LCOV - code coverage report
Current view: top level - src/backend/optimizer/path - joinrels.c (source / functions) Hit Total Coverage
Test: PostgreSQL Lines: 331 359 92.2 %
Date: 2017-09-29 15:12:54 Functions: 13 13 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * joinrels.c
       4             :  *    Routines to determine which relations should be joined
       5             :  *
       6             :  * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
       7             :  * Portions Copyright (c) 1994, Regents of the University of California
       8             :  *
       9             :  *
      10             :  * IDENTIFICATION
      11             :  *    src/backend/optimizer/path/joinrels.c
      12             :  *
      13             :  *-------------------------------------------------------------------------
      14             :  */
      15             : #include "postgres.h"
      16             : 
      17             : #include "optimizer/joininfo.h"
      18             : #include "optimizer/pathnode.h"
      19             : #include "optimizer/paths.h"
      20             : #include "utils/memutils.h"
      21             : 
      22             : 
      23             : static void make_rels_by_clause_joins(PlannerInfo *root,
      24             :                           RelOptInfo *old_rel,
      25             :                           ListCell *other_rels);
      26             : static void make_rels_by_clauseless_joins(PlannerInfo *root,
      27             :                               RelOptInfo *old_rel,
      28             :                               ListCell *other_rels);
      29             : static bool has_join_restriction(PlannerInfo *root, RelOptInfo *rel);
      30             : static bool has_legal_joinclause(PlannerInfo *root, RelOptInfo *rel);
      31             : static bool is_dummy_rel(RelOptInfo *rel);
      32             : static void mark_dummy_rel(RelOptInfo *rel);
      33             : static bool restriction_is_constant_false(List *restrictlist,
      34             :                               bool only_pushed_down);
      35             : static void populate_joinrel_with_paths(PlannerInfo *root, RelOptInfo *rel1,
      36             :                             RelOptInfo *rel2, RelOptInfo *joinrel,
      37             :                             SpecialJoinInfo *sjinfo, List *restrictlist);
      38             : 
      39             : 
      40             : /*
      41             :  * join_search_one_level
      42             :  *    Consider ways to produce join relations containing exactly 'level'
      43             :  *    jointree items.  (This is one step of the dynamic-programming method
      44             :  *    embodied in standard_join_search.)  Join rel nodes for each feasible
      45             :  *    combination of lower-level rels are created and returned in a list.
      46             :  *    Implementation paths are created for each such joinrel, too.
      47             :  *
      48             :  * level: level of rels we want to make this time
      49             :  * root->join_rel_level[j], 1 <= j < level, is a list of rels containing j items
      50             :  *
      51             :  * The result is returned in root->join_rel_level[level].
      52             :  */
      53             : void
      54        3718 : join_search_one_level(PlannerInfo *root, int level)
      55             : {
      56        3718 :     List      **joinrels = root->join_rel_level;
      57             :     ListCell   *r;
      58             :     int         k;
      59             : 
      60        3718 :     Assert(joinrels[level] == NIL);
      61             : 
      62             :     /* Set join_cur_level so that new joinrels are added to proper list */
      63        3718 :     root->join_cur_level = level;
      64             : 
      65             :     /*
      66             :      * First, consider left-sided and right-sided plans, in which rels of
      67             :      * exactly level-1 member relations are joined against initial relations.
      68             :      * We prefer to join using join clauses, but if we find a rel of level-1
      69             :      * members that has no join clauses, we will generate Cartesian-product
      70             :      * joins against all initial rels not already contained in it.
      71             :      */
      72       12271 :     foreach(r, joinrels[level - 1])
      73             :     {
      74        8553 :         RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);
      75             : 
      76        9518 :         if (old_rel->joininfo != NIL || old_rel->has_eclass_joins ||
      77         965 :             has_join_restriction(root, old_rel))
      78        7829 :         {
      79             :             /*
      80             :              * There are join clauses or join order restrictions relevant to
      81             :              * this rel, so consider joins between this rel and (only) those
      82             :              * initial rels it is linked to by a clause or restriction.
