inner_rescan_total_cost);
    2104             : 
    2105             :     /* cost of source data */
    2106             : 
    2107             :     /*
    2108             :      * NOTE: clearly, we must pay both outer and inner paths' startup_cost
    2109             :      * before we can start returning tuples, so the join's startup cost is
    2110             :      * their sum.  We'll also pay the inner path's rescan startup cost
    2111             :      * multiple times.
    2112             :      */
    2113       49901 :     startup_cost += outer_path->startup_cost + inner_path->startup_cost;
    2114       49901 :     run_cost += outer_path->total_cost - outer_path->startup_cost;
    2115       49901 :     if (outer_path_rows > 1)
    2116       34844 :         run_cost += (outer_path_rows - 1) * inner_rescan_start_cost;
    2117             : 
    2118       49901 :     inner_run_cost = inner_path->total_cost - inner_path->startup_cost;
    2119       49901 :     inner_rescan_run_cost = inner_rescan_total_cost - inner_rescan_start_cost;
    2120             : 
    2121       98132 :     if (jointype == JOIN_SEMI || jointype == JOIN_ANTI ||
    2122       48231 :         extra->inner_unique)
    2123             :     {
    2124             :         /*
    2125             :          * With a SEMI or ANTI join, or if the innerrel is known unique, the
    2126             :          * executor will stop after the first match.
    2127             :          *
    2128             :          * Getting decent estimates requires inspection of the join quals,
    2129             :          * which we choose to postpone to final_cost_nestloop.
    2130             :          */
    2131             : 
    2132             :         /* Save private data for final_cost_nestloop */
    2133       20469 :         workspace->inner_run_cost = inner_run_cost;
    2134       20469 :         workspace->inner_rescan_run_cost = inner_rescan_run_cost;
    2135             :     }
    2136             :     else
    2137             :     {
    2138             :         /* Normal case; we'll scan whole input rel for each outer row */
    2139       29432 :         run_cost += inner_run_cost;
    2140       29432 :         if (outer_path_rows > 1)
    2141       21251 :             run_cost += (outer_path_rows - 1) * inner_rescan_run_cost;
    2142             :     }
    2143             : 
    2144             :     /* CPU costs left for later */
    2145             : 
    2146             :     /* Public result fields */
    2147       49901 :     workspace->startup_cost = startup_cost;
    2148       49901 :     workspace->total_cost = startup_cost + run_cost;
    2149             :     /* Save private data for final_cost_nestloop */
    2150       49901 :     workspace->run_cost = run_cost;
    2151       49901 : }
    2152             : 
    2153             : /*
    2154             :  * final_cost_nestloop
    2155             :  *    Final estimate of the cost and result size of a nestloop join path.
    2156             :  *
    2157             :  * 'path' is already filled in except for the rows and cost fields
    2158             :  * 'workspace' is the result from initial_cost_nestloop
    2159             :  * 'extra' contains miscellaneous information about the join
    2160             :  */
    2161             : void
    2162       25841 : final_cost_nestloop(PlannerInfo *root, NestPath *path,
    2163             :                     JoinCostWorkspace *workspace,
    2164             :                     JoinPathExtraData *extra)
    2165             : {
    2166       25841 :     Path       *outer_path = path->outerjoinpath;
    2167       25841 :     Path       *inner_path = path->innerjoinpath;
    2168       25841 :     double      outer_path_rows = outer_path->rows;
    2169       25841 :     double      inner_path_rows = inner_path->rows;
    2170       25841 :     Cost        startup_cost = workspace->startup_cost;
    2171       25841 :     Cost        run_cost = workspace->run_cost;
    2172             :     Cost        cpu_per_tuple;
    2173             :     QualCost    restrict_qual_cost;
    2174             :     double      ntuples;
    2175             : 
    2176             :     /* Protect some assumptions below that rowcounts aren't zero or NaN */
    2177       25841 :     if (outer_path_rows <= 0 || isnan(outer_path_rows))
    2178           0 :         outer_path_rows = 1;
    2179       25841 :     if (inner_path_rows <= 0 || isnan(inner_path_rows))
    2180           2 :         inner_path_rows = 1;
    2181             : 
    2182             :     /* Mark the path with the correct row estimate */
    2183       25841 :     if (path->path.param_info)
    2184         480 :         path->path.rows = path->path.param_info->ppi_rows;
    2185             :     else
    2186       25361 :         path->path.rows = path->path.parent->rows;
    2187             : 
    2188             :     /* For partial paths, scale row estimate. */
    2189       25841 :     if (path->path.parallel_workers > 0)
    2190             :     {
    2191          22 :         double      parallel_divisor = get_parallel_divisor(&path->path);
    2192             : 
    2193          22 :         path->path.rows =
    2194          22 :             clamp_row_est(path->path.rows / parallel_divisor);
    2195             :     }
    2196             : 
    2197             :     /*
    2198             :      * We could include disable_cost in the preliminary estimate, but that
    2199             :      * would amount to optimizing for the case where the join method is
    2200             :      * disabled, which doesn't seem like the way to bet.
    2201             :      */
    2202       25841 :     if (!enable_nestloop)
    2203          73 :         startup_cost += disable_cost;
    2204             : 
    2205             :     /* cost of inner-relation source data (we already dealt with outer rel) */
    2206             : 
    2207       50332 :     if (path->jointype == JOIN_SEMI || path->jointype == JOIN_ANTI ||
    2208       24491 :         extra->inner_unique)
    2209       14862 :     {
    2210             :         /*
    2211             :          * With a SEMI or ANTI join, or if the innerrel is known unique, the
    2212             :          * executor will stop after the first match.
    2213             :          */
    2214       14862 :         Cost        inner_run_cost = workspace->inner_run_cost;
    2215       14862 :         Cost        inner_rescan_run_cost = workspace->inner_rescan_run_cost;
    2216             :         double      outer_matched_rows;
    2217             :         double      outer_unmatched_rows;
    2218             :         Selectivity inner_scan_frac;
    2219             : 
    2220             :         /*
    2221             :          * For an outer-rel row that has at least one match, we can expect the
    2222             :          * inner scan to stop after a fraction 1/(match_count+1) of the inner
    2223             :          * rows, if the matches are evenly distributed.  Since they probably
    2224             :          * aren't quite evenly distributed, we apply a fuzz factor of 2.0 to
    2225             :          * that fraction.  (If we used a larger fuzz factor, we'd have to
    2226             :          * clamp inner_scan_frac to at most 1.0; but since match_count is at
    2227             :          * least 1, no such clamp is needed now.)
    2228             :          */
    2229       14862 :         outer_matched_rows = rint(outer_path_rows * extra->semifactors.outer_match_frac);
    2230       14862 :         outer_unmatched_rows = outer_path_rows - outer_matched_rows;
    2231       14862 :         inner_scan_frac = 2.0 / (extra->semifactors.match_count + 1.0);
    2232             : 
    2233             :         /*
    2234             :          * Compute number of tuples processed (not number emitted!).  First,
    2235             :          * account for successfully-matched outer rows.
    2236             :          */
    2237       14862 :         ntuples = outer_matched_rows * inner_path_rows * inner_scan_frac;
    2238             : 
    2239             :         /*
    2240             :          * Now we need to estimate the actual costs of scanning the inner
    2241             :          * relation, which may be quite a bit less than N times inner_run_cost
    2242             :          * due to early scan stops.  We consider two cases.  If the inner path
    2243             :          * is an indexscan using all the joinquals as indexquals, then an
    2244             :          * unmatched outer row results in an indexscan returning no rows,
    2245             :          * which is probably quite cheap.  Otherwise, the executor will have
    2246             :          * to scan the whole inner rel for an unmatched row; not so cheap.
    2247             :          */
    2248       14862 :         if (has_indexed_join_quals(path))
    2249             :         {
    2250             :             /*
    2251             :              * Successfully-matched outer rows will only require scanning
    2252             :              * inner_scan_frac of the inner relation.  In this case, we don't
    2253             :              * need to charge the full inner_run_cost even when that's more
    2254             :              * than inner_rescan_run_cost, because we can assume that none of
    2255             :              * the inner scans ever scan the whole inner relation.  So it's
    2256             :              * okay to assume that all the inner scan executions can be
    2257             :              * fractions of the full cost, even if materialization is reducing
    2258             :              * the rescan cost.  At this writing, it's impossible to get here
    2259             :              * for a materialized inner scan, so inner_run_cost and
    2260             :              * inner_rescan_run_cost will be the same anyway; but just in
    2261             :              * case, use inner_run_cost for the first matched tuple and
    2262             :              * inner_rescan_run_cost for additional ones.
    2263             :              */
    2264        3535 :             run_cost += inner_run_cost * inner_scan_frac;
    2265        3535 :             if (outer_matched_rows > 1)
    2266         316 :                 run_cost += (outer_matched_rows - 1) * inner_rescan_run_cost * inner_scan_frac;
    2267             : 
    2268             :             /*
    2269             :              * Add the cost of inner-scan executions for unmatched outer rows.
    2270             :              * We estimate this as the same cost as returning the first tuple
    2271             :              * of a nonempty scan.  We consider that these are all rescans,
    2272             :              * since we used inner_run_cost once already.
    2273             :              */
    2274        3535 :             run_cost += outer_unmatched_rows *
    2275             :                 inner_rescan_run_cost / inner_path_rows;
    2276             : 
    2277             :             /*
    2278             :              * We won't be evaluating any quals at all for unmatched rows, so
    2279             :              * don't add them to ntuples.
    2280             :              */
    2281             :         }
    2282             :         else
    2283             :         {
    2284             :             /*
    2285             :              * Here, a complicating factor is that rescans may be cheaper than
    2286             :              * first scans.  If we never scan all the way to the end of the
    2287             :              * inner rel, it might be (depending on the plan type) that we'd
    2288             :              * never pay the whole inner first-scan run cost.  However it is
    2289             :              * difficult to estimate whether that will happen (and it could
    2290             :              * not happen if there are any unmatched outer rows!), so be
    2291             :              * conservative and always charge the whole first-scan cost once.
    2292             :              * We consider this charge to correspond to the first unmatched
    2293             :              * outer row, unless there isn't one in our estimate, in which
    2294             :              * case blame it on the first matched row.
    2295             :              */
    2296             : 
    2297             :             /* First, count all unmatched join tuples as being processed */
    2298       11327 :             ntuples += outer_unmatched_rows * inner_path_rows;
    2299             : 
    2300             :             /* Now add the forced full scan, and decrement appropriate count */
    2301       11327 :             run_cost += inner_run_cost;
    2302       11327 :             if (outer_unmatched_rows >= 1)
    2303       10169 :                 outer_unmatched_rows -= 1;
    2304             :             else
    2305        1158 :                 outer_matched_rows -= 1;
    2306             : 
    2307             :             /* Add inner run cost for additional outer tuples having matches */
    2308       11327 :             if (outer_matched_rows > 0)
    2309        3698 :                 run_cost += outer_matched_rows * inner_rescan_run_cost * inner_scan_frac;
    2310             : 
    2311             :             /* Add inner run cost for additional unmatched outer tuples */
    2312       11327 :             if (outer_unmatched_rows > 0)
    2313        6812 :                 run_cost += outer_unmatched_rows * inner_rescan_run_cost;
    2314             :         }
    2315             :     }
    2316             :     else
    2317             :     {
    2318             :         /* Normal-case source costs were included in preliminary estimate */
    2319             : 
    2320             :         /* Compute number of tuples processed (not number emitted!) */
    2321       10979 :         ntuples = outer_path_rows * inner_path_rows;
    2322             :     }
    2323             : 
    2324             :     /* CPU costs */
    2325       25841 :     cost_qual_eval(&restrict_qual_cost, path->joinrestrictinfo, root);
    2326       25841 :     startup_cost += restrict_qual_cost.startup;
    2327       25841 :     cpu_per_tuple = cpu_tuple_cost + restrict_qual_cost.per_tuple;
    2328       25841 :     run_cost += cpu_per_tuple * ntuples;
    2329             : 
    2330             :     /* tlist eval costs are paid per output row, not per tuple scanned */
    2331       25841 :     startup_cost += path->path.pathtarget->cost.startup;
    2332       25841 :     run_cost += path->path.pathtarget->cost.per_tuple * path->path.rows;
    2333             : 
    2334       25841 :     path->path.startup_cost = startup_cost;
    2335       25841 :     path->path.total_cost = startup_cost + run_cost;
    2336       25841 : }
    2337             : 
    2338             : /*
    2339             :  * initial_cost_mergejoin
    2340             :  *    Preliminary estimate of the cost of a mergejoin path.
    2341             :  *
    2342             :  * This must quickly produce lower-bound estimates of the path's startup and
    2343             :  * total costs.  If we are unable to eliminate the proposed path from
    2344             :  * consideration using the lower bounds, final_cost_mergejoin will be called
    2345             :  * to obtain the final estimates.
    2346             :  *
    2347             :  * The exact division of labor between this function and final_cost_mergejoin
    2348             :  * is private to them, and represents a tradeoff between speed of the initial
    2349             :  * estimate and getting a tight lower bound.  We choose to not examine the
    2350             :  * join quals here, except for obtaining the scan selectivity estimate which
    2351             :  * is really essential (but fortunately, use of caching keeps the cost of
    2352             :  * getting that down to something reasonable).
    2353             :  * We also assume that cost_sort is cheap enough to use here.
    2354             :  *
    2355             :  * 'workspace' is to be filled with startup_cost, total_cost, and perhaps
    2356             :  *      other data to be used by final_cost_mergejoin
    2357             :  * 'jointype' is the type of join to be performed
    2358             :  * 'mergeclauses' is the list of joinclauses to be used as merge clauses
    2359             :  * 'outer_path' is the outer input to the join
    2360             :  * 'inner_path' is the inner input to the join
    2361             :  * 'outersortkeys' is the list of sort keys for the outer path
    2362             :  * 'innersortkeys' is the list of sort keys for the inner path
    2363             :  * 'extra' contains miscellaneous information about the join
    2364             :  *
    2365             :  * Note: outersortkeys and innersortkeys should be NIL if no explicit
    2366             :  * sort is needed because the respective source path is already ordered.
    2367             :  */
    2368             : void
    2369       20167 : initial_cost_mergejoin(PlannerInfo *root, JoinCostWorkspace *workspace,
    2370             :                        JoinType jointype,
    2371             :                        List *mergeclauses,
    2372             :                        Path *outer_path, Path *inner_path,
    2373             :                        List *outersortkeys, List *innersortkeys,
    2374             :                        JoinPathExtraData *extra)
    2375             : {
    2376       20167 :     Cost        startup_cost = 0;
    2377       20167 :     Cost        run_cost = 0;
    2378       20167 :     double      outer_path_rows = outer_path->rows;
    2379       20167 :     double      inner_path_rows = inner_path->rows;
    2380             :     Cost        inner_run_cost;
    2381             :     double      outer_rows,
    2382             :                 inner_rows,
    2383             :                 outer_skip_rows,
    2384             :                 inner_skip_rows;
    2385             :     Selectivity outerstartsel,
    2386             :                 outerendsel,
    2387             :                 innerstartsel,
    2388             :                 innerendsel;
    2389             :     Path        sort_path;      /* dummy for result of cost_sort */
    2390             : 
    2391             :     /* Protect some assumptions below that rowcounts aren't zero or NaN */
    2392       20167 :     if (outer_path_rows <= 0 || isnan(outer_path_rows))
    2393           1 :         outer_path_rows = 1;
    2394       20167 :     if (inner_path_rows <= 0 || isnan(inner_path_rows))
    2395           2 :         inner_path_rows = 1;
    2396             : 
    2397             :     /*
    2398             :      * A merge join will stop as soon as it exhausts either input stream
    2399             :      * (unless it's an outer join, in which case the outer side has to be
    2400             :      * scanned all the way anyway).  Estimate fraction of the left and right
    2401             :      * inputs that will actually need to be scanned.  Likewise, we can
    2402             :      * estimate the number of rows that will be skipped before the first join
    2403             :      * pair is found, which should be factored into startup cost. We use only
    2404             :      * the first (most significant) merge clause for this purpose. Since
    2405             :      * mergejoinscansel() is a fairly expensive computation, we cache the
    2406             :      * results in the merge clause RestrictInfo.
    2407             :      */
    2408       20167 :     if (mergeclauses && jointype != JOIN_FULL)
    2409       20085 :     {
    2410       20085 :         RestrictInfo *firstclause = (RestrictInfo *) linitial(mergeclauses);
    2411             :         List       *opathkeys;
    2412             :         List       *ipathkeys;
    2413             :         PathKey    *opathkey;
    2414             :         PathKey    *ipathkey;
    2415             :         MergeScanSelCache *cache;
    2416             : 
    2417             :         /* Get the input pathkeys to determine the sort-order details */
    2418       20085 :         opathkeys = outersortkeys ? outersortkeys : outer_path->pathkeys;
    2419       20085 :         ipathkeys = innersortkeys ? innersortkeys : inner_path->pathkeys;
    2420       20085 :         Assert(opathkeys);
    2421       20085 :         Assert(ipathkeys);
    2422       20085 :         opathkey = (PathKey *) linitial(opathkeys);
    2423       20085 :         ipathkey = (PathKey *) linitial(ipathkeys);
    2424             :         /* debugging check */
    2425       40170 :         if (opathkey->pk_opfamily != ipathkey->pk_opfamily ||
    2426       40170 :             opathkey->pk_eclass->ec_collation != ipathkey->pk_eclass->ec_collation ||
    2427       40170 :             opathkey->pk_strategy != ipathkey->pk_strategy ||
    2428       20085 :             opathkey->pk_nulls_first != ipathkey->pk_nulls_first)
    2429           0 :             elog(ERROR, "left and right pathkeys do not match in mergejoin");
    2430             : 
    2431             :         /* Get the selectivity with caching */
    2432       20085 :         cache = cached_scansel(root, firstclause, opathkey);
    2433             : 
    2434       20085 :         if (bms_is_subset(firstclause->left_relids,
    2435       20085 :                           outer_path->parent->relids))
    2436             :         {
    2437             :             /* left side of clause is outer */
    2438        9270 :             outerstartsel = cache->leftstartsel;
    2439        9270 :             outerendsel = cache->leftendsel;
    2440        9270 :             innerstartsel = cache->rightstartsel;
    2441        9270 :             innerendsel = cache->rightendsel;
    2442             :         }
    2443             :         else
    2444             :         {
    2445             :             /* left side of clause is inner */
    2446       10815 :             outerstartsel = cache->rightstartsel;
    2447       10815 :             outerendsel = cache->rightendsel;
    2448       10815 :             innerstartsel = cache->leftstartsel;
    2449       10815 :             innerendsel = cache->leftendsel;
    2450             :         }
    2451       20085 :         if (jointype == JOIN_LEFT ||
    2452             :             jointype == JOIN_ANTI)
    2453             :         {
    2454        2473 :             outerstartsel = 0.0;
    2455        2473 :             outerendsel = 1.0;
    2456             :         }
    2457       17612 :         else if (jointype == JOIN_RIGHT)
    2458             :         {
    2459        2003 :             innerstartsel = 0.0;
    2460        2003 :             innerendsel = 1.0;
    2461             :         }
    2462             :     }
    2463             :     else
    2464             :     {
    2465             :         /* cope with clauseless or full mergejoin */
    2466          82 :         outerstartsel = innerstartsel = 0.0;
    2467          82 :         outerendsel = innerendsel = 1.0;
    2468             :     }
    2469             : 
    2470             :     /*
    2471             :      * Convert selectivities to row counts.  We force outer_rows and
    2472             :      * inner_rows to be at least 1, but the skip_rows estimates can be zero.
    2473             :      */
    2474       20167 :     outer_skip_rows = rint(outer_path_rows * outerstartsel);
    2475       20167 :     inner_skip_rows = rint(inner_path_rows * innerstartsel);
    2476       20167 :     outer_rows = clamp_row_est(outer_path_rows * outerendsel);
    2477       20167 :     inner_rows = clamp_row_est(inner_path_rows * innerendsel);
    2478             : 
    2479       20167 :     Assert(outer_skip_rows <= outer_rows);
    2480       20167 :     Assert(inner_skip_rows <= inner_rows);
    2481             : 
    2482             :     /*
    2483             :      * Readjust scan selectivities to account for above rounding.  This is
    2484             :      * normally an insignificant effect, but when there are only a few rows in
    2485             :      * the inputs, failing to do this makes for a large percentage error.
    2486             :      */
    2487       20167 :     outerstartsel = outer_skip_rows / outer_path_rows;
    2488       20167 :     innerstartsel = inner_skip_rows / inner_path_rows;
    2489       20167 :     outerendsel = outer_rows / outer_path_rows;
    2490       20167 :     innerendsel = inner_rows / inner_path_rows;
    2491             : 
    2492       20167 :     Assert(outerstartsel <= outerendsel);
    2493       20167 :     Assert(innerstartsel <= innerendsel);
    2494             : 
    2495             :     /* cost of source data */
    2496             : 
    2497       20167 :     if (outersortkeys)          /* do we need to sort outer? */
    2498             :     {
    2499       21824 :         cost_sort(&sort_path,
    2500             :                   root,
    2501             :                   outersortkeys,
    2502             :                   outer_path->total_cost,
    2503             :                   outer_path_rows,
    2504       10912 :                   outer_path->pathtarget->width,
    2505             :                   0.0,
    2506             :                   work_mem,
    2507             :                   -1.0);
    2508       10912 :         startup_cost += sort_path.startup_cost;
    2509       10912 :         startup_cost += (sort_path.total_cost - sort_path.startup_cost)
    2510             :             * outerstartsel;
    2511       10912 :         run_cost += (sort_path.total_cost - sort_path.startup_cost)
    2512             :             * (outerendsel - outerstartsel);
    2513             :     }
    2514             :     else
    2515             :     {
    2516        9255 :         startup_cost += outer_path->startup_cost;
    2517        9255 :         startup_cost += (outer_path->total_cost - outer_path->startup_cost)
    2518             :             * outerstartsel;
    2519        9255 :         run_cost += (outer_path->total_cost - outer_path->startup_cost)
    2520             :             * (outerendsel - outerstartsel);
    2521             :     }
    2522             : 
    2523       20167 :     if (innersortkeys)          /* do we need to sort inner? */
    2524             :     {
    2525       33604 :         cost_sort(&sort_path,
    2526             :                   root,
    2527             :                   innersortkeys,
    2528             :                   inner_path->total_cost,
    2529             :                   inner_path_rows,
    2530       16802 :                   inner_path->pathtarget->width,
    2531             :                   0.0,
    2532             :                   work_mem,
    2533             :                   -1.0);
    2534       16802 :         startup_cost += sort_path.startup_cost;
    2535       16802 :         startup_cost += (sort_path.total_cost - sort_path.startup_cost)
    2536             :             * innerstartsel;
    2537       16802 :         inner_run_cost = (sort_path.total_cost - sort_path.startup_cost)
    2538             :             * (innerendsel - innerstartsel);
    2539             :     }
    2540             :     else
    2541             :     {
    2542        3365 :         startup_cost += inner_path->startup_cost;
    2543        3365 :         startup_cost += (inner_path->total_cost - inner_path->startup_cost)
    2544             :             * innerstartsel;
    2545        3365 :         inner_run_cost = (inner_path->total_cost - inner_path->startup_cost)
    2546             :             * (innerendsel - innerstartsel);
    2547             :     }
    2548             : 
    2549             :     /*
    2550             :      * We can't yet determine whether rescanning occurs, or whether
    2551             :      * materialization of the inner input should be done.  The minimum
    2552             :      * possible inner input cost, regardless of rescan and materialization
    2553             :      * considerations, is inner_run_cost.  We include that in
    2554             :      * workspace->total_cost, but not yet in run_cost.
    2555             :      */
    2556             : 
    2557             :     /* CPU costs left for later */
    2558             : 
    2559             :     /* Public result fields */
    2560       20167 :     workspace->startup_cost = startup_cost;
    2561       20167 :     workspace->total_cost = startup_cost + run_cost + inner_run_cost;
    2562             :     /* Save private data for final_cost_mergejoin */
    2563       20167 :     workspace->run_cost = run_cost;
    2564       20167 :     workspace->inner_run_cost = inner_run_cost;
    2565       20167 :     workspace->outer_rows = outer_rows;
    2566       20167 :     workspace->inner_rows = inner_rows;
    2567       20167 :     workspace->outer_skip_rows = outer_skip_rows;
    2568       20167 :     workspace->inner_skip_rows = inner_skip_rows;
    2569       20167 : }
    2570             : 
    2571             : /*
    2572             :  * final_cost_mergejoin
    2573             :  *    Final estimate of the cost and result size of a mergejoin path.
    2574             :  *
    2575             :  * Unlike other costsize functions, this routine makes two actual decisions:
    2576             :  * whether the executor will need to do mark/restore, and whether we should
    2577             :  * materialize the inner path.  It would be logically cleaner to build
    2578             :  * separate paths testing these alternatives, but that would require repeating
    2579             :  * most of the cost calculations, which are not all that cheap.  Since the
    2580             :  * choice will not affect output pathkeys or startup cost, only total cost,
    2581             :  * there is no possibility of wanting to keep more than one path.  So it seems
    2582             :  * best to make the decisions here and record them in the path's
    2583             :  * skip_mark_restore and materialize_inner fields.
    2584             :  *
    2585             :  * Mark/restore overhead is usually required, but can be skipped if we know
    2586             :  * that the executor need find only one match per outer tuple, and that the
    2587             :  * mergeclauses are sufficient to identify a match.
    2588             :  *
    2589             :  * We materialize the inner path if we need mark/restore and either the inner
    2590             :  * path can't support mark/restore, or it's cheaper to use an interposed
    2591             :  * Material node to handle mark/restore.
    2592             :  *
    2593             :  * 'path' is already filled in except for the rows and cost fields and
    2594             :  *      skip_mark_restore and materialize_inner
    2595             :  * 'workspace' is the result from initial_cost_mergejoin
    2596             :  * 'extra' contains miscellaneous information about the join
    2597             :  */
    2598             : void
    2599        6510 : final_cost_mergejoin(PlannerInfo *root, MergePath *path,
    2600             :                      JoinCostWorkspace *workspace,
    2601             :                      JoinPathExtraData *extra)
    2602             : {
    2603        6510 :     Path       *outer_path = path->jpath.outerjoinpath;
    2604        6510 :     Path       *inner_path = path->jpath.innerjoinpath;
    2605        6510 :     double      inner_path_rows = inner_path->rows;
    2606        6510 :     List       *mergeclauses = path->path_mergeclauses;
    2607        6510 :     List       *innersortkeys = path->innersortkeys;
    2608        6510 :     Cost        startup_cost = workspace->startup_cost;
    2609        6510 :     Cost        run_cost = workspace->run_cost;
    2610        6510 :     Cost        inner_run_cost = workspace->inner_run_cost;
    2611        6510 :     double      outer_rows = workspace->outer_rows;
    2612        6510 :     double      inner_rows = workspace->inner_rows;
    2613        6510 :     double      outer_skip_rows = workspace->outer_skip_rows;
    2614        6510 :     double      inner_skip_rows = workspace->inner_skip_rows;
    2615             :     Cost        cpu_per_tuple,
    2616             :                 bare_inner_cost,
    2617             :                 mat_inner_cost;
    2618             :     QualCost    merge_qual_cost;
    2619             :     QualCost    qp_qual_cost;
    2620             :     double      mergejointuples,
    2621             :                 rescannedtuples;
    2622             :     double      rescanratio;
    2623             : 
    2624             :     /* Protect some assumptions below that rowcounts aren't zero or NaN */
    2625        6510 :     if (inner_path_rows <= 0 || isnan(inner_path_rows))
    2626           2 :         inner_path_rows = 1;
    2627             : 
    2628             :     /* Mark the path with the correct row estimate */
    2629        6510 :     if (path->jpath.path.param_info)
    2630          22 :         path->jpath.path.rows = path->jpath.path.param_info->ppi_rows;
    2631             :     else
    2632        6488 :         path->jpath.path.rows = path->jpath.path.parent->rows;
    2633             : 
    2634             :     /* For partial paths, scale row estimate. */
    2635        6510 :     if (path->jpath.path.parallel_workers > 0)
    2636             :     {
    2637          21 :         double      parallel_divisor = get_parallel_divisor(&path->jpath.path);
    2638             : 
    2639          21 :         path->jpath.path.rows =
    2640          21 :             clamp_row_est(path->jpath.path.rows / parallel_divisor);
    2641             :     }
    2642             : 
    2643             :     /*
    2644             :      * We could include disable_cost in the preliminary estimate, but that
    2645             :      * would amount to optimizing for the case where the join method is
    2646             :      * disabled, which doesn't seem like the way to bet.
    2647             :      */
    2648        6510 :     if (!enable_mergejoin)
    2649           0 :         startup_cost += disable_cost;
    2650             : 
    2651             :     /*
    2652             :      * Compute cost of the mergequals and qpquals (other restriction clauses)
    2653             :      * separately.
    2654             :      */
    2655        6510 :     cost_qual_eval(&merge_qual_cost, mergeclauses, root);
    2656        6510 :     cost_qual_eval(&qp_qual_cost, path->jpath.joinrestrictinfo, root);
    2657        6510 :     qp_qual_cost.startup -= merge_qual_cost.startup;
    2658        6510 :     qp_qual_cost.per_tuple -= merge_qual_cost.per_tuple;
    2659             : 
    2660             :     /*
    2661             :      * With a SEMI or ANTI join, or if the innerrel is known unique, the
    2662             :      * executor will stop scanning for matches after the first match.  When
    2663             :      * all the joinclauses are merge clauses, this means we don't ever need to
    2664             :      * back up the merge, and so we can skip mark/restore overhead.
    2665             :      */
    2666       12957 :     if ((path->jpath.jointype == JOIN_SEMI ||
    2667       12590 :          path->jpath.jointype == JOIN_ANTI ||
    2668        9435 :          extra->inner_unique) &&
    2669        3292 :         (list_length(path->jpath.joinrestrictinfo) ==
    2670        3292 :          list_length(path->path_mergeclauses)))
    2671        2977 :         path->skip_mark_restore = true;
    2672             :     else
    2673        3533 :         path->skip_mark_restore = false;
    2674             : 
    2675             :     /*
    2676             :      * Get approx # tuples passing the mergequals.  We use approx_tuple_count
    2677             :      * here because we need an estimate done with JOIN_INNER semantics.
    2678             :      */
    2679        6510 :     mergejointuples = approx_tuple_count(root, &path->jpath, mergeclauses);
    2680             : 
    2681             :     /*
    2682             :      * When there are equal merge keys in the outer relation, the mergejoin
    2683             :      * must rescan any matching tuples in the inner relation. This means
    2684             :      * re-fetching inner tuples; we have to estimate how often that happens.
    2685             :      *
    2686             :      * For regular inner and outer joins, the number of re-fetches can be
    2687             :      * estimated approximately as size of merge join output minus size of
    2688             :      * inner relation. Assume that the distinct key values are 1, 2, ..., and
    2689             :      * denote the number of values of each key in the outer relation as m1,
    2690             :      * m2, ...; in the inner relation, n1, n2, ...  Then we have
    2691             :      *
    2692             :      * size of join = m1 * n1 + m2 * n2 + ...
    2693             :      *
    2694             :      * number of rescanned tuples = (m1 - 1) * n1 + (m2 - 1) * n2 + ... = m1 *
    2695             :      * n1 + m2 * n2 + ... - (n1 + n2 + ...) = size of join - size of inner
    2696             :      * relation
    2697             :      *
    2698             :      * This equation works correctly for outer tuples having no inner match
    2699             :      * (nk = 0), but not for inner tuples having no outer match (mk = 0); we
    2700             :      * are effectively subtracting those from the number of rescanned tuples,
    2701             :      * when we should not.  Can we do better without expensive selectivity
    2702             :      * computations?
    2703             :      *
    2704             :      * The whole issue is moot if we are working from a unique-ified outer
    2705             :      * input, or if we know we don't need to mark/restore at all.
    2706             :      */
    2707        6510 :     if (IsA(outer_path, UniquePath) ||path->skip_mark_restore)
    2708        2994 :         rescannedtuples = 0;
    2709             :     else
    2710             :     {
    2711        3516 :         rescannedtuples = mergejointuples - inner_path_rows;
    2712             :         /* Must clamp because of possible underestimate */
    2713        3516 :         if (rescannedtuples < 0)
    2714         949 :             rescannedtuples = 0;
    2715             :     }
    2716             :     /* We'll inflate various costs this much to account for rescanning */
    2717        6510 :     rescanratio = 1.0 + (rescannedtuples / inner_path_rows);
    2718             : 
    2719             :     /*
    2720             :      * Decide whether we want to materialize the inner input to shield it from
    2721             :      * mark/restore and performing re-fetches.  Our cost model for regular
    2722             :      * re-fetches is that a re-fetch costs the same as an original fetch,
    2723             :      * which is probably an overestimate; but on the other hand we ignore the
    2724             :      * bookkeeping costs of mark/restore.  Not clear if it's worth developing
    2725             :      * a more refined model.  So we just need to inflate the inner run cost by
    2726             :      * rescanratio.
    2727             :      */
    2728        6510 :     bare_inner_cost = inner_run_cost * rescanratio;
    2729             : 
    2730             :     /*
    2731             :      * When we interpose a Material node the re-fetch cost is assumed to be
    2732             :      * just cpu_operator_cost per tuple, independently of the underlying
    2733             :      * plan's cost; and we charge an extra cpu_operator_cost per original
    2734             :      * fetch as well.  Note that we're assuming the materialize node will
    2735             :      * never spill to disk, since it only has to remember tuples back to the
    2736             :      * last mark.  (If there are a huge number of duplicates, our other cost
    2737             :      * factors will make the path so expensive that it probably won't get
    2738             :      * chosen anyway.)  So we don't use cost_rescan here.
    2739             :      *
    2740             :      * Note: keep this estimate in sync with create_mergejoin_plan's labeling
    2741             :      * of the generated Material node.
    2742             :      */
    2743        6510 :     mat_inner_cost = inner_run_cost +
    2744             :         cpu_operator_cost * inner_path_rows * rescanratio;
    2745             : 
    2746             :     /*
    2747             :      * If we don't need mark/restore at all, we don't need materialization.
    2748             :      */
    2749        6510 :     if (path->skip_mark_restore)
    2750        2977 :         path->materialize_inner = false;
    2751             : 
    2752             :     /*
    2753             :      * Prefer materializing if it looks cheaper, unless the user has asked to
    2754             :      * suppress materialization.
    2755             :      */
    2756        3533 :     else if (enable_material && mat_inner_cost < bare_inner_cost)
    2757         138 :         path->materialize_inner = true;
    2758             : 
    2759             :     /*
    2760             :      * Even if materializing doesn't look cheaper, we *must* do it if the
    2761             :      * inner path is to be used directly (without sorting) and it doesn't
    2762             :      * support mark/restore.
    2763             :      *
    2764             :      * Since the inner side must be ordered, and only Sorts and IndexScans can
    2765             :      * create order to begin with, and they both support mark/restore, you
    2766             :      * might think there's no problem --- but you'd be wrong.  Nestloop and
    2767             :      * merge joins can *preserve* the order of their inputs, so they can be
    2768             :      * selected as the input of a mergejoin, and they don't support
    2769             :      * mark/restore at present.
    2770             :      *
    2771             :      * We don't test the value of enable_material here, because
    2772             :      * materialization is required for correctness in this case, and turning
    2773             :      * it off does not entitle us to deliver an invalid plan.
    2774             :      */
    2775        3506 :     else if (innersortkeys == NIL &&
    2776         111 :              !ExecSupportsMarkRestore(inner_path))
    2777          23 :         path->materialize_inner = true;
    2778             : 
    2779             :     /*
    2780             :      * Also, force materializing if the inner path is to be sorted and the
    2781             :      * sort is expected to spill to disk.  This is because the final merge
    2782             :      * pass can be done on-the-fly if it doesn't have to support mark/restore.
    2783             :      * We don't try to adjust the cost estimates for this consideration,
    2784             :      * though.
    2785             :      *
    2786             :      * Since materialization is a performance optimization in this case,
    2787             :      * rather than necessary for correctness, we skip it if enable_material is
    2788             :      * off.
    2789             :      */
    2790        6656 :     else if (enable_material && innersortkeys != NIL &&
    2791        3284 :              relation_byte_size(inner_path_rows,
    2792        6568 :                                 inner_path->pathtarget->width) >
    2793        3284 :              (work_mem * 1024L))
    2794           9 :         path->materialize_inner = true;
    2795             :     else
    2796        3363 :         path->materialize_inner = false;
    2797             : 
    2798             :     /* Charge the right incremental cost for the chosen case */
    2799        6510 :     if (path->materialize_inner)
    2800         170 :         run_cost += mat_inner_cost;
    2801             :     else
    2802        6340 :         run_cost += bare_inner_cost;
    2803             : 
    2804             :     /* CPU costs */
    2805             : 
    2806             :     /*
    2807             :      * The number of tuple comparisons needed is approximately number of outer
    2808             :      * rows plus number of inner rows plus number of rescanned tuples (can we
    2809             :      * refine this?).  At each one, we need to evaluate the mergejoin quals.
    2810             :      */
    2811        6510 :     startup_cost += merge_qual_cost.startup;
    2812        6510 :     startup_cost += merge_qual_cost.per_tuple *
    2813             :         (outer_skip_rows + inner_skip_rows * rescanratio);
    2814        6510 :     run_cost += merge_qual_cost.per_tuple *
    2815             :         ((outer_rows - outer_skip_rows) +
    2816             :          (inner_rows - inner_skip_rows) * rescanratio);
    2817             : 
    2818             :     /*
    2819             :      * For each tuple that gets through the mergejoin proper, we charge
    2820             :      * cpu_tuple_cost plus the cost of evaluating additional restriction
    2821             :      * clauses that are to be applied at the join.  (This is pessimistic since
    2822             :      * not all of the quals may get evaluated at each tuple.)
    2823             :      *
    2824             :      * Note: we could adjust for SEMI/ANTI joins skipping some qual
    2825             :      * evaluations here, but it's probably not worth the trouble.
    2826             :      */
    2827        6510 :     startup_cost += qp_qual_cost.startup;
    2828        6510 :     cpu_per_tuple = cpu_tuple_cost + qp_qual_cost.per_tuple;
    2829        6510 :     run_cost += cpu_per_tuple * mergejointuples;
    2830             : 
    2831             :     /* tlist eval costs are paid per output row, not per tuple scanned */
    2832        6510 :     startup_cost += path->jpath.path.pathtarget->cost.startup;
    2833        6510 :     run_cost += path->jpath.path.pathtarget->cost.per_tuple * path->jpath.path.rows;
    2834             : 
    2835        6510 :     path->jpath.path.startup_cost = startup_cost;
    2836        6510 :     path->jpath.path.total_cost = startup_cost + run_cost;
    2837        6510 : }
    2838             : 
    2839             : /*
    2840             :  * run mergejoinscansel() with caching
    2841             :  */
    2842             : static MergeScanSelCache *
    2843       20085 : cached_scansel(PlannerInfo *root, RestrictInfo *rinfo, PathKey *pathkey)
    2844             : {
    2845             :     MergeScanSelCache *cache;
    2846             :     ListCell   *lc;
    2847             :     Selectivity leftstartsel,
    2848             :                 leftendsel,
    2849             :                 rightstartsel,
    2850             :                 rightendsel;
    2851             :     MemoryContext oldcontext;
    2852             : 
    2853             :     /* Do we have this result already? */
    2854       20085 :     foreach(lc, rinfo->scansel_cache)
    2855             :     {
    2856       16899 :         cache = (MergeScanSelCache *) lfirst(lc);
    2857       33798 :         if (cache->opfamily == pathkey->pk_opfamily &&
    2858       33798 :             cache->collation == pathkey->pk_eclass->ec_collation &&
    2859       33798 :             cache->strategy == pathkey->pk_strategy &&
    2860       16899 :             cache->nulls_first == pathkey->pk_nulls_first)
    2861       16899 :             return cache;
    2862             :     }
    2863             : 
    2864             :     /* Nope, do the computation */
    2865        6372 :     mergejoinscansel(root,
    2866        3186 :                      (Node *) rinfo->clause,
    2867             :                      pathkey->pk_opfamily,
    2868             :                      pathkey->pk_strategy,
    2869        3186 :                      pathkey->pk_nulls_first,
    2870             :                      &leftstartsel,
    2871             :                      &leftendsel,
    2872             :                      &rightstartsel,
    2873             :                      &rightendsel);
    2874             : 
    2875             :     /* Cache the result in suitably long-lived workspace */
    2876        3186 :     oldcontext = MemoryContextSwitchTo(root->planner_cxt);
    2877             : 
    2878        3186 :     cache = (MergeScanSelCache *) palloc(sizeof(MergeScanSelCache));
    2879        3186 :     cache->opfamily = pathkey->pk_opfamily;
    2880        3186 :     cache->collation = pathkey->pk_eclass->ec_collation;
    2881        3186 :     cache->strategy = pathkey->pk_strategy;
    2882        3186 :     cache->nulls_first = pathkey->pk_nulls_first;
    2883        3186 :     cache->leftstartsel = leftstartsel;
    2884        3186 :     cache->leftendsel = leftendsel;
    2885        3186 :     cache->rightstartsel = rightstartsel;
    2886        3186 :     cache->rightendsel = rightendsel;
    2887             : 
    2888        3186 :     rinfo->scansel_cache = lappend(rinfo->scansel_cache, cache);
    2889             : 
    2890        3186 :     MemoryContextSwitchTo(oldcontext);
    2891             : 
    2892        3186 :     return cache;
    2893             : }
    2894             : 
    2895             : /*
    2896             :  * initial_cost_hashjoin
    2897             :  *    Preliminary estimate of the cost of a hashjoin path.
    2898             :  *
    2899             :  * This must quickly produce lower-bound estimates of the path's startup and
    2900             :  * total costs.  If we are unable to eliminate the proposed path from
    2901             :  * consideration using the lower bounds, final_cost_hashjoin will be called
    2902             :  * to obtain the final estimates.
    2903             :  *
    2904             :  * The exact division of labor between this function and final_cost_hashjoin
    2905             :  * is private to them, and represents a tradeoff between speed of the initial
    2906             :  * estimate and getting a tight lower bound.  We choose to not examine the
    2907             :  * join quals here (other than by counting the number of hash clauses),
    2908             :  * so we can't do much with CPU costs.  We do assume that
    2909             :  * ExecChooseHashTableSize is cheap enough to use here.
    2910             :  *
    2911             :  * 'workspace' is to be filled with startup_cost, total_cost, and perhaps
    2912             :  *      other data to be used by final_cost_hashjoin
    2913             :  * 'jointype' is the type of join to be performed
    2914             :  * 'hashclauses' is the list of joinclauses to be used as hash clauses
    2915             :  * 'outer_path' is the outer input to the join
    2916             :  * 'inner_path' is the inner input to the join
    2917             :  * 'extra' contains miscellaneous information about the join
    2918             :  */
    2919             : void
    2920       12380 : initial_cost_hashjoin(PlannerInfo *root, JoinCostWorkspace *workspace,
    2921             :                       JoinType jointype,
    2922             :                       List *hashclauses,
    2923             :                       Path *outer_path, Path *inner_path,
    2924             :                       JoinPathExtraData *extra)
    2925             : {
    2926       12380 :     Cost        startup_cost = 0;
    2927       12380 :     Cost        run_cost = 0;
    2928       12380 :     double      outer_path_rows = outer_path->rows;
    2929       12380 :     double      inner_path_rows = inner_path->rows;
    2930       12380 :     int         num_hashclauses = list_length(hashclauses);
    2931             :     int         numbuckets;
    2932             :     int         numbatches;
    2933             :     int         num_skew_mcvs;
    2934             : 
    2935             :     /* cost of source data */
    2936       12380 :     startup_cost += outer_path->startup_cost;
    2937       12380 :     run_cost += outer_path->total_cost - outer_path->startup_cost;
    2938       12380 :     startup_cost += inner_path->total_cost;
    2939             : 
    2940             :     /*
    2941             :      * Cost of computing hash function: must do it once per input tuple. We
    2942             :      * charge one cpu_operator_cost for each column's hash function.  Also,
    2943             :      * tack on one cpu_tuple_cost per inner row, to model the costs of
    2944             :      * inserting the row into the hashtable.
    2945             :      *
    2946             :      * XXX when a hashclause is more complex than a single operator, we really
    2947             :      * should charge the extra eval costs of the left or right side, as
    2948             :      * appropriate, here.  This seems more work than it's worth at the moment.
    2949             :      */
    2950       12380 :     startup_cost += (cpu_operator_cost * num_hashclauses + cpu_tuple_cost)
    2951             :         * inner_path_rows;
    2952       12380 :     run_cost += cpu_operator_cost * num_hashclauses * outer_path_rows;
    2953             : 
    2954             :     /*
    2955             :      * Get hash table size that executor would use for inner relation.
    2956             :      *
    2957             :      * XXX for the moment, always assume that skew optimization will be
    2958             :      * performed.  As long as SKEW_WORK_MEM_PERCENT is small, it's not worth
    2959             :      * trying to determine that for sure.
    2960             :      *
    2961             :      * XXX at some point it might be interesting to try to account for skew
    2962             :      * optimization in the cost estimate, but for now, we don't.
    2963             :      */
    2964       12380 :     ExecChooseHashTableSize(inner_path_rows,
    2965       12380 :                             inner_path->pathtarget->width,
    2966             :                             true,   /* useskew */
    2967             :                             &numbuckets,
    2968             :                             &numbatches,
    2969             :                             &num_skew_mcvs);
    2970             : 
    2971             :     /*
    2972             :      * If inner relation is too big then we will need to "batch" the join,
    2973             :      * which implies writing and reading most of the tuples to disk an extra
    2974             :      * time.  Charge seq_page_cost per page, since the I/O should be nice and
    2975             :      * sequential.  Writing the inner rel counts as startup cost, all the rest
    2976             :      * as run cost.
    2977             :      */
    2978       12380 :     if (numbatches > 1)
    2979             :     {
    2980         121 :         double      outerpages = page_size(outer_path_rows,
    2981         121 :                                            outer_path->pathtarget->width);
    2982         121 :         double      innerpages = page_size(inner_path_rows,
    2983         121 :                                            inner_path->pathtarget->width);
    2984             : 
    2985         121 :         startup_cost += seq_page_cost * innerpages;
    2986         121 :         run_cost += seq_page_cost * (innerpages + 2 * outerpages);
    2987             :     }
    2988             : 
    2989             :     /* CPU costs left for later */
    2990             : 
    2991             :     /* Public result fields */
    2992       12380 :     workspace->startup_cost = startup_cost;
    2993       12380 :     workspace->total_cost = startup_cost + run_cost;
    2994             :     /* Save private data for final_cost_hashjoin */
    2995       12380 :     workspace->run_cost = run_cost;
    2996       12380 :     workspace->numbuckets = numbuckets;
    2997       12380 :     workspace->numbatches = numbatches;
    2998       12380 : }
    2999             : 
    3000             : /*
    3001             :  * final_cost_hashjoin
    3002             :  *    Final estimate of the cost and result size of a hashjoin path.
    3003             :  *
    3004             :  * Note: the numbatches estimate is also saved into 'path' for use later
    3005             :  *
    3006             :  * 'path' is already filled in except for the rows and cost fields and
    3007             :  *      num_batches
    3008             :  * 'workspace' is the result from initial_cost_hashjoin
    3009             :  * 'extra' contains miscellaneous information about the join
    3010             :  */
    3011             : void
    3012        7067 : final_cost_hashjoin(PlannerInfo *root, HashPath *path,
    3013             :                     JoinCostWorkspace *workspace,
    3014             :                     JoinPathExtraData *extra)
    3015             : {
    3016        7067 :     Path       *outer_path = path->jpath.outerjoinpath;
    3017        7067 :     Path       *inner_path = path->jpath.innerjoinpath;
    3018        7067 :     double      outer_path_rows = outer_path->rows;
    3019        7067 :     double      inner_path_rows = inner_path->rows;
    3020        7067 :     List       *hashclauses = path->path_hashclauses;
    3021        7067 :     Cost        startup_cost = workspace->startup_cost;
    3022        7067 :     Cost        run_cost = workspace->run_cost;
    3023        7067 :     int         numbuckets = workspace->numbuckets;
    3024        7067 :     int         numbatches = workspace->numbatches;
    3025             :     Cost        cpu_per_tuple;
    3026             :     QualCost    hash_qual_cost;
    3027             :     QualCost    qp_qual_cost;
    3028             :     double      hashjointuples;
    3029             :     double      virtualbuckets;
    3030             :     Selectivity innerbucketsize;
    3031             :     Selectivity innermcvfreq;
    3032             :     ListCell   *hcl;
    3033             : 
    3034             :     /* Mark the path with the correct row estimate */
    3035        7067 :     if (path->jpath.path.param_info)
    3036          76 :         path->jpath.path.rows = path->jpath.path.param_info->ppi_rows;
    3037             :     else
    3038        6991 :         path->jpath.path.rows = path->jpath.path.parent->rows;
    3039             : 
    3040             :     /* For partial paths, scale row estimate. */
    3041        7067 :     if (path->jpath.path.parallel_workers > 0)
    3042             :     {
    3043          17 :         double      parallel_divisor = get_parallel_divisor(&path->jpath.path);
    3044             : 
    3045          17 :         path->jpath.path.rows =
    3046          17 :             clamp_row_est(path->jpath.path.rows / parallel_divisor);
    3047             :     }
    3048             : 
    3049             :     /*
    3050             :      * We could include disable_cost in the preliminary estimate, but that
    3051             :      * would amount to optimizing for the case where the join method is
    3052             :      * disabled, which doesn't seem like the way to bet.
    3053             :      */
    3054        7067 :     if (!enable_hashjoin)
    3055           0 :         startup_cost += disable_cost;
    3056             : 
    3057             :     /* mark the path with estimated # of batches */
    3058        7067 :     path->num_batches = numbatches;
    3059             : 
    3060             :     /* and compute the number of "virtual" buckets in the whole join */
    3061        7067 :     virtualbuckets = (double) numbuckets * (double) numbatches;
    3062             : 
    3063             :     /*
    3064             :      * Determine bucketsize fraction and MCV frequency for the inner relation.
    3065             :      * We use the smallest bucketsize or MCV frequency estimated for any
    3066             :      * individual hashclause; this is undoubtedly conservative.
    3067             :      *
    3068             :      * BUT: if inner relation has been unique-ified, we can assume it's good
    3069             :      * for hashing.  This is important both because it's the right answer, and
    3070             :      * because we avoid contaminating the cache with a value that's wrong for
    3071             :      * non-unique-ified paths.
    3072             :      */
    3073        7067 :     if (IsA(inner_path, UniquePath))
    3074             :     {
    3075          37 :         innerbucketsize = 1.0 / virtualbuckets;
    3076          37 :         innermcvfreq = 0.0;
    3077             :     }
    3078             :     else
    3079             :     {
    3080        7030 :         innerbucketsize = 1.0;
    3081        7030 :         innermcvfreq = 1.0;
    3082       14517 :         foreach(hcl, hashclauses)
    3083             :         {
    3084        7487 :             RestrictInfo *restrictinfo = lfirst_node(RestrictInfo, hcl);
    3085             :             Selectivity thisbucketsize;
    3086             :             Selectivity thismcvfreq;
    3087             : 
    3088             :             /*
    3089             :              * First we have to figure out which side of the hashjoin clause
    3090             :              * is the inner side.
    3091             :              *
    3092             :              * Since we tend to visit the same clauses over and over when
    3093             :              * planning a large query, we cache the bucket stats estimates in
    3094             :              * the RestrictInfo node to avoid repeated lookups of statistics.
    3095             :              */
    3096        7487 :             if (bms_is_subset(restrictinfo->right_relids,
    3097        7487 :                               inner_path->parent->relids))
    3098             :             {
    3099             :                 /* righthand side is inner */
    3100        4004 :                 thisbucketsize = restrictinfo->right_bucketsize;
    3101        4004 :                 if (thisbucketsize < 0)
    3102             :                 {
    3103             :                     /* not cached yet */
    3104        4886 :                     estimate_hash_bucket_stats(root,
    3105        2443 :                                                get_rightop(restrictinfo->clause),
    3106             :                                                virtualbuckets,
    3107             :                                                &restrictinfo->right_mcvfreq,
    3108             :                                                &restrictinfo->right_bucketsize);
    3109        2443 :                     thisbucketsize = restrictinfo->right_bucketsize;
    3110             :                 }
    3111        4004 :                 thismcvfreq = restrictinfo->right_mcvfreq;
    3112             :             }
    3113             :             else
    3114             :             {
    3115        3483 :                 Assert(bms_is_subset(restrictinfo->left_relids,
    3116             :                                      inner_path->parent->relids));
    3117             :                 /* lefthand side is inner */
    3118        3483 :                 thisbucketsize = restrictinfo->left_bucketsize;
    3119        3483 :                 if (thisbucketsize < 0)
    3120             :                 {
    3121             :                     /* not cached yet */
    3122        4178 :                     estimate_hash_bucket_stats(root,
    3123        2089 :                                                get_leftop(restrictinfo->clause),
    3124             :                                                virtualbuckets,
    3125             :                                                &restrictinfo->left_mcvfreq,
    3126             :                                                &restrictinfo->left_bucketsize);
    3127        2089 :                     thisbucketsize = restrictinfo->left_bucketsize;
    3128             :                 }
    3129        3483 :                 thismcvfreq = restrictinfo->left_mcvfreq;
    3130             :             }
    3131             : 
    3132        7487 :             if (innerbucketsize > thisbucketsize)
    3133        5104 :                 innerbucketsize = thisbucketsize;
    3134        7487 :             if (innermcvfreq > thismcvfreq)
    3135        7005 :                 innermcvfreq = thismcvfreq;
    3136             :         }
    3137             :     }
    3138             : 
    3139             :     /*
    3140             :      * If the bucket holding the inner MCV would exceed work_mem, we don't
    3141             :      * want to hash unless there is really no other alternative, so apply
    3142             :      * disable_cost.  (The executor normally copes with excessive memory usage
    3143             :      * by splitting batches, but obviously it cannot separate equal values
    3144             :      * that way, so it will be unable to drive the batch size below work_mem
    3145             :      * when this is true.)
    3146             :      */
    3147       14134 :     if (relation_byte_size(clamp_row_est(inner_path_rows * innermcvfreq),
    3148       14134 :                            inner_path->pathtarget->width) >
    3149        7067 :         (work_mem * 1024L))
    3150           0 :         startup_cost += disable_cost;
    3151             : 
    3152             :     /*
    3153             :      * Compute cost of the hashquals and qpquals (other restriction clauses)
    3154             :      * separately.
    3155             :      */
    3156        7067 :     cost_qual_eval(&hash_qual_cost, hashclauses, root);
    3157        7067 :     cost_qual_eval(&qp_qual_cost, path->jpath.joinrestrictinfo, root);
    3158        7067 :     qp_qual_cost.startup -= hash_qual_cost.startup;
    3159        7067 :     qp_qual_cost.per_tuple -= hash_qual_cost.per_tuple;
    3160             : 
    3161             :     /* CPU costs */
    3162             : 
    3163       14096 :     if (path->jpath.jointype == JOIN_SEMI ||
    3164       13867 :         path->jpath.jointype == JOIN_ANTI ||
    3165        6838 :         extra->inner_unique)
    3166        2642 :     {
    3167             :         double      outer_matched_rows;
    3168             :         Selectivity inner_scan_frac;
    3169             : 
    3170             :         /*
    3171             :          * With a SEMI or ANTI join, or if the innerrel is known unique, the
    3172             :          * executor will stop after the first match.
    3173             :          *
    3174             :          * For an outer-rel row that has at least one match, we can expect the
    3175             :          * bucket scan to stop after a fraction 1/(match_count+1) of the
    3176             :          * bucket's rows, if the matches are evenly distributed.  Since they
    3177             :          * probably aren't quite evenly distributed, we apply a fuzz factor of
    3178             :          * 2.0 to that fraction.  (If we used a larger fuzz factor, we'd have
    3179             :          * to clamp inner_scan_frac to at most 1.0; but since match_count is
    3180             :          * at least 1, no such clamp is needed now.)
    3181             :          */
    3182        2642 :         outer_matched_rows = rint(outer_path_rows * extra->semifactors.outer_match_frac);
    3183        2642 :         inner_scan_frac = 2.0 / (extra->semifactors.match_count + 1.0);
    3184             : 
    3185        2642 :         startup_cost += hash_qual_cost.startup;
    3186        5284 :         run_cost += hash_qual_cost.per_tuple * outer_matched_rows *
    3187        2642 :             clamp_row_est(inner_path_rows * innerbucketsize * inner_scan_frac) * 0.5;
    3188             : 
    3189             :         /*
    3190             :          * For unmatched outer-rel rows, the picture is quite a lot different.
    3191             :          * In the first place, there is no reason to assume that these rows
    3192             :          * preferentially hit heavily-populated buckets; instead assume they
    3193             :          * are uncorrelated with the inner distribution and so they see an
    3194             :          * average bucket size of inner_path_rows / virtualbuckets.  In the
    3195             :          * second place, it seems likely that they will have few if any exact
    3196             :          * hash-code matches and so very few of the tuples in the bucket will
    3197             :          * actually require eval of the hash quals.  We don't have any good
    3198             :          * way to estimate how many will, but for the moment assume that the
    3199             :          * effective cost per bucket entry is one-tenth what it is for
    3200             :          * matchable tuples.
    3201             :          */
    3202        5284 :         run_cost += hash_qual_cost.per_tuple *
    3203             :             (outer_path_rows - outer_matched_rows) *
    3204        2642 :             clamp_row_est(inner_path_rows / virtualbuckets) * 0.05;
    3205             : 
    3206             :         /* Get # of tuples that will pass the basic join */
    3207        2642 :         if (path->jpath.jointype == JOIN_SEMI)
    3208          38 :             hashjointuples = outer_matched_rows;
    3209             :         else
    3210        2604 :             hashjointuples = outer_path_rows - outer_matched_rows;
    3211             :     }
    3212             :     else
    3213             :     {
    3214             :         /*
    3215             :          * The number of tuple comparisons needed is the number of outer
    3216             :          * tuples times the typical number of tuples in a hash bucket, which
    3217             :          * is the inner relation size times its bucketsize fraction.  At each
    3218             :          * one, we need to evaluate the hashjoin quals.  But actually,
    3219             :          * charging the full qual eval cost at each tuple is pessimistic,
    3220             :          * since we don't evaluate the quals unless the hash values match
    3221             :          * exactly.  For lack of a better idea, halve the cost estimate to
    3222             :          * allow for that.
    3223             :          */
    3224        4425 :         startup_cost += hash_qual_cost.startup;
    3225        8850 :         run_cost += hash_qual_cost.per_tuple * outer_path_rows *
    3226        4425 :             clamp_row_est(inner_path_rows * innerbucketsize) * 0.5;
    3227             : 
    3228             :         /*
    3229             :          * Get approx # tuples passing the hashquals.  We use
    3230             :          * approx_tuple_count here because we need an estimate done with
    3231             :          * JOIN_INNER semantics.
    3232             :          */
    3233        4425 :         hashjointuples = approx_tuple_count(root, &path->jpath, hashclauses);
    3234             :     }
    3235             : 
    3236             :     /*
    3237             :      * For each tuple that gets through the hashjoin proper, we charge
    3238             :      * cpu_tuple_cost plus the cost of evaluating additional restriction
    3239             :      * clauses that are to be applied at the join.  (This is pessimistic since
    3240             :      * not all of the quals may get evaluated at each tuple.)
    3241             :      */
    3242        7067 :     startup_cost += qp_qual_cost.startup;
    3243        7067 :     cpu_per_tuple = cpu_tuple_cost + qp_qual_cost.per_tuple;
    3244        7067 :     run_cost += cpu_per_tuple * hashjointuples;
    3245             : 
    3246             :     /* tlist eval costs are paid per output row, not per tuple scanned */
    3247        7067 :     startup_cost += path->jpath.path.pathtarget->cost.startup;
    3248        7067 :     run_cost += path->jpath.path.pathtarget->cost.per_tuple * path->jpath.path.rows;
    3249             : 
    3250        7067 :     path->jpath.path.startup_cost = startup_cost;
    3251        7067 :     path->jpath.path.total_cost = startup_cost + run_cost;
    3252        7067 : }
    3253             : 
    3254             : 
    3255             : /*
    3256             :  * cost_subplan
    3257             :  *      Figure the costs for a SubPlan (or initplan).
    3258             :  *
    3259             :  * Note: we could dig the subplan's Plan out of the root list, but in practice
    3260             :  * all callers have it handy already, so we make them pass it.
    3261             :  */
    3262             : void
    3263        1927 : cost_subplan(PlannerInfo *root, SubPlan *subplan, Plan *plan)
    3264             : {
    3265             :     QualCost    sp_cost;
    3266             : 
    3267             :     /* Figure any cost for evaluating the testexpr */
    3268        1927 :     cost_qual_eval(&sp_cost,
    3269        1927 :                    make_ands_implicit((Expr *) subplan->testexpr),
    3270             :                    root);
    3271             : 
    3272        1927 :     if (subplan->useHashTable)
    3273             :     {
    3274             :         /*
    3275             :          * If we are using a hash table for the subquery outputs, then the
    3276             :          * cost of evaluating the query is a one-time cost.  We charge one
    3277             :          * cpu_operator_cost per tuple for the work of loading the hashtable,
    3278             :          * too.
    3279             :          */
    3280         222 :         sp_cost.startup += plan->total_cost +
    3281         111 :             cpu_operator_cost * plan->plan_rows;
    3282             : 
    3283             :         /*
    3284             :          * The per-tuple costs include the cost of evaluating the lefthand
    3285             :          * expressions, plus the cost of probing the hashtable.  We already
    3286             :          * accounted for the lefthand expressions as part of the testexpr, and
    3287             :          * will also have counted one cpu_operator_cost for each comparison
    3288             :          * operator.  That is probably too low for the probing cost, but it's
    3289             :          * hard to make a better estimate, so live with it for now.
    3290             :          */
    3291             :     }
    3292             :     else
    3293             :     {
    3294             :         /*
    3295             :          * Otherwise we will be rescanning the subplan output on each
    3296             :          * evaluation.  We need to estimate how much of the output we will
    3297             :          * actually need to scan.  NOTE: this logic should agree with the
    3298             :          * tuple_fraction estimates used by make_subplan() in
    3299             :          * plan/subselect.c.
    3300             :          */
    3301        1816 :         Cost        plan_run_cost = plan->total_cost - plan->startup_cost;
    3302             : 
    3303        1816 :         if (subplan->subLinkType == EXISTS_SUBLINK)
    3304             :         {
    3305             :             /* we only need to fetch 1 tuple; clamp to avoid zero divide */
    3306         123 :             sp_cost.per_tuple += plan_run_cost / clamp_row_est(plan->plan_rows);
    3307             :         }
    3308        3384 :         else if (subplan->subLinkType == ALL_SUBLINK ||
    3309        1691 :                  subplan->subLinkType == ANY_SUBLINK)
    3310             :         {
    3311             :             /* assume we need 50% of the tuples */
    3312          14 :             sp_cost.per_tuple += 0.50 * plan_run_cost;
    3313             :             /* also charge a cpu_operator_cost per row examined */
    3314          14 :             sp_cost.per_tuple += 0.50 * plan->plan_rows * cpu_operator_cost;
    3315             :         }
    3316             :         else
    3317             :         {
    3318             :             /* assume we need all tuples */
    3319        1679 :             sp_cost.per_tuple += plan_run_cost;
    3320             :         }
    3321             : 
    3322             :         /*
    3323             :          * Also account for subplan's startup cost. If the subplan is
    3324             :          * uncorrelated or undirect correlated, AND its topmost node is one
    3325             :          * that materializes its output, assume that we'll only need to pay
    3326             :          * its startup cost once; otherwise assume we pay the startup cost
    3327             :          * every time.
    3328             :          */
    3329        2391 :         if (subplan->parParam == NIL &&
    3330         575 :             ExecMaterializesOutput(nodeTag(plan)))
    3331          42 :             sp_cost.startup += plan->startup_cost;
    3332             :         else
    3333        1774 :             sp_cost.per_tuple += plan->startup_cost;
    3334             :     }
    3335             : 
    3336        1927 :     subplan->startup_cost = sp_cost.startup;
    3337        1927 :     subplan->per_call_cost = sp_cost.per_tuple;
    3338        1927 : }
    3339             : 
    3340             : 
    3341             : /*
    3342             :  * cost_rescan
    3343             :  *      Given a finished Path, estimate the costs of rescanning it after
    3344             :  *      having done so the first time.  For some Path types a rescan is
    3345             :  *      cheaper than an original scan (if no parameters change), and this
    3346             :  *      function embodies knowledge about that.  The default is to return
    3347             :  *      the same costs stored in the Path.  (Note that the cost estimates
    3348             :  *      actually stored in Paths are always for first scans.)
    3349             :  *
    3350             :  * This function is not currently intended to model effects such as rescans
    3351             :  * being cheaper due to disk block caching; what we are concerned with is
    3352             :  * plan types wherein the executor caches results explicitly, or doesn't
    3353             :  * redo startup calculations, etc.
    3354             :  */
    3355             : static void
    3356       49901 : cost_rescan(PlannerInfo *root, Path *path,
    3357             :             Cost *rescan_startup_cost,  /* output parameters */
    3358             :             Cost *rescan_total_cost)
    3359             : {
    3360       49901 :     switch (path->pathtype)
    3361             :     {
    3362             :         case T_FunctionScan:
    3363             : 
    3364             :             /*
    3365             :              * Currently, nodeFunctionscan.c always executes the function to
    3366             :              * completion before returning any rows, and caches the results in
    3367             :              * a tuplestore.  So the function eval cost is all startup cost
    3368             :              * and isn't paid over again on rescans. However, all run costs
    3369             :              * will be paid over again.
    3370             :              */
    3371         470 :             *rescan_startup_cost = 0;
    3372         470 :             *rescan_total_cost = path->total_cost - path->startup_cost;
    3373         470 :             break;
    3374             :         case T_HashJoin:
    3375             : 
    3376             :             /*
    3377             :              * If it's a single-batch join, we don't need to rebuild the hash
    3378             :              * table during a rescan.
    3379             :              */
    3380        2937 :             if (((HashPath *) path)->num_batches == 1)
    3381             :             {
    3382             :                 /* Startup cost is exactly the cost of hash table building */
    3383        2937 :                 *rescan_startup_cost = 0;
    3384        2937 :                 *rescan_total_cost = path->total_cost - path->startup_cost;
    3385             :             }
    3386             :             else
    3387             :             {
    3388             :                 /* Otherwise, no special treatment */
    3389           0 :                 *rescan_startup_cost = path->startup_cost;
    3390           0 :                 *rescan_total_cost = path->total_cost;
    3391             :             }
    3392        2937 :             break;
    3393             :         case T_CteScan:
    3394             :         case T_WorkTableScan:
    3395             :             {
    3396             :                 /*
    3397             :                  * These plan types materialize their final result in a
    3398             :                  * tuplestore or tuplesort object.  So the rescan cost is only
    3399             :                  * cpu_tuple_cost per tuple, unless the result is large enough
    3400             :                  * to spill to disk.
    3401             :                  */
    3402          80 :                 Cost        run_cost = cpu_tuple_cost * path->rows;
    3403          80 :                 double      nbytes = relation_byte_size(path->rows,
    3404          80 :                                                         path->pathtarget->width);
    3405          80 :                 long        work_mem_bytes = work_mem * 1024L;
    3406             : 
    3407          80 :                 if (nbytes > work_mem_bytes)
    3408             :                 {
    3409             :                     /* It will spill, so account for re-read cost */
    3410           0 :                     double      npages = ceil(nbytes / BLCKSZ);
    3411             : 
    3412           0 :                     run_cost += seq_page_cost * npages;
    3413             :                 }
    3414          80 :                 *rescan_startup_cost = 0;
    3415          80 :                 *rescan_total_cost = run_cost;
    3416             :             }
    3417          80 :             break;
    3418             :         case T_Material:
    3419             :         case T_Sort:
    3420             :             {
    3421             :                 /*
    3422             :                  * These plan types not only materialize their results, but do
    3423             :                  * not implement qual filtering or projection.  So they are
    3424             :                  * even cheaper to rescan than the ones above.  We charge only
    3425             :                  * cpu_operator_cost per tuple.  (Note: keep that in sync with
    3426             :                  * the run_cost charge in cost_sort, and also see comments in
    3427             :                  * cost_material before you change it.)
    3428             :                  */
    3429       19741 :                 Cost        run_cost = cpu_operator_cost * path->rows;
    3430       19741 :                 double      nbytes = relation_byte_size(path->rows,
    3431       19741 :                                                         path->pathtarget->width);
    3432       19741 :                 long        work_mem_bytes = work_mem * 1024L;
    3433             : 
    3434       19741 :                 if (nbytes > work_mem_bytes)
    3435             :                 {
    3436             :                     /* It will spill, so account for re-read cost */
    3437         160 :                     double      npages = ceil(nbytes / BLCKSZ);
    3438             : 
    3439         160 :                     run_cost += seq_page_cost * npages;
    3440             :                 }
    3441       19741 :                 *rescan_startup_cost = 0;
    3442       19741 :                 *rescan_total_cost = run_cost;
    3443             :             }
    3444       19741 :             break;
    3445             :         default:
    3446       26673 :             *rescan_startup_cost = path->startup_cost;
    3447       26673 :             *rescan_total_cost = path->total_cost;
    3448       26673 :             break;
    3449             :     }
    3450       49901 : }
    3451             : 
    3452             : 
    3453             : /*
    3454             :  * cost_qual_eval
    3455             :  *      Estimate the CPU costs of evaluating a WHERE clause.
    3456             :  *      The input can be either an implicitly-ANDed list of boolean
    3457             :  *      expressions, or a list of RestrictInfo nodes.  (The latter is
    3458             :  *      preferred since it allows caching of the results.)
    3459             :  *      The result includes both a one-time (startup) component,
    3460             :  *      and a per-evaluation component.
    3461             :  */
    3462             : void
    3463       94609 : cost_qual_eval(QualCost *cost, List *quals, PlannerInfo *root)
    3464             : {
    3465             :     cost_qual_eval_context context;
    3466             :     ListCell   *l;
    3467             : 
    3468       94609 :     context.root = root;
    3469       94609 :     context.total.startup = 0;
    3470       94609 :     context.total.per_tuple = 0;
    3471             : 
    3472             :     /* We don't charge any cost for the implicit ANDing at top level ... */
    3473             : 
    3474      169209 :     foreach(l, quals)
    3475             :     {
    3476       74600 :         Node       *qual = (Node *) lfirst(l);
    3477             : 
    3478       74600 :         cost_qual_eval_walker(qual, &context);
    3479             :     }
    3480             : 
    3481       94609 :     *cost = context.total;
    3482       94609 : }
    3483             : 
    3484             : /*
    3485             :  * cost_qual_eval_node
    3486             :  *      As above, for a single RestrictInfo or expression.
    3487             :  */
    3488             : void
    3489       64518 : cost_qual_eval_node(QualCost *cost, Node *qual, PlannerInfo *root)
    3490             : {
    3491             :     cost_qual_eval_context context;
    3492             : 
    3493       64518 :     context.root = root;
    3494       64518 :     context.total.startup = 0;
    3495       64518 :     context.total.per_tuple = 0;
    3496             : 
    3497       64518 :     cost_qual_eval_walker(qual, &context);
    3498             : 
    3499       64518 :     *cost = context.total;
    3500       64518 : }
    3501             : 
    3502             : static bool
    3503      257156 : cost_qual_eval_walker(Node *node, cost_qual_eval_context *context)
    3504             : {
    3505      257156 :     if (node == NULL)
    3506        3150 :         return false;
    3507             : 
    3508             :     /*
    3509             :      * RestrictInfo nodes contain an eval_cost field reserved for this
    3510             :      * routine's use, so that it's not necessary to evaluate the qual clause's
    3511             :      * cost more than once.  If the clause's cost hasn't been computed yet,
    3512             :      * the field's startup value will contain -1.
    3513             :      */
    3514      254006 :     if (IsA(node, RestrictInfo))
    3515             :     {
    3516       80261 :         RestrictInfo *rinfo = (RestrictInfo *) node;
    3517             : 
    3518       80261 :         if (rinfo->eval_cost.startup < 0)
    3519             :         {
    3520             :             cost_qual_eval_context locContext;
    3521             : 
    3522       19813 :             locContext.root = context->root;
    3523       19813 :             locContext.total.startup = 0;
    3524       19813 :             locContext.total.per_tuple = 0;
    3525             : 
    3526             :             /*
    3527             :              * For an OR clause, recurse into the marked-up tree so that we
    3528             :              * set the eval_cost for contained RestrictInfos too.
    3529             :              */
    3530       19813 :             if (rinfo->orclause)
    3531         335 :                 cost_qual_eval_walker((Node *) rinfo->orclause, &locContext);
    3532             :             else
    3533       19478 :                 cost_qual_eval_walker((Node *) rinfo->clause, &locContext);
    3534             : 
    3535             :             /*
    3536             :              * If the RestrictInfo is marked pseudoconstant, it will be tested
    3537             :              * only once, so treat its cost as all startup cost.
    3538             :              */
    3539       19813 :             if (rinfo->pseudoconstant)
    3540             :             {
    3541             :                 /* count one execution during startup */
    3542         447 :                 locContext.total.startup += locContext.total.per_tuple;
    3543         447 :                 locContext.total.per_tuple = 0;
    3544             :             }
    3545       19813 :             rinfo->eval_cost = locContext.total;
    3546             :         }
    3547       80261 :         context->total.startup += rinfo->eval_cost.startup;
    3548       80261 :         context->total.per_tuple += rinfo->eval_cost.per_tuple;
    3549             :         /* do NOT recurse into children */
    3550       80261 :         return false;
    3551             :     }
    3552             : 
    3553             :     /*
    3554             :      * For each operator or function node in the given tree, we charge the
    3555             :      * estimated execution cost given by pg_proc.procost (remember to multiply
    3556             :      * this by cpu_operator_cost).
    3557             :      *
    3558             :      * Vars and Consts are charged zero, and so are boolean operators (AND,
    3559             :      * OR, NOT). Simplistic, but a lot better than no model at all.
    3560             :      *
    3561             :      * Should we try to account for the possibility of short-circuit
    3562             :      * evaluation of AND/OR?  Probably *not*, because that would make the
    3563             :      * results depend on the clause ordering, and we are not in any position
    3564             :      * to expect that the current ordering of the clauses is the one that's
    3565             :      * going to end up being used.  The above per-RestrictInfo caching would
    3566             :      * not mix well with trying to re-order clauses anyway.
    3567             :      *
    3568             :      * Another issue that is entirely ignored here is that if a set-returning
    3569             :      * function is below top level in the tree, the functions/operators above
    3570             :      * it will need to be evaluated multiple times.  In practical use, such
    3571             :      * cases arise so seldom as to not be worth the added complexity needed;
    3572             :      * moreover, since our rowcount estimates for functions tend to be pretty
    3573             :      * phony, the results would also be pretty phony.
    3574             :      */
    3575      173745 :     if (IsA(node, FuncExpr))
    3576             :     {
    3577       15321 :         context->total.per_tuple +=
    3578       15321 :             get_func_cost(((FuncExpr *) node)->funcid) * cpu_operator_cost;
    3579             :     }
    3580      293897 :     else if (IsA(node, OpExpr) ||
    3581      270922 :              IsA(node, DistinctExpr) ||
    3582      135449 :              IsA(node, NullIfExpr))
    3583             :     {
    3584             :         /* rely on struct equivalence to treat these all alike */
    3585       22987 :         set_opfuncid((OpExpr *) node);
    3586       22987 :         context->total.per_tuple +=
    3587       45974 :             get_func_cost(((OpExpr *) node)->opfuncid) * cpu_operator_cost;
    3588             :     }
    3589      135437 :     else if (IsA(node, ScalarArrayOpExpr))
    3590             :     {
    3591             :         /*
    3592             :          * Estimate that the operator will be applied to about half of the
    3593             :          * array elements before the answer is determined.
    3594             :          */
    3595         751 :         ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) node;
    3596         751 :         Node       *arraynode = (Node *) lsecond(saop->args);
    3597             : 
    3598         751 :         set_sa_opfuncid(saop);
    3599        1502 :         context->total.per_tuple += get_func_cost(saop->opfuncid) *
    3600         751 :             cpu_operator_cost * estimate_array_length(arraynode) * 0.5;
    3601             :     }
    3602      266497 :     else if (IsA(node, Aggref) ||
    3603      131811 :              IsA(node, WindowFunc))
    3604             :     {
    3605             :         /*
    3606             :          * Aggref and WindowFunc nodes are (and should be) treated like Vars,
    3607             :          * ie, zero execution cost in the current model, because they behave
    3608             :          * essentially like Vars at execution.  We disregard the costs of
    3609             :          * their input expressions for the same reason.  The actual execution
    3610             :          * costs of the aggregate/window functions and their arguments have to
    3611             :          * be factored into plan-node-specific costing of the Agg or WindowAgg
    3612             :          * plan node.
    3613             :          */
    3614        3066 :         return false;           /* don't recurse into children */
    3615             :     }
    3616      131620 :     else if (IsA(node, CoerceViaIO))
    3617             :     {
    3618         691 :         CoerceViaIO *iocoerce = (CoerceViaIO *) node;
    3619             :         Oid         iofunc;
    3620             :         Oid         typioparam;
    3621             :         bool        typisvarlena;
    3622             : 
    3623             :         /* check the result type's input function */
    3624         691 :         getTypeInputInfo(iocoerce->resulttype,
    3625             :                          &iofunc, &typioparam);
    3626         691 :         context->total.per_tuple += get_func_cost(iofunc) * cpu_operator_cost;
    3627             :         /* check the input type's output function */
    3628         691 :         getTypeOutputInfo(exprType((Node *) iocoerce->arg),
    3629             :                           &iofunc, &typisvarlena);
    3630         691 :         context->total.per_tuple += get_func_cost(iofunc) * cpu_operator_cost;
    3631             :     }
    3632      130929 :     else if (IsA(node, ArrayCoerceExpr))
    3633             :     {
    3634          13 :         ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node;
    3635          13 :         Node       *arraynode = (Node *) acoerce->arg;
    3636             : 
    3637          13 :         if (OidIsValid(acoerce->elemfuncid))
    3638           4 :             context->total.per_tuple += get_func_cost(acoerce->elemfuncid) *
    3639           2 :                 cpu_operator_cost * estimate_array_length(arraynode);
    3640             :     }
    3641      130916 :     else if (IsA(node, RowCompareExpr))
    3642             :     {
    3643             :         /* Conservatively assume we will check all the columns */
    3644          17 :         RowCompareExpr *rcexpr = (RowCompareExpr *) node;
    3645             :         ListCell   *lc;
    3646             : 
    3647          55 :         foreach(lc, rcexpr->opnos)
    3648             :         {
    3649          38 :             Oid         opid = lfirst_oid(lc);
    3650             : 
    3651          76 :             context->total.per_tuple += get_func_cost(get_opcode(opid)) *
    3652          38 :                 cpu_operator_cost;
    3653             :         }
    3654             :     }
    3655      261785 :     else if (IsA(node, MinMaxExpr) ||
    3656      261444 :              IsA(node, SQLValueFunction) ||
    3657      261091 :              IsA(node, XmlExpr) ||
    3658      259846 :              IsA(node, CoerceToDomain) ||
    3659      129313 :              IsA(node, NextValueExpr))
    3660             :     {
    3661             :         /* Treat all these as having cost 1 */
    3662        1616 :         context->total.per_tuple += cpu_operator_cost;
    3663             :     }
    3664      129283 :     else if (IsA(node, CurrentOfExpr))
    3665             :     {
    3666             :         /* Report high cost to prevent selection of anything but TID scan */
    3667         114 :         context->total.startup += disable_cost;
    3668             :     }
    3669      129169 :     else if (IsA(node, SubLink))
    3670             :     {
    3671             :         /* This routine should not be applied to un-planned expressions */
    3672           0 :         elog(ERROR, "cannot handle unplanned sub-select");
    3673             :     }
    3674      129169 :     else if (IsA(node, SubPlan))
    3675             :     {
    3676             :         /*
    3677             :          * A subplan node in an expression typically indicates that the
    3678             :          * subplan will be executed on each evaluation, so charge accordingly.
    3679             :          * (Sub-selects that can be executed as InitPlans have already been
    3680             :          * removed from the expression.)
    3681             :          */
    3682        2183 :         SubPlan    *subplan = (SubPlan *) node;
    3683             : 
    3684        2183 :         context->total.startup += subplan->startup_cost;
    3685        2183 :         context->total.per_tuple += subplan->per_call_cost;
    3686             : 
    3687             :         /*
    3688             :          * We don't want to recurse into the testexpr, because it was already
    3689             :          * counted in the SubPlan node's costs.  So we're done.
    3690             :          */
    3691        2183 :         return false;
    3692             :     }
    3693      126986 :     else if (IsA(node, AlternativeSubPlan))
    3694             :     {
    3695             :         /*
    3696             :          * Arbitrarily use the first alternative plan for costing.  (We should
    3697             :          * certainly only include one alternative, and we don't yet have
    3698             :          * enough information to know which one the executor is most likely to
    3699             :          * use.)
    3700             :          */
    3701          99 :         AlternativeSubPlan *asplan = (AlternativeSubPlan *) node;
    3702             : 
    3703          99 :         return cost_qual_eval_walker((Node *) linitial(asplan->subplans),
    3704             :                                      context);
    3705             :     }
    3706      126887 :     else if (IsA(node, PlaceHolderVar))
    3707             :     {
    3708             :         /*
    3709             :          * A PlaceHolderVar should be given cost zero when considering general
    3710             :          * expression evaluation costs.  The expense of doing the contained
    3711             :          * expression is charged as part of the tlist eval costs of the scan
    3712             :          * or join where the PHV is first computed (see set_rel_width and
    3713             :          * add_placeholders_to_joinrel).  If we charged it again here, we'd be
    3714             :          * double-counting the cost for each level of plan that the PHV
    3715             :          * bubbles up through.  Hence, return without recursing into the
    3716             :          * phexpr.
    3717             :          */
    3718          85 :         return false;
    3719             :     }
    3720             : 
    3721             :     /* recurse into children */
    3722      168312 :     return expression_tree_walker(node, cost_qual_eval_walker,
    3723             :                                   (void *) context);
    3724             : }
    3725             : 
    3726             : /*
    3727             :  * get_restriction_qual_cost
    3728             :  *    Compute evaluation costs of a baserel's restriction quals, plus any
    3729             :  *    movable join quals that have been pushed down to the scan.
    3730             :  *    Results are returned into *qpqual_cost.
    3731             :  *
    3732             :  * This is a convenience subroutine that works for seqscans and other cases
    3733             :  * where all the given quals will be evaluated the hard way.  It's not useful
    3734             :  * for cost_index(), for example, where the index machinery takes care of
    3735             :  * some of the quals.  We assume baserestrictcost was previously set by
    3736             :  * set_baserel_size_estimates().
    3737             :  */
    3738             : static void
    3739       34210 : get_restriction_qual_cost(PlannerInfo *root, RelOptInfo *baserel,
    3740             :                           ParamPathInfo *param_info,
    3741             :                           QualCost *qpqual_cost)
    3742             : {
    3743       34210 :     if (param_info)
    3744             :     {
    3745             :         /* Include costs of pushed-down clauses */
    3746        5463 :         cost_qual_eval(qpqual_cost, param_info->ppi_clauses, root);
    3747             : 
    3748        5463 :         qpqual_cost->startup += baserel->baserestrictcost.startup;
    3749        5463 :         qpqual_cost->per_tuple += baserel->baserestrictcost.per_tuple;
    3750             :     }
    3751             :     else
    3752       28747 :         *qpqual_cost = baserel->baserestrictcost;
    3753       34210 : }
    3754             : 
    3755             : 
    3756             : /*
    3757             :  * compute_semi_anti_join_factors
    3758             :  *    Estimate how much of the inner input a SEMI, ANTI, or inner_unique join
    3759             :  *    can be expected to scan.
    3760             :  *
    3761             :  * In a hash or nestloop SEMI/ANTI join, the executor will stop scanning
    3762             :  * inner rows as soon as it finds a match to the current outer row.
    3763             :  * The same happens if we have detected the inner rel is unique.
    3764             :  * We should therefore adjust some of the cost components for this effect.
    3765             :  * This function computes some estimates needed for these adjustments.
    3766             :  * These estimates will be the same regardless of the particular paths used
    3767             :  * for the outer and inner relation, so we compute these once and then pass
    3768             :  * them to all the join cost estimation functions.
    3769             :  *
    3770             :  * Input parameters:
    3771             :  *  outerrel: outer relation under consideration
    3772             :  *  innerrel: inner relation under consideration
    3773             :  *  jointype: if not JOIN_SEMI or JOIN_ANTI, we assume it's inner_unique
    3774             :  *  sjinfo: SpecialJoinInfo relevant to this join
    3775             :  *  restrictlist: join quals
    3776             :  * Output parameters:
    3777             :  *  *semifactors is filled in (see relation.h for field definitions)
    3778             :  */
    3779             : void
    3780        4609 : compute_semi_anti_join_factors(PlannerInfo *root,
    3781             :                                RelOptInfo *outerrel,
    3782             :                                RelOptInfo *innerrel,
    3783             :                                JoinType jointype,
    3784             :                                SpecialJoinInfo *sjinfo,
    3785             :                                List *restrictlist,
    3786             :                                SemiAntiJoinFactors *semifactors)
    3787             : {
    3788             :     Selectivity jselec;
    3789             :     Selectivity nselec;
    3790             :     Selectivity avgmatch;
    3791             :     SpecialJoinInfo norm_sjinfo;
    3792             :     List       *joinquals;
    3793             :     ListCell   *l;
    3794             : 
    3795             :     /*
    3796             :      * In an ANTI join, we must ignore clauses that are "pushed down", since
    3797             :      * those won't affect the match logic.  In a SEMI join, we do not
    3798             :      * distinguish joinquals from "pushed down" quals, so just use the whole
    3799             :      * restrictinfo list.  For other outer join types, we should consider only
    3800             :      * non-pushed-down quals, so that this devolves to an IS_OUTER_JOIN check.
    3801             :      */
    3802        4609 :     if (IS_OUTER_JOIN(jointype))
    3803             :     {
    3804        1111 :         joinquals = NIL;
    3805        2404 :         foreach(l, restrictlist)
    3806             :         {
    3807        1293 :             RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
    3808             : 
    3809        1293 :             if (!rinfo->is_pushed_down)
    3810        1274 :                 joinquals = lappend(joinquals, rinfo);
    3811             :         }
    3812             :     }
    3813             :     else
    3814        3498 :         joinquals = restrictlist;
    3815             : 
    3816             :     /*
    3817             :      * Get the JOIN_SEMI or JOIN_ANTI selectivity of the join clauses.
    3818             :      */
    3819        4609 :     jselec = clauselist_selectivity(root,
    3820             :                                     joinquals,
    3821             :                                     0,
    3822             :                                     (jointype == JOIN_ANTI) ? JOIN_ANTI : JOIN_SEMI,
    3823             :                                     sjinfo);
    3824             : 
    3825             :     /*
    3826             :      * Also get the normal inner-join selectivity of the join clauses.
    3827             :      */
    3828        4609 :     norm_sjinfo.type = T_SpecialJoinInfo;
    3829        4609 :     norm_sjinfo.min_lefthand = outerrel->relids;
    3830        4609 :     norm_sjinfo.min_righthand = innerrel->relids;
    3831        4609 :     norm_sjinfo.syn_lefthand = outerrel->relids;
    3832        4609 :     norm_sjinfo.syn_righthand = innerrel->relids;
    3833        4609 :     norm_sjinfo.jointype = JOIN_INNER;
    3834             :     /* we don't bother trying to make the remaining fields valid */
    3835        4609 :     norm_sjinfo.lhs_strict = false;
    3836        4609 :     norm_sjinfo.delay_upper_joins = false;
    3837        4609 :     norm_sjinfo.semi_can_btree = false;
    3838        4609 :     norm_sjinfo.semi_can_hash = false;
    3839        4609 :     norm_sjinfo.semi_operators = NIL;
    3840        4609 :     norm_sjinfo.semi_rhs_exprs = NIL;
    3841             : 
    3842        4609 :     nselec = clauselist_selectivity(root,
    3843             :                                     joinquals,
    3844             :                                     0,
    3845             :                                     JOIN_INNER,
    3846             :                                     &norm_sjinfo);
    3847             : 
    3848             :     /* Avoid leaking a lot of ListCells */
    3849        4609 :     if (IS_OUTER_JOIN(jointype))
    3850        1111 :         list_free(joinquals);
    3851             : 
    3852             :     /*
    3853             :      * jselec can be interpreted as the fraction of outer-rel rows that have
    3854             :      * any matches (this is true for both SEMI and ANTI cases).  And nselec is
    3855             :      * the fraction of the Cartesian product that matches.  So, the average
    3856             :      * number of matches for each outer-rel row that has at least one match is
    3857             :      * nselec * inner_rows / jselec.
    3858             :      *
    3859             :      * Note: it is correct to use the inner rel's "rows" count here, even
    3860             :      * though we might later be considering a parameterized inner path with
    3861             :      * fewer rows.  This is because we have included all the join clauses in
    3862             :      * the selectivity estimate.
    3863             :      */
    3864        4609 :     if (jselec > 0)              /* protect against zero divide */
    3865             :     {
    3866        4603 :         avgmatch = nselec * innerrel->rows / jselec;
    3867             :         /* Clamp to sane range */
    3868        4603 :         avgmatch = Max(1.0, avgmatch);
    3869             :     }
    3870             :     else
    3871           6 :         avgmatch = 1.0;
    3872             : 
    3873        4609 :     semifactors->outer_match_frac = jselec;
    3874        4609 :     semifactors->match_count = avgmatch;
    3875        4609 : }
    3876             : 
    3877             : /*
    3878             :  * has_indexed_join_quals
    3879             :  *    Check whether all the joinquals of a nestloop join are used as
    3880             :  *    inner index quals.
    3881             :  *
    3882             :  * If the inner path of a SEMI/ANTI join is an indexscan (including bitmap
    3883             :  * indexscan) that uses all the joinquals as indexquals, we can assume that an
    3884             :  * unmatched outer tuple is cheap to process, whereas otherwise it's probably
    3885             :  * expensive.
    3886             :  */
    3887             : static bool
    3888       14862 : has_indexed_join_quals(NestPath *joinpath)
    3889             : {
    3890       14862 :     Relids      joinrelids = joinpath->path.parent->relids;
    3891       14862 :     Path       *innerpath = joinpath->innerjoinpath;
    3892             :     List       *indexclauses;
    3893             :     bool        found_one;
    3894             :     ListCell   *lc;
    3895             : 
    3896             :     /* If join still has quals to evaluate, it's not fast */
    3897       14862 :     if (joinpath->joinrestrictinfo != NIL)
    3898       10390 :         return false;
    3899             :     /* Nor if the inner path isn't parameterized at all */
    3900        4472 :     if (innerpath->param_info == NULL)
    3901         792 :         return false;
    3902             : 
    3903             :     /* Find the indexclauses list for the inner scan */
    3904        3680 :     switch (innerpath->pathtype)
    3905             :     {
    3906             :         case T_IndexScan:
    3907             :         case T_IndexOnlyScan:
    3908        3677 :             indexclauses = ((IndexPath *) innerpath)->indexclauses;
    3909        3677 :             break;
    3910             :         case T_BitmapHeapScan:
    3911             :             {
    3912             :                 /* Accept only a simple bitmap scan, not AND/OR cases */
    3913           0 :                 Path       *bmqual = ((BitmapHeapPath *) innerpath)->bitmapqual;
    3914             : 
    3915           0 :                 if (IsA(bmqual, IndexPath))
    3916           0 :                     indexclauses = ((IndexPath *) bmqual)->indexclauses;
    3917             :                 else
    3918           0 :                     return false;
    3919           0 :                 break;
    3920             :             }
    3921             :         default:
    3922             : 
    3923             :             /*
    3924             :              * If it's not a simple indexscan, it probably doesn't run quickly
    3925             :              * for zero rows out, even if it's a parameterized path using all
    3926             :              * the joinquals.
    3927             :              */
    3928           3 :             return false;
    3929             :     }
    3930             : 
    3931             :     /*
    3932             :      * Examine the inner path's param clauses.  Any that are from the outer
    3933             :      * path must be found in the indexclauses list, either exactly or in an
    3934             :      * equivalent form generated by equivclass.c.  Also, we must find at least
    3935             :      * one such clause, else it's a clauseless join which isn't fast.
    3936             :      */
    3937        3677 :     found_one = false;
    3938        7388 :     foreach(lc, innerpath->param_info->ppi_clauses)
    3939             :     {
    3940        3853 :         RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
    3941             : 
    3942        3853 :         if (join_clause_is_movable_into(rinfo,
    3943        3853 :                                         innerpath->parent->relids,
    3944             :                                         joinrelids))
    3945             :         {
    3946        6822 :             if (!(list_member_ptr(indexclauses, rinfo) ||
    3947        2969 :                   is_redundant_derived_clause(rinfo, indexclauses)))
    3948         142 :                 return false;
    3949        3711 :             found_one = true;
    3950             :         }
    3951             :     }
    3952        3535 :     return found_one;
    3953             : }
    3954             : 
    3955             : 
    3956             : /*
    3957             :  * approx_tuple_count
    3958             :  *      Quick-and-dirty estimation of the number of join rows passing
    3959             :  *      a set of qual conditions.
    3960             :  *
    3961             :  * The quals can be either an implicitly-ANDed list of boolean expressions,
    3962             :  * or a list of RestrictInfo nodes (typically the latter).
    3963             :  *
    3964             :  * We intentionally compute the selectivity under JOIN_INNER rules, even
    3965             :  * if it's some type of outer join.  This is appropriate because we are
    3966             :  * trying to figure out how many tuples pass the initial merge or hash
    3967             :  * join step.
    3968             :  *
    3969             :  * This is quick-and-dirty because we bypass clauselist_selectivity, and
    3970             :  * simply multiply the independent clause selectivities together.  Now
    3971             :  * clauselist_selectivity often can't do any better than that anyhow, but
    3972             :  * for some situations (such as range constraints) it is smarter.  However,
    3973             :  * we can't effectively cache the results of clauselist_selectivity, whereas
    3974             :  * the individual clause selectivities can be and are cached.
    3975             :  *
    3976             :  * Since we are only using the results to estimate how many potential
    3977             :  * output tuples are generated and passed through qpqual checking, it
    3978             :  * seems OK to live with the approximation.
    3979             :  */
    3980             : static double
    3981       10935 : approx_tuple_count(PlannerInfo *root, JoinPath *path, List *quals)
    3982             : {
    3983             :     double      tuples;
    3984       10935 :     double      outer_tuples = path->outerjoinpath->rows;
    3985       10935 :     double      inner_tuples = path->innerjoinpath->rows;
    3986             :     SpecialJoinInfo sjinfo;
    3987       10935 :     Selectivity selec = 1.0;
    3988             :     ListCell   *l;
    3989             : 
    3990             :     /*
    3991             :      * Make up a SpecialJoinInfo for JOIN_INNER semantics.
    3992             :      */
    3993       10935 :     sjinfo.type = T_SpecialJoinInfo;
    3994       10935 :     sjinfo.min_lefthand = path->outerjoinpath->parent->relids;
    3995       10935 :     sjinfo.min_righthand = path->innerjoinpath->parent->relids;
    3996       10935 :     sjinfo.syn_lefthand = path->outerjoinpath->parent->relids;
    3997       10935 :     sjinfo.syn_righthand = path->innerjoinpath->parent->relids;
    3998       10935 :     sjinfo.jointype = JOIN_INNER;
    3999             :     /* we don't bother trying to make the remaining fields valid */
    4000       10935 :     sjinfo.lhs_strict = false;
    4001       10935 :     sjinfo.delay_upper_joins = false;
    4002       10935 :     sjinfo.semi_can_btree = false;
    4003       10935 :     sjinfo.semi_can_hash = false;
    4004       10935 :     sjinfo.semi_operators = NIL;
    4005       10935 :     sjinfo.semi_rhs_exprs = NIL;
    4006             : 
    4007             :     /* Get the approximate selectivity */
    4008       22600 :     foreach(l, quals)
    4009             :     {
    4010       11665 :         Node       *qual = (Node *) lfirst(l);
    4011             : 
    4012             :         /* Note that clause_selectivity will be able to cache its result */
    4013       11665 :         selec *= clause_selectivity(root, qual, 0, JOIN_INNER, &sjinfo);
    4014             :     }
    4015             : 
    4016             :     /* Apply it to the input relation sizes */
    4017       10935 :     tuples = selec * outer_tuples * inner_tuples;
    4018             : 
    4019       10935 :     return clamp_row_est(tuples);
    4020             : }
    4021             : 
    4022             : 
    4023             : /*
    4024             :  * set_baserel_size_estimates
    4025             :  *      Set the size estimates for the given base relation.
    4026             :  *
    4027             :  * The rel's targetlist and restrictinfo list must have been constructed
    4028             :  * already, and rel->tuples must be set.
    4029             :  *
    4030             :  * We set the following fields of the rel node:
    4031             :  *  rows: the estimated number of output tuples (after applying
    4032             :  *        restriction clauses).
    4033             :  *  width: the estimated average output tuple width in bytes.
    4034             :  *  baserestrictcost: estimated cost of evaluating baserestrictinfo clauses.
    4035             :  */
    4036             : void
    4037       18663 : set_baserel_size_estimates(PlannerInfo *root, RelOptInfo *rel)
    4038             : {
    4039             :     double      nrows;
    4040             : 
    4041             :     /* Should only be applied to base relations */
    4042       18663 :     Assert(rel->relid > 0);
    4043             : 
    4044       37326 :     nrows = rel->tuples *
    4045       18663 :         clauselist_selectivity(root,
    4046             :                                rel->baserestrictinfo,
    4047             :                                0,
    4048             :                                JOIN_INNER,
    4049             :                                NULL);
    4050             : 
    4051       18663 :     rel->rows = clamp_row_est(nrows);
    4052             : 
    4053       18663 :     cost_qual_eval(&rel->baserestrictcost, rel->baserestrictinfo, root);
    4054             : 
    4055       18663 :     set_rel_width(root, rel);
    4056       18663 : }
    4057             : 
    4058             : /*
    4059             :  * get_parameterized_baserel_size
    4060             :  *      Make a size estimate for a parameterized scan of a base relation.
    4061             :  *
    4062             :  * 'param_clauses' lists the additional join clauses to be used.
    4063             :  *
    4064             :  * set_baserel_size_estimates must have been applied already.
    4065             :  */
    4066             : double
    4067        3659 : get_parameterized_baserel_size(PlannerInfo *root, RelOptInfo *rel,
    4068             :                                List *param_clauses)
    4069             : {
    4070             :     List       *allclauses;
    4071             :     double      nrows;
    4072             : 
    4073             :     /*
    4074             :      * Estimate the number of rows returned by the parameterized scan, knowing
    4075             :      * that it will apply all the extra join clauses as well as the rel's own
    4076             :      * restriction clauses.  Note that we force the clauses to be treated as
    4077             :      * non-join clauses during selectivity estimation.
    4078             :      */
    4079        3659 :     allclauses = list_concat(list_copy(param_clauses),
    4080             :                              rel->baserestrictinfo);
    4081        7318 :     nrows = rel->tuples *
    4082        3659 :         clauselist_selectivity(root,
    4083             :                                allclauses,
    4084        3659 :                                rel->relid,   /* do not use 0! */
    4085             :                                JOIN_INNER,
    4086             :                                NULL);
    4087        3659 :     nrows = clamp_row_est(nrows);
    4088             :     /* For safety, make sure result is not more than the base estimate */
    4089        3659 :     if (nrows > rel->rows)
    4090           0 :         nrows = rel->rows;
    4091        3659 :     return nrows;
    4092             : }
    4093             : 
    4094             : /*
    4095             :  * set_joinrel_size_estimates
    4096             :  *      Set the size estimates for the given join relation.
    4097             :  *
    4098             :  * The rel's targetlist must have been constructed already, and a
    4099             :  * restriction clause list that matches the given component rels must
    4100             :  * be provided.
    4101             :  *
    4102             :  * Since there is more than one way to make a joinrel for more than two
    4103             :  * base relations, the results we get here could depend on which component
    4104             :  * rel pair is provided.  In theory we should get the same answers no matter
    4105             :  * which pair is provided; in practice, since the selectivity estimation
    4106             :  * routines don't handle all cases equally well, we might not.  But there's
    4107             :  * not much to be done about it.  (Would it make sense to repeat the
    4108             :  * calculations for each pair of input rels that's encountered, and somehow
    4109             :  * average the results?  Probably way more trouble than it's worth, and
    4110             :  * anyway we must keep the rowcount estimate the same for all paths for the
    4111             :  * joinrel.)
    4112             :  *
    4113             :  * We set only the rows field here.  The reltarget field was already set by
    4114             :  * build_joinrel_tlist, and baserestrictcost is not used for join rels.
    4115             :  */
    4116             : void
    4117        5351 : set_joinrel_size_estimates(PlannerInfo *root, RelOptInfo *rel,
    4118             :                            RelOptInfo *outer_rel,
    4119             :                            RelOptInfo *inner_rel,
    4120             :                            SpecialJoinInfo *sjinfo,
    4121             :                            List *restrictlist)
    4122             : {
    4123        5351 :     rel->rows = calc_joinrel_size_estimate(root,
    4124             :                                            outer_rel,
    4125             :                                            inner_rel,
    4126             :                                            outer_rel->rows,
    4127             :                                            inner_rel->rows,
    4128             :                                            sjinfo,
    4129             :                                            restrictlist);
    4130        5351 : }
    4131             : 
    4132             : /*
    4133             :  * get_parameterized_joinrel_size
    4134             :  *      Make a size estimate for a parameterized scan of a join relation.
    4135             :  *
    4136             :  * 'rel' is the joinrel under consideration.
    4137             :  * 'outer_path', 'inner_path' are (probably also parameterized) Paths that
    4138             :  *      produce the relations being joined.
    4139             :  * 'sjinfo' is any SpecialJoinInfo relevant to this join.
    4140             :  * 'restrict_clauses' lists the join clauses that need to be applied at the
    4141             :  * join node (including any movable clauses that were moved down to this join,
    4142             :  * and not including any movable clauses that were pushed down into the
    4143             :  * child paths).
    4144             :  *
    4145             :  * set_joinrel_size_estimates must have been applied already.
    4146             :  */
    4147             : double
    4148         176 : get_parameterized_joinrel_size(PlannerInfo *root, RelOptInfo *rel,
    4149             :                                Path *outer_path,
    4150             :                                Path *inner_path,
    4151             :                                SpecialJoinInfo *sjinfo,
    4152             :                                List *restrict_clauses)
    4153             : {
    4154             :     double      nrows;
    4155             : 
    4156             :     /*
    4157             :      * Estimate the number of rows returned by the parameterized join as the
    4158             :      * sizes of the input paths times the selectivity of the clauses that have
    4159             :      * ended up at this join node.
    4160             :      *
    4161             :      * As with set_joinrel_size_estimates, the rowcount estimate could depend
    4162             :      * on the pair of input paths provided, though ideally we'd get the same
    4163             :      * estimate for any pair with the same parameterization.
    4164             :      */
    4165         176 :     nrows = calc_joinrel_size_estimate(root,
    4166             :                                        outer_path->parent,
    4167             :                                        inner_path->parent,
    4168             :                                        outer_path->rows,
    4169             :                                        inner_path->rows,
    4170             :                                        sjinfo,
    4171             :                                        restrict_clauses);
    4172             :     /* For safety, make sure result is not more than the base estimate */
    4173         176 :     if (nrows > rel->rows)
    4174           2 :         nrows = rel->rows;
    4175         176 :     return nrows;
    4176             : }
    4177             : 
    4178             : /*
    4179             :  * calc_joinrel_size_estimate
    4180             :  *      Workhorse for set_joinrel_size_estimates and
    4181             :  *      get_parameterized_joinrel_size.
    4182             :  *
    4183             :  * outer_rel/inner_rel are the relations being joined, but they should be
    4184             :  * assumed to have sizes outer_rows/inner_rows; those numbers might be less
    4185             :  * than what rel->rows says, when we are considering parameterized paths.
    4186             :  */
    4187             : static double
    4188        5527 : calc_joinrel_size_estimate(PlannerInfo *root,
    4189             :                            RelOptInfo *outer_rel,
    4190             :                            RelOptInfo *inner_rel,
    4191             :                            double outer_rows,
    4192             :                            double inner_rows,
    4193             :                            SpecialJoinInfo *sjinfo,
    4194             :                            List *restrictlist_in)
    4195             : {
    4196             :     /* This apparently-useless variable dodges a compiler bug in VS2013: */
    4197        5527 :     List       *restrictlist = restrictlist_in;
    4198        5527 :     JoinType    jointype = sjinfo->jointype;
    4199             :     Selectivity fkselec;
    4200             :     Selectivity jselec;
    4201             :     Selectivity pselec;
    4202             :     double      nrows;
    4203             : 
    4204             :     /*
    4205             :      * Compute joinclause selectivity.  Note that we are only considering
    4206             :      * clauses that become restriction clauses at this join level; we are not
    4207             :      * double-counting them because they were not considered in estimating the
    4208             :      * sizes of the component rels.
    4209             :      *
    4210             :      * First, see whether any of the joinclauses can be matched to known FK
    4211             :      * constraints.  If so, drop those clauses from the restrictlist, and
    4212             :      * instead estimate their selectivity using FK semantics.  (We do this
    4213             :      * without regard to whether said clauses are local or "pushed down".
    4214             :      * Probably, an FK-matching clause could never be seen as pushed down at
    4215             :      * an outer join, since it would be strict and hence would be grounds for
    4216             :      * join strength reduction.)  fkselec gets the net selectivity for
    4217             :      * FK-matching clauses, or 1.0 if there are none.
    4218             :      */
    4219        5527 :     fkselec = get_foreign_key_join_selectivity(root,
    4220             :                                                outer_rel->relids,
    4221             :                                                inner_rel->relids,
    4222             :                                                sjinfo,
    4223             :                                                &restrictlist);
    4224             : 
    4225             :     /*
    4226             :      * For an outer join, we have to distinguish the selectivity of the join's
    4227             :      * own clauses (JOIN/ON conditions) from any clauses that were "pushed
    4228             :      * down".  For inner joins we just count them all as joinclauses.
    4229             :      */
    4230        5527 :     if (IS_OUTER_JOIN(jointype))
    4231             :     {
    4232        1262 :         List       *joinquals = NIL;
    4233        1262 :         List       *pushedquals = NIL;
    4234             :         ListCell   *l;
    4235             : 
    4236             :         /* Grovel through the clauses to separate into two lists */
    4237        2722 :         foreach(l, restrictlist)
    4238             :         {
    4239        1460 :             RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
    4240             : 
    4241        1460 :             if (rinfo->is_pushed_down)
    4242          35 :                 pushedquals = lappend(pushedquals, rinfo);
    4243             :             else
    4244        1425 :                 joinquals = lappend(joinquals, rinfo);
    4245             :         }
    4246             : 
    4247             :         /* Get the separate selectivities */
    4248        1262 :         jselec = clauselist_selectivity(root,
    4249             :                                         joinquals,
    4250             :                                         0,
    4251             :                                         jointype,
    4252             :                                         sjinfo);
    4253        1262 :         pselec = clauselist_selectivity(root,
    4254             :                                         pushedquals,
    4255             :                                         0,
    4256             :                                         jointype,
    4257             :                                         sjinfo);
    4258             : 
    4259             :         /* Avoid leaking a lot of ListCells */
    4260        1262 :         list_free(joinquals);
    4261        1262 :         list_free(pushedquals);
    4262             :     }
    4263             :     else
    4264             :     {
    4265        4265 :         jselec = clauselist_selectivity(root,
    4266             :                                         restrictlist,
    4267             :                                         0,
    4268             :                                         jointype,
    4269             :                                         sjinfo);
    4270        4265 :         pselec = 0.0;           /* not used, keep compiler quiet */
    4271             :     }
    4272             : 
    4273             :     /*
    4274             :      * Basically, we multiply size of Cartesian product by selectivity.
    4275             :      *
    4276             :      * If we are doing an outer join, take that into account: the joinqual
    4277             :      * selectivity has to be clamped using the knowledge that the output must
    4278             :      * be at least as large as the non-nullable input.  However, any
    4279             :      * pushed-down quals are applied after the outer join, so their
    4280             :      * selectivity applies fully.
    4281             :      *
    4282             :      * For JOIN_SEMI and JOIN_ANTI, the selectivity is defined as the fraction
    4283             :      * of LHS rows that have matches, and we apply that straightforwardly.
    4284             :      */
    4285        5527 :     switch (jointype)
    4286             :     {
    4287             :         case JOIN_INNER:
    4288        3941 :             nrows = outer_rows * inner_rows * fkselec * jselec;
    4289             :             /* pselec not used */
    4290        3941 :             break;
    4291             :         case JOIN_LEFT:
    4292         988 :             nrows = outer_rows * inner_rows * fkselec * jselec;
    4293         988 :             if (nrows < outer_rows)
    4294         344 :                 nrows = outer_rows;
    4295         988 :             nrows *= pselec;
    4296         988 :             break;
    4297             :         case JOIN_FULL:
    4298          28 :             nrows = outer_rows * inner_rows * fkselec * jselec;
    4299          28 :             if (nrows < outer_rows)
    4300           9 :                 nrows = outer_rows;
    4301          28 :             if (nrows < inner_rows)
    4302           2 :                 nrows = inner_rows;
    4303          28 :             nrows *= pselec;
    4304          28 :             break;
    4305             :         case JOIN_SEMI:
    4306         324 :             nrows = outer_rows * fkselec * jselec;
    4307             :             /* pselec not used */
    4308         324 :             break;
    4309             :         case JOIN_ANTI:
    4310         246 :             nrows = outer_rows * (1.0 - fkselec * jselec);
    4311         246 :             nrows *= pselec;
    4312         246 :             break;
    4313             :         default:
    4314             :             /* other values not expected here */
    4315           0 :             elog(ERROR, "unrecognized join type: %d", (int) jointype);
    4316             :             nrows = 0;          /* keep compiler quiet */
    4317             :             break;
    4318             :     }
    4319             : 
    4320        5527 :     return clamp_row_est(nrows);
    4321             : }
    4322             : 
    4323             : /*
    4324             :  * get_foreign_key_join_selectivity
    4325             :  *      Estimate join selectivity for foreign-key-related clauses.
    4326             :  *
    4327             :  * Remove any clauses that can be matched to FK constraints from *restrictlist,
    4328             :  * and return a substitute estimate of their selectivity.  1.0 is returned
    4329             :  * when there are no such clauses.
    4330             :  *
    4331             :  * The reason for treating such clauses specially is that we can get better
    4332             :  * estimates this way than by relying on clauselist_selectivity(), especially
    4333             :  * for multi-column FKs where that function's assumption that the clauses are
    4334             :  * independent falls down badly.  But even with single-column FKs, we may be
    4335             :  * able to get a better answer when the pg_statistic stats are missing or out
    4336             :  * of date.
    4337             :  */
    4338             : static Selectivity
    4339        5527 : get_foreign_key_join_selectivity(PlannerInfo *root,
    4340             :                                  Relids outer_relids,
    4341             :                                  Relids inner_relids,
    4342             :                                  SpecialJoinInfo *sjinfo,
    4343             :                                  List **restrictlist)
    4344             : {
    4345        5527 :     Selectivity fkselec = 1.0;
    4346        5527 :     JoinType    jointype = sjinfo->jointype;
    4347        5527 :     List       *worklist = *restrictlist;
    4348             :     ListCell   *lc;
    4349             : 
    4350             :     /* Consider each FK constraint that is known to match the query */
    4351        5706 :     foreach(lc, root->fkey_list)
    4352             :     {
    4353         179 :         ForeignKeyOptInfo *fkinfo = (ForeignKeyOptInfo *) lfirst(lc);
    4354             :         bool        ref_is_outer;
    4355             :         List       *removedlist;
    4356             :         ListCell   *cell;
    4357             :         ListCell   *prev;
    4358             :         ListCell   *next;
    4359             : 
    4360             :         /*
    4361             :          * This FK is not relevant unless it connects a baserel on one side of
    4362             :          * this join to a baserel on the other side.
    4363             :          */
    4364         309 :         if (bms_is_member(fkinfo->con_relid, outer_relids) &&
    4365         130 :             bms_is_member(fkinfo->ref_relid, inner_relids))
    4366         100 :             ref_is_outer = false;
    4367         127 :         else if (bms_is_member(fkinfo->ref_relid, outer_relids) &&
    4368          48 :                  bms_is_member(fkinfo->con_relid, inner_relids))
    4369          15 :             ref_is_outer = true;
    4370             :         else
    4371          64 :             continue;
    4372             : 
    4373             :         /*
    4374             :          * If we're dealing with a semi/anti join, and the FK's referenced
    4375             :          * relation is on the outside, then knowledge of the FK doesn't help
    4376             :          * us figure out what we need to know (which is the fraction of outer
    4377             :          * rows that have matches).  On the other hand, if the referenced rel
    4378             :          * is on the inside, then all outer rows must have matches in the
    4379             :          * referenced table (ignoring nulls).  But any restriction or join
    4380             :          * clauses that filter that table will reduce the fraction of matches.
    4381             :          * We can account for restriction clauses, but it's too hard to guess
    4382             :          * how many table rows would get through a join that's inside the RHS.
    4383             :          * Hence, if either case applies, punt and ignore the FK.
    4384             :          */
    4385         115 :         if ((jointype == JOIN_SEMI || jointype == JOIN_ANTI) &&
    4386          49 :             (ref_is_outer || bms_membership(inner_relids) != BMS_SINGLETON))
    4387           0 :             continue;
    4388             : 
    4389             :         /*
    4390             :          * Modify the restrictlist by removing clauses that match the FK (and
    4391             :          * putting them into removedlist instead).  It seems unsafe to modify
    4392             :          * the originally-passed List structure, so we make a shallow copy the
    4393             :          * first time through.
    4394             :          */
    4395         115 :         if (worklist == *restrictlist)
    4396          90 :             worklist = list_copy(worklist);
    4397             : 
    4398         115 :         removedlist = NIL;
    4399         115 :         prev = NULL;
    4400         223 :         for (cell = list_head(worklist); cell; cell = next)
    4401             :         {
    4402         108 :             RestrictInfo *rinfo = (RestrictInfo *) lfirst(cell);
    4403         108 :             bool        remove_it = false;
    4404             :             int         i;
    4405             : 
    4406         108 :             next = lnext(cell);
    4407             :             /* Drop this clause if it matches any column of the FK */
    4408         131 :             for (i = 0; i < fkinfo->nkeys; i++)
    4409             :             {
    4410         127 :                 if (rinfo->parent_ec)
    4411             :                 {
    4412             :                     /*
    4413             :                      * EC-derived clauses can only match by EC.  It is okay to
    4414             :                      * consider any clause derived from the same EC as
    4415             :                      * matching the FK: even if equivclass.c chose to generate
    4416             :                      * a clause equating some other pair of Vars, it could
    4417             :                      * have generated one equating the FK's Vars.  So for
    4418             :                      * purposes of estimation, we can act as though it did so.
    4419             :                      *
    4420             :                      * Note: checking parent_ec is a bit of a cheat because
    4421             :                      * there are EC-derived clauses that don't have parent_ec
    4422             :                      * set; but such clauses must compare expressions that
    4423             :                      * aren't just Vars, so they cannot match the FK anyway.
    4424             :                      */
    4425          39 :                     if (fkinfo->eclass[i] == rinfo->parent_ec)
    4426             :                     {
    4427          39 :                         remove_it = true;
    4428          39 :                         break;
    4429             :                     }
    4430             :                 }
    4431             :                 else
    4432             :                 {
    4433             :                     /*
    4434             :                      * Otherwise, see if rinfo was previously matched to FK as
    4435             :                      * a "loose" clause.
    4436             :                      */
    4437          88 :                     if (list_member_ptr(fkinfo->rinfos[i], rinfo))
    4438             :                     {
    4439          65 :                         remove_it = true;
    4440          65 :                         break;
    4441             :                     }
    4442             :                 }
    4443             :             }
    4444         108 :             if (remove_it)
    4445             :             {
    4446         104 :                 worklist = list_delete_cell(worklist, cell, prev);
    4447         104 :                 removedlist = lappend(removedlist, rinfo);
    4448             :             }
    4449             :             else
    4450           4 :                 prev = cell;
    4451             :         }
    4452             : 
    4453             :         /*
    4454             :          * If we failed to remove all the matching clauses we expected to
    4455             :          * find, chicken out and ignore this FK; applying its selectivity
    4456             :          * might result in double-counting.  Put any clauses we did manage to
    4457             :          * remove back into the worklist.
    4458             :          *
    4459             :          * Since the matching clauses are known not outerjoin-delayed, they
    4460             :          * should certainly have appeared in the initial joinclause list.  If
    4461             :          * we didn't find them, they must have been matched to, and removed
    4462             :          * by, some other FK in a previous iteration of this loop.  (A likely
    4463             :          * case is that two FKs are matched to the same EC; there will be only
    4464             :          * one EC-derived clause in the initial list, so the first FK will
    4465             :          * consume it.)  Applying both FKs' selectivity independently risks
    4466             :          * underestimating the join size; in particular, this would undo one
    4467             :          * of the main things that ECs were invented for, namely to avoid
    4468             :          * double-counting the selectivity of redundant equality conditions.
    4469             :          * Later we might think of a reasonable way to combine the estimates,
    4470             :          * but for now, just punt, since this is a fairly uncommon situation.
    4471             :          */
    4472         230 :         if (list_length(removedlist) !=
    4473         115 :             (fkinfo->nmatched_ec + fkinfo->nmatched_ri))
    4474             :         {
    4475          27 :             worklist = list_concat(worklist, removedlist);
    4476          27 :             continue;
    4477             :         }
    4478             : 
    4479             :         /*
    4480             :          * Finally we get to the payoff: estimate selectivity using the
    4481             :          * knowledge that each referencing row will match exactly one row in
    4482             :          * the referenced table.
    4483             :          *
    4484             :          * XXX that's not true in the presence of nulls in the referencing
    4485             :          * column(s), so in principle we should derate the estimate for those.
    4486             :          * However (1) if there are any strict restriction clauses for the
    4487             :          * referencing column(s) elsewhere in the query, derating here would
    4488             :          * be double-counting the null fraction, and (2) it's not very clear
    4489             :          * how to combine null fractions for multiple referencing columns. So
    4490             :          * we do nothing for now about correcting for nulls.
    4491             :          *
    4492             :          * XXX another point here is that if either side of an FK constraint
    4493             :          * is an inheritance parent, we estimate as though the constraint
    4494             :          * covers all its children as well.  This is not an unreasonable
    4495             :          * assumption for a referencing table, ie the user probably applied
    4496             :          * identical constraints to all child tables (though perhaps we ought
    4497             :          * to check that).  But it's not possible to have done that for a
    4498             :          * referenced table.  Fortunately, precisely because that doesn't
    4499             :          * work, it is uncommon in practice to have an FK referencing a parent
    4500             :          * table.  So, at least for now, disregard inheritance here.
    4501             :          */
    4502          88 :         if (jointype == JOIN_SEMI || jointype == JOIN_ANTI)
    4503          24 :         {
    4504             :             /*
    4505             :              * For JOIN_SEMI and JOIN_ANTI, we only get here when the FK's
    4506             :              * referenced table is exactly the inside of the join.  The join
    4507             :              * selectivity is defined as the fraction of LHS rows that have
    4508             :              * matches.  The FK implies that every LHS row has a match *in the
    4509             :              * referenced table*; but any restriction clauses on it will
    4510             :              * reduce the number of matches.  Hence we take the join
    4511             :              * selectivity as equal to the selectivity of the table's
    4512             :              * restriction clauses, which is rows / tuples; but we must guard
    4513             :              * against tuples == 0.
    4514             :              */
    4515          24 :             RelOptInfo *ref_rel = find_base_rel(root, fkinfo->ref_relid);
    4516          24 :             double      ref_tuples = Max(ref_rel->tuples, 1.0);
    4517             : 
    4518          24 :             fkselec *= ref_rel->rows / ref_tuples;
    4519             :         }
    4520             :         else
    4521             :         {
    4522             :             /*
    4523             :              * Otherwise, selectivity is exactly 1/referenced-table-size; but
    4524             :              * guard against tuples == 0.  Note we should use the raw table
    4525             :              * tuple count, not any estimate of its filtered or joined size.
    4526             :              */
    4527          64 :             RelOptInfo *ref_rel = find_base_rel(root, fkinfo->ref_relid);
    4528          64 :             double      ref_tuples = Max(ref_rel->tuples, 1.0);
    4529             : 
    4530          64 :             fkselec *= 1.0 / ref_tuples;
    4531             :         }
    4532             :     }
    4533             : 
    4534        5527 :     *restrictlist = worklist;
    4535        5527 :     return fkselec;
    4536             : }
    4537             : 
    4538             : /*
    4539             :  * set_subquery_size_estimates
    4540             :  *      Set the size estimates for a base relation that is a subquery.
    4541             :  *
    4542             :  * The rel's targetlist and restrictinfo list must have been constructed
    4543             :  * already, and the Paths for the subquery must have been completed.
    4544             :  * We look at the subquery's PlannerInfo to extract data.
    4545             :  *
    4546             :  * We set the same fields as set_baserel_size_estimates.
    4547             :  */
    4548             : void
    4549        1059 : set_subquery_size_estimates(PlannerInfo *root, RelOptInfo *rel)
    4550             : {
    4551        1059 :     PlannerInfo *subroot = rel->subroot;
    4552             :     RelOptInfo *sub_final_rel;
    4553             :     RangeTblEntry *rte PG_USED_FOR_ASSERTS_ONLY;
    4554             :     ListCell   *lc;
    4555             : 
    4556             :     /* Should only be applied to base relations that are subqueries */
    4557        1059 :     Assert(rel->relid > 0);
    4558             : #ifdef USE_ASSERT_CHECKING
    4559        1059 :     rte = planner_rt_fetch(rel->relid, root);
    4560        1059 :     Assert(rte->rtekind == RTE_SUBQUERY);
    4561             : #endif
    4562             : 
    4563             :     /*
    4564             :      * Copy raw number of output rows from subquery.  All of its paths should
    4565             :      * have the same output rowcount, so just look at cheapest-total.
    4566             :      */
    4567        1059 :     sub_final_rel = fetch_upper_rel(subroot, UPPERREL_FINAL, NULL);
    4568        1059 :     rel->tuples = sub_final_rel->cheapest_total_path->rows;
    4569             : 
    4570             :     /*
    4571             :      * Compute per-output-column width estimates by examining the subquery's
    4572             :      * targetlist.  For any output that is a plain Var, get the width estimate
    4573             :      * that was made while planning the subquery.  Otherwise, we leave it to
    4574             :      * set_rel_width to fill in a datatype-based default estimate.
    4575             :      */
    4576        3282 :     foreach(lc, subroot->parse->targetList)
    4577             :     {
    4578        2223 :         TargetEntry *te = lfirst_node(TargetEntry, lc);
    4579        2223 :         Node       *texpr = (Node *) te->expr;
    4580        2223 :         int32       item_width = 0;
    4581             : 
    4582             :         /* junk columns aren't visible to upper query */
    4583        2223 :         if (te->resjunk)
    4584          46 :             continue;
    4585             : 
    4586             :         /*
    4587             :          * The subquery could be an expansion of a view that's had columns
    4588             :          * added to it since the current query was parsed, so that there are
    4589             :          * non-junk tlist columns in it that don't correspond to any column
    4590             :          * visible at our query level.  Ignore such columns.
    4591             :          */
    4592        2177 :         if (te->resno < rel->min_attr || te->resno > rel->max_attr)
    4593           0 :             continue;
    4594             : 
    4595             :         /*
    4596             :          * XXX This currently doesn't work for subqueries containing set
    4597             :          * operations, because the Vars in their tlists are bogus references
    4598             :          * to the first leaf subquery, which wouldn't give the right answer
    4599             :          * even if we could still get to its PlannerInfo.
    4600             :          *
    4601             :          * Also, the subquery could be an appendrel for which all branches are
    4602             :          * known empty due to constraint exclusion, in which case
    4603             :          * set_append_rel_pathlist will have left the attr_widths set to zero.
    4604             :          *
    4605             :          * In either case, we just leave the width estimate zero until
    4606             :          * set_rel_width fixes it.
    4607             :          */
    4608        3220 :         if (IsA(texpr, Var) &&
    4609        1043 :             subroot->parse->setOperations == NULL)
    4610             :         {
    4611        1007 :             Var        *var = (Var *) texpr;
    4612        1007 :             RelOptInfo *subrel = find_base_rel(subroot, var->varno);
    4613             : 
    4614        1007 :             item_width = subrel->attr_widths[var->varattno - subrel->min_attr];
    4615             :         }
    4616        2177 :         rel->attr_widths[te->resno - rel->min_attr] = item_width;
    4617             :     }
    4618             : 
    4619             :     /* Now estimate number of output rows, etc */
    4620        1059 :     set_baserel_size_estimates(root, rel);
    4621        1059 : }
    4622             : 
    4623             : /*
    4624             :  * set_function_size_estimates
    4625             :  *      Set the size estimates for a base relation that is a function call.
    4626             :  *
    4627             :  * The rel's targetlist and restrictinfo list must have been constructed
    4628             :  * already.
    4629             :  *
    4630             :  * We set the same fields as set_baserel_size_estimates.
    4631             :  */
    4632             : void
    4633        1327 : set_function_size_estimates(PlannerInfo *root, RelOptInfo *rel)
    4634             : {
    4635             :     RangeTblEntry *rte;
    4636             :     ListCell   *lc;
    4637             : 
    4638             :     /* Should only be applied to base relations that are functions */
    4639        1327 :     Assert(rel->relid > 0);
    4640        1327 :     rte = planner_rt_fetch(rel->relid, root);
    4641        1327 :     Assert(rte->rtekind == RTE_FUNCTION);
    4642             : 
    4643             :     /*
    4644             :      * Estimate number of rows the functions will return. The rowcount of the
    4645             :      * node is that of the largest function result.
    4646             :      */
    4647        1327 :     rel->tuples = 0;
    4648        2700 :     foreach(lc, rte->functions)
    4649             :     {
    4650        1373 :         RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
    4651        1373 :         double      ntup = expression_returns_set_rows(rtfunc->funcexpr);
    4652             : 
    4653        1373 :         if (ntup > rel->tuples)
    4654        1332 :             rel->tuples = ntup;
    4655             :     }
    4656             : 
    4657             :     /* Now estimate number of output rows, etc */
    4658        1327 :     set_baserel_size_estimates(root, rel);
    4659        1327 : }
    4660             : 
    4661             : /*
    4662             :  * set_function_size_estimates
    4663             :  *      Set the size estimates for a base relation that is a function call.
    4664             :  *
    4665             :  * The rel's targetlist and restrictinfo list must have been constructed
    4666             :  * already.
    4667             :  *
    4668             :  * We set the same fields as set_tablefunc_size_estimates.
    4669             :  */
    4670             : void
    4671          22 : set_tablefunc_size_estimates(PlannerInfo *root, RelOptInfo *rel)
    4672             : {
    4673             :     RangeTblEntry *rte PG_USED_FOR_ASSERTS_ONLY;
    4674             : 
    4675             :     /* Should only be applied to base relations that are functions */
    4676          22 :     Assert(rel->relid > 0);
    4677             : #ifdef USE_ASSERT_CHECKING
    4678          22 :     rte = planner_rt_fetch(rel->relid, root);
    4679          22 :     Assert(rte->rtekind == RTE_TABLEFUNC);
    4680             : #endif
    4681             : 
    4682          22 :     rel->tuples = 100;
    4683             : 
    4684             :     /* Now estimate number of output rows, etc */
    4685          22 :     set_baserel_size_estimates(root, rel);
    4686          22 : }
    4687             : 
    4688             : /*
    4689             :  * set_values_size_estimates
    4690             :  *      Set the size estimates for a base relation that is a values list.
    4691             :  *
    4692             :  * The rel's targetlist and restrictinfo list must have been constructed
    4693             :  * already.
    4694             :  *
    4695             :  * We set the same fields as set_baserel_size_estimates.
    4696             :  */
    4697             : void
    4698         463 : set_values_size_estimates(PlannerInfo *root, RelOptInfo *rel)
    4699             : {
    4700             :     RangeTblEntry *rte;
    4701             : 
    4702             :     /* Should only be applied to base relations that are values lists */
    4703         463 :     Assert(rel->relid > 0);
    4704         463 :     rte = planner_rt_fetch(rel->relid, root);
    4705         463 :     Assert(rte->rtekind == RTE_VALUES);
    4706             : 
    4707             :     /*
    4708             :      * Estimate number of rows the values list will return. We know this
    4709             :      * precisely based on the list length (well, barring set-returning
    4710             :      * functions in list items, but that's a refinement not catered for
    4711             :      * anywhere else either).
    4712             :      */
    4713         463 :     rel->tuples = list_length(rte->values_lists);
    4714             : 
    4715             :     /* Now estimate number of output rows, etc */
    4716         463 :     set_baserel_size_estimates(root, rel);
    4717         463 : }
    4718             : 
    4719             : /*
    4720             :  * set_cte_size_estimates
    4721             :  *      Set the size estimates for a base relation that is a CTE reference.
    4722             :  *
    4723             :  * The rel's targetlist and restrictinfo list must have been constructed
    4724             :  * already, and we need an estimate of the number of rows returned by the CTE
    4725             :  * (if a regular CTE) or the non-recursive term (if a self-reference).
    4726             :  *
    4727             :  * We set the same fields as set_baserel_size_estimates.
    4728             :  */
    4729             : void
    4730         202 : set_cte_size_estimates(PlannerInfo *root, RelOptInfo *rel, double cte_rows)
    4731             : {
    4732             :     RangeTblEntry *rte;
    4733             : 
    4734             :     /* Should only be applied to base relations that are CTE references */
    4735         202 :     Assert(rel->relid > 0);
    4736         202 :     rte = planner_rt_fetch(rel->relid, root);
    4737         202 :     Assert(rte->rtekind == RTE_CTE);
    4738             : 
    4739         202 :     if (rte->self_reference)
    4740             :     {
    4741             :         /*
    4742             :          * In a self-reference, arbitrarily assume the average worktable size
    4743             :          * is about 10 times the nonrecursive term's size.
    4744             :          */
    4745          40 :         rel->tuples = 10 * cte_rows;
    4746             :     }
    4747             :     else
    4748             :     {
    4749             :         /* Otherwise just believe the CTE's rowcount estimate */
    4750         162 :         rel->tuples = cte_rows;
    4751             :     }
    4752             : 
    4753             :     /* Now estimate number of output rows, etc */
    4754         202 :     set_baserel_size_estimates(root, rel);
    4755         202 : }
    4756             : 
    4757             : /*
    4758             :  * set_namedtuplestore_size_estimates
    4759             :  *      Set the size estimates for a base relation that is a tuplestore reference.
    4760             :  *
    4761             :  * The rel's targetlist and restrictinfo list must have been constructed
    4762             :  * already.
    4763             :  *
    4764             :  * We set the same fields as set_baserel_size_estimates.
    4765             :  */
    4766             : void
    4767          43 : set_namedtuplestore_size_estimates(PlannerInfo *root, RelOptInfo *rel)
    4768             : {
    4769             :     RangeTblEntry *rte;
    4770             : 
    4771             :     /* Should only be applied to base relations that are tuplestore references */
    4772          43 :     Assert(rel->relid > 0);
    4773          43 :     rte = planner_rt_fetch(rel->relid, root);
    4774          43 :     Assert(rte->rtekind == RTE_NAMEDTUPLESTORE);
    4775             : 
    4776             :     /*
    4777             :      * Use the estimate provided by the code which is generating the named
    4778             :      * tuplestore.  In some cases, the actual number might be available; in
    4779             :      * others the same plan will be re-used, so a "typical" value might be
    4780             :      * estimated and used.
    4781             :      */
    4782          43 :     rel->tuples = rte->enrtuples;
    4783          43 :     if (rel->tuples < 0)
    4784           0 :         rel->tuples = 1000;
    4785             : 
    4786             :     /* Now estimate number of output rows, etc */
    4787          43 :     set_baserel_size_estimates(root, rel);
    4788          43 : }
    4789             : 
    4790             : /*
    4791             :  * set_foreign_size_estimates
    4792             :  *      Set the size estimates for a base relation that is a foreign table.
    4793             :  *
    4794             :  * There is not a whole lot that we can do here; the foreign-data wrapper
    4795             :  * is responsible for producing useful estimates.  We can do a decent job
    4796             :  * of estimating baserestrictcost, so we set that, and we also set up width
    4797             :  * using what will be purely datatype-driven estimates from the targetlist.
    4798             :  * There is no way to do anything sane with the rows value, so we just put
    4799             :  * a default estimate and hope that the wrapper can improve on it.  The
    4800             :  * wrapper's GetForeignRelSize function will be called momentarily.
    4801             :  *
    4802             :  * The rel's targetlist and restrictinfo list must have been constructed
    4803             :  * already.
    4804             :  */
    4805             : void
    4806           0 : set_foreign_size_estimates(PlannerInfo *root, RelOptInfo *rel)
    4807             : {
    4808             :     /* Should only be applied to base relations */
    4809           0 :     Assert(rel->relid > 0);
    4810             : 
    4811           0 :     rel->rows = 1000;            /* entirely bogus default estimate */
    4812             : 
    4813           0 :     cost_qual_eval(&rel->baserestrictcost, rel->baserestrictinfo, root);
    4814             : 
    4815           0 :     set_rel_width(root, rel);
    4816           0 : }
    4817             : 
    4818             : 
    4819             : /*
    4820             :  * set_rel_width
    4821             :  *      Set the estimated output width of a base relation.
    4822             :  *
    4823             :  * The estimated output width is the sum of the per-attribute width estimates
    4824             :  * for the actually-referenced columns, plus any PHVs or other expressions
    4825             :  * that have to be calculated at this relation.  This is the amount of data
    4826             :  * we'd need to pass upwards in case of a sort, hash, etc.
    4827             :  *
    4828             :  * This function also sets reltarget->cost, so it's a bit misnamed now.
    4829             :  *
    4830             :  * NB: this works best on plain relations because it prefers to look at
    4831             :  * real Vars.  For subqueries, set_subquery_size_estimates will already have
    4832             :  * copied up whatever per-column estimates were made within the subquery,
    4833             :  * and for other types of rels there isn't much we can do anyway.  We fall
    4834             :  * back on (fairly stupid) datatype-based width estimates if we can't get
    4835             :  * any better number.
    4836             :  *
    4837             :  * The per-attribute width estimates are cached for possible re-use while
    4838             :  * building join relations or post-scan/join pathtargets.
    4839             :  */
    4840             : static void
    4841       18663 : set_rel_width(PlannerInfo *root, RelOptInfo *rel)
    4842             : {
    4843       18663 :     Oid         reloid = planner_rt_fetch(rel->relid, root)->relid;
    4844       18663 :     int32       tuple_width = 0;
    4845       18663 :     bool        have_wholerow_var = false;
    4846             :     ListCell   *lc;
    4847             : 
    4848             :     /* Vars are assumed to have cost zero, but other exprs do not */
    4849       18663 :     rel->reltarget->cost.startup = 0;
    4850       18663 :     rel->reltarget->cost.per_tuple = 0;
    4851             : 
    4852       60057 :     foreach(lc, rel->reltarget->exprs)
    4853             :     {
    4854       41394 :         Node       *node = (Node *) lfirst(lc);
    4855             : 
    4856             :         /*
    4857             :          * Ordinarily, a Var in a rel's targetlist must belong to that rel;
    4858             :          * but there are corner cases involving LATERAL references where that
    4859             :          * isn't so.  If the Var has the wrong varno, fall through to the
    4860             :          * generic case (it doesn't seem worth the trouble to be any smarter).
    4861             :          */
    4862       82607 :         if (IsA(node, Var) &&
    4863       41213 :             ((Var *) node)->varno == rel->relid)
    4864       12436 :         {
    4865       41210 :             Var        *var = (Var *) node;
    4866             :             int         ndx;
    4867             :             int32       item_width;
    4868             : 
    4869       41210 :             Assert(var->varattno >= rel->min_attr);
    4870       41210 :             Assert(var->varattno <= rel->max_attr);
    4871             : 
    4872       41210 :             ndx = var->varattno - rel->min_attr;
    4873             : 
    4874             :             /*
    4875             :              * If it's a whole-row Var, we'll deal with it below after we have
    4876             :              * already cached as many attr widths as possible.
    4877             :              */
    4878       41210 :             if (var->varattno == 0)
    4879             :             {
    4880         172 :                 have_wholerow_var = true;
    4881         172 :                 continue;
    4882             :             }
    4883             : 
    4884             :             /*
    4885             :              * The width may have been cached already (especially if it's a
    4886             :              * subquery), so don't duplicate effort.
    4887             :              */
    4888       41038 :             if (rel->attr_widths[ndx] > 0)
    4889             :             {
    4890       12327 :                 tuple_width += rel->attr_widths[ndx];
    4891       12327 :                 continue;
    4892             :             }
    4893             : 
    4894             :             /* Try to get column width from statistics */
    4895       28711 :             if (reloid != InvalidOid && var->varattno > 0)
    4896             :             {
    4897       18378 :                 item_width = get_attavgwidth(reloid, var->varattno);
    4898       18378 :                 if (item_width > 0)
    4899             :                 {
    4900       16275 :                     rel->attr_widths[ndx] = item_width;
    4901       16275 :                     tuple_width += item_width;
    4902       16275 :                     continue;
    4903             :                 }
    4904             :             }
    4905             : 
    4906             :             /*
    4907             :              * Not a plain relation, or can't find statistics for it. Estimate
    4908             :              * using just the type info.
    4909             :              */
    4910       12436 :             item_width = get_typavgwidth(var->vartype, var->vartypmod);
    4911       12436 :             Assert(item_width > 0);
    4912       12436 :             rel->attr_widths[ndx] = item_width;
    4913       12436 :             tuple_width += item_width;
    4914             :         }
    4915         184 :         else if (IsA(node, PlaceHolderVar))
    4916             :         {
    4917             :             /*
    4918             :              * We will need to evaluate the PHV's contained expression while
    4919             :              * scanning this rel, so be sure to include it in reltarget->cost.
    4920             :              */
    4921          37 :             PlaceHolderVar *phv = (PlaceHolderVar *) node;
    4922          37 :             PlaceHolderInfo *phinfo = find_placeholder_info(root, phv, false);
    4923             :             QualCost    cost;
    4924             : 
    4925          37 :             tuple_width += phinfo->ph_width;
    4926          37 :             cost_qual_eval_node(&cost, (Node *) phv->phexpr, root);
    4927          37 :             rel->reltarget->cost.startup += cost.startup;
    4928          37 :             rel->reltarget->cost.per_tuple += cost.per_tuple;
    4929             :         }
    4930             :         else
    4931             :         {
    4932             :             /*
    4933             :              * We could be looking at an expression pulled up from a subquery,
    4934             :              * or a ROW() representing a whole-row child Var, etc.  Do what we
    4935             :              * can using the expression type information.
    4936             :              */
    4937             :             int32       item_width;
    4938             :             QualCost    cost;
    4939             : 
    4940         147 :             item_width = get_typavgwidth(exprType(node), exprTypmod(node));
    4941         147 :             Assert(item_width > 0);
    4942         147 :             tuple_width += item_width;
    4943             :             /* Not entirely clear if we need to account for cost, but do so */
    4944         147 :             cost_qual_eval_node(&cost, node, root);
    4945         147 :             rel->reltarget->cost.startup += cost.startup;
    4946         147 :             rel->reltarget->cost.per_tuple += cost.per_tuple;
    4947             :         }
    4948             :     }
    4949             : 
    4950             :     /*
    4951             :      * If we have a whole-row reference, estimate its width as the sum of
    4952             :      * per-column widths plus heap tuple header overhead.
    4953             :      */
    4954       18663 :     if (have_wholerow_var)
    4955             :     {
    4956         172 :         int32       wholerow_width = MAXALIGN(SizeofHeapTupleHeader);
    4957             : 
    4958         172 :         if (reloid != InvalidOid)
    4959             :         {
    4960             :             /* Real relation, so estimate true tuple width */
    4961         110 :             wholerow_width += get_relation_data_width(reloid,
    4962         110 :                                                       rel->attr_widths - rel->min_attr);
    4963             :         }
    4964             :         else
    4965             :         {
    4966             :             /* Do what we can with info for a phony rel */
    4967             :             AttrNumber  i;
    4968             : 
    4969         167 :             for (i = 1; i <= rel->max_attr; i++)
    4970         105 :                 wholerow_width += rel->attr_widths[i - rel->min_attr];
    4971             :         }
    4972             : 
    4973         172 :         rel->attr_widths[0 - rel->min_attr] = wholerow_width;
    4974             : 
    4975             :         /*
    4976             :          * Include the whole-row Var as part of the output tuple.  Yes, that
    4977             :          * really is what happens at runtime.
    4978             :          */
    4979         172 :         tuple_width += wholerow_width;
    4980             :     }
    4981             : 
    4982       18663 :     Assert(tuple_width >= 0);
    4983       18663 :     rel->reltarget->width = tuple_width;
    4984       18663 : }
    4985             : 
    4986             : /*
    4987             :  * set_pathtarget_cost_width
    4988             :  *      Set the estimated eval cost and output width of a PathTarget tlist.
    4989             :  *
    4990             :  * As a notational convenience, returns the same PathTarget pointer passed in.
    4991             :  *
    4992             :  * Most, though not quite all, uses of this function occur after we've run
    4993             :  * set_rel_width() for base relations; so we can usually obtain cached width
    4994             :  * estimates for Vars.  If we can't, fall back on datatype-based width
    4995             :  * estimates.  Present early-planning uses of PathTargets don't need accurate
    4996             :  * widths badly enough to justify going to the catalogs for better data.
    4997             :  */
    4998             : PathTarget *
    4999       28702 : set_pathtarget_cost_width(PlannerInfo *root, PathTarget *target)
    5000             : {
    5001       28702 :     int32       tuple_width = 0;
    5002             :     ListCell   *lc;
    5003             : 
    5004             :     /* Vars are assumed to have cost zero, but other exprs do not */
    5005       28702 :     target->cost.startup = 0;
    5006       28702 :     target->cost.per_tuple = 0;
    5007             : 
    5008       86714 :     foreach(lc, target->exprs)
    5009             :     {
    5010       58012 :         Node       *node = (Node *) lfirst(lc);
    5011             : 
    5012       58012 :         if (IsA(node, Var))
    5013             :         {
    5014       27877 :             Var        *var = (Var *) node;
    5015             :             int32       item_width;
    5016             : 
    5017             :             /* We should not see any upper-level Vars here */
    5018       27877 :             Assert(var->varlevelsup == 0);
    5019             : 
    5020             :             /* Try to get data from RelOptInfo cache */
    5021       27877 :             if (var->varno < root->simple_rel_array_size)
    5022             :             {
    5023       27877 :                 RelOptInfo *rel = root->simple_rel_array[var->varno];
    5024             : 
    5025       55430 :                 if (rel != NULL &&
    5026       55106 :                     var->varattno >= rel->min_attr &&
    5027       27553 :                     var->varattno <= rel->max_attr)
    5028             :                 {
    5029       27553 :                     int         ndx = var->varattno - rel->min_attr;
    5030             : 
    5031       27553 :                     if (rel->attr_widths[ndx] > 0)
    5032             :                     {
    5033       27459 :                         tuple_width += rel->attr_widths[ndx];
    5034       27459 :                         continue;
    5035             :                     }
    5036             :                 }
    5037             :             }
    5038             : 
    5039             :             /*
    5040             :              * No cached data available, so estimate using just the type info.
    5041             :              */
    5042         418 :             item_width = get_typavgwidth(var->vartype, var->vartypmod);
    5043         418 :             Assert(item_width > 0);
    5044         418 :             tuple_width += item_width;
    5045             :         }
    5046             :         else
    5047             :         {
    5048             :             /*
    5049             :              * Handle general expressions using type info.
    5050             :              */
    5051             :             int32       item_width;
    5052             :             QualCost    cost;
    5053             : 
    5054       30135 :             item_width = get_typavgwidth(exprType(node), exprTypmod(node));
    5055       30135 :             Assert(item_width > 0);
    5056       30135 :             tuple_width += item_width;
    5057             : 
    5058             :             /* Account for cost, too */
    5059       30135 :             cost_qual_eval_node(&cost, node, root);
    5060       30135 :             target->cost.startup += cost.startup;
    5061       30135 :             target->cost.per_tuple += cost.per_tuple;
    5062             :         }
    5063             :     }
    5064             : 
    5065       28702 :     Assert(tuple_width >= 0);
    5066       28702 :     target->width = tuple_width;
    5067             : 
    5068       28702 :     return target;
    5069             : }
    5070             : 
    5071             : /*
    5072             :  * relation_byte_size
    5073             :  *    Estimate the storage space in bytes for a given number of tuples
    5074             :  *    of a given width (size in bytes).
    5075             :  */
    5076             : static double
    5077       74509 : relation_byte_size(double tuples, int width)
    5078             : {
    5079       74509 :     return tuples * (MAXALIGN(width) + MAXALIGN(SizeofHeapTupleHeader));
    5080             : }
    5081             : 
    5082             : /*
    5083             :  * page_size
    5084             :  *    Returns an estimate of the number of pages covered by a given
    5085             :  *    number of tuples of a given width (size in bytes).
    5086             :  */
    5087             : static double
    5088         242 : page_size(double tuples, int width)
    5089             : {
    5090         242 :     return ceil(relation_byte_size(tuples, width) / BLCKSZ);
    5091             : }
    5092             : 
    5093             : /*
    5094             :  * Estimate the fraction of the work that each worker will do given the
    5095             :  * number of workers budgeted for the path.
    5096             :  */
    5097             : static double
    5098        1089 : get_parallel_divisor(Path *path)
    5099             : {
    5100        1089 :     double      parallel_divisor = path->parallel_workers;
    5101             :     double      leader_contribution;
    5102             : 
    5103             :     /*
    5104             :      * Early experience with parallel query suggests that when there is only
    5105             :      * one worker, the leader often makes a very substantial contribution to
    5106             :      * executing the parallel portion of the plan, but as more workers are
    5107             :      * added, it does less and less, because it's busy reading tuples from the
    5108             :      * workers and doing whatever non-parallel post-processing is needed.  By
    5109             :      * the time we reach 4 workers, the leader no longer makes a meaningful
    5110             :      * contribution.  Thus, for now, estimate that the leader spends 30% of
    5111             :      * its time servicing each worker, and the remainder executing the
    5112             :      * parallel plan.
    5113             :      */
    5114        1089 :     leader_contribution = 1.0 - (0.3 * path->parallel_workers);
    5115        1089 :     if (leader_contribution > 0)
    5116        1019 :         parallel_divisor += leader_contribution;
    5117             : 
    5118        1089 :     return parallel_divisor;
    5119             : }
    5120             : 
    5121             : /*
    5122             :  * compute_bitmap_pages
    5123             :  *
    5124             :  * compute number of pages fetched from heap in bitmap heap scan.
    5125             :  */
    5126             : double
    5127       19595 : compute_bitmap_pages(PlannerInfo *root, RelOptInfo *baserel, Path *bitmapqual,
    5128             :                      int loop_count, Cost *cost, double *tuple)
    5129             : {
    5130             :     Cost        indexTotalCost;
    5131             :     Selectivity indexSelectivity;
    5132             :     double      T;
    5133             :     double      pages_fetched;
    5134             :     double      tuples_fetched;
    5135             : 
    5136             :     /*
    5137             :      * Fetch total cost of obtaining the bitmap, as well as its total
    5138             :      * selectivity.
    5139             :      */
    5140       19595 :     cost_bitmap_tree_node(bitmapqual, &indexTotalCost, &indexSelectivity);
    5141             : 
    5142             :     /*
    5143             :      * Estimate number of main-table pages fetched.
    5144             :      */
    5145       19595 :     tuples_fetched = clamp_row_est(indexSelectivity * baserel->tuples);
    5146             : 
    5147       19595 :     T = (baserel->pages > 1) ? (double) baserel->pages : 1.0;
    5148             : 
    5149       19595 :     if (loop_count > 1)
    5150             :     {
    5151             :         /*
    5152             :          * For repeated bitmap scans, scale up the number of tuples fetched in
    5153             :          * the Mackert and Lohman formula by the number of scans, so that we
    5154             :          * estimate the number of pages fetched by all the scans. Then
    5155             :          * pro-rate for one scan.
    5156             :          */
    5157        3960 :         pages_fetched = index_pages_fetched(tuples_fetched * loop_count,
    5158             :                                             baserel->pages,
    5159             :                                             get_indexpath_pages(bitmapqual),
    5160             :                                             root);
    5161        3960 :         pages_fetched /= loop_count;
    5162             :     }
    5163             :     else
    5164             :     {
    5165             :         /*
    5166             :          * For a single scan, the number of heap pages that need to be fetched
    5167             :          * is the same as the Mackert and Lohman formula for the case T <= b
    5168             :          * (ie, no re-reads needed).
    5169             :          */
    5170       15635 :         pages_fetched =
    5171             :             (2.0 * T * tuples_fetched) / (2.0 * T + tuples_fetched);
    5172             :     }
    5173             : 
    5174       19595 :     if (pages_fetched >= T)
    5175        1963 :         pages_fetched = T;
    5176             :     else
    5177       17632 :         pages_fetched = ceil(pages_fetched);
    5178             : 
    5179       19595 :     if (cost)
    5180       14743 :         *cost = indexTotalCost;
    5181       19595 :     if (tuple)
    5182       14743 :         *tuple = tuples_fetched;
    5183             : 
    5184       19595 :     return pages_fetched;
    5185             : }

Generated by: LCOV version 1.11