      83             :              *
      84             :              * At level 2 this condition is symmetric, so there is no need to
      85             :              * look at initial rels before this one in the list; we already
      86             :              * considered such joins when we were at the earlier rel.  (The
      87             :              * mirror-image joins are handled automatically by make_join_rel.)
      88             :              * In later passes (level > 2), we join rels of the previous level
      89             :              * to each initial rel they don't already include but have a join
      90             :              * clause or restriction with.
      91             :              */
      92             :             ListCell   *other_rels;
      93             : 
      94        7829 :             if (level == 2)     /* consider remaining initial rels */
      95        6119 :                 other_rels = lnext(r);
      96             :             else                /* consider all initial rels */
      97        1710 :                 other_rels = list_head(joinrels[1]);
      98             : 
      99        7829 :             make_rels_by_clause_joins(root,
     100             :                                       old_rel,
     101             :                                       other_rels);
     102             :         }
     103             :         else
     104             :         {
     105             :             /*
     106             :              * Oops, we have a relation that is not joined to any other
     107             :              * relation, either directly or by join-order restrictions.
     108             :              * Cartesian product time.
     109             :              *
     110             :              * We consider a cartesian product with each not-already-included
     111             :              * initial rel, whether it has other join clauses or not.  At
     112             :              * level 2, if there are two or more clauseless initial rels, we
     113             :              * will redundantly consider joining them in both directions; but
     114             :              * such cases aren't common enough to justify adding complexity to
     115             :              * avoid the duplicated effort.
     116             :              */
     117         724 :             make_rels_by_clauseless_joins(root,
     118             :                                           old_rel,
     119         724 :                                           list_head(joinrels[1]));
     120             :         }
     121             :     }
     122             : 
     123             :     /*
     124             :      * Now, consider "bushy plans" in which relations of k initial rels are
     125             :      * joined to relations of level-k initial rels, for 2 <= k <= level-2.
     126             :      *
     127             :      * We only consider bushy-plan joins for pairs of rels where there is a
     128             :      * suitable join clause (or join order restriction), in order to avoid
     129             :      * unreasonable growth of planning time.
     130             :      */
     131        4058 :     for (k = 2;; k++)
     132             :     {
     133        4058 :         int         other_level = level - k;
     134             : 
     135             :         /*
     136             :          * Since make_join_rel(x, y) handles both x,y and y,x cases, we only
     137             :          * need to go as far as the halfway point.
     138             :          */
     139        4058 :         if (k > other_level)
     140        3718 :             break;
     141             : 
     142        1661 :         foreach(r, joinrels[k])
     143             :         {
     144        1321 :             RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);
     145             :             ListCell   *other_rels;
     146             :             ListCell   *r2;
     147             : 
     148             :             /*
     149             :              * We can ignore relations without join clauses here, unless they
     150             :              * participate in join-order restrictions --- then we might have
     151             :              * to force a bushy join plan.
     152             :              */
     153        1340 :             if (old_rel->joininfo == NIL && !old_rel->has_eclass_joins &&
     154          19 :                 !has_join_restriction(root, old_rel))
     155          11 :                 continue;
     156             : 
     157        1310 :             if (k == other_level)
     158         741 :                 other_rels = lnext(r);  /* only consider remaining rels */
     159             :             else
     160         569 :                 other_rels = list_head(joinrels[other_level]);
     161             : 
     162        5162 :             for_each_cell(r2, other_rels)
     163             :             {
     164        3852 :                 RelOptInfo *new_rel = (RelOptInfo *) lfirst(r2);
     165             : 
     166        3852 :                 if (!bms_overlap(old_rel->relids, new_rel->relids))
     167             :                 {
     168             :                     /*
     169             :                      * OK, we can build a rel of the right level from this
     170             :                      * pair of rels.  Do so if there is at least one relevant
     171             :                      * join clause or join order restriction.
     172             :                      */
     173         930 :                     if (have_relevant_joinclause(root, old_rel, new_rel) ||
     174         145 :                         have_join_order_restriction(root, old_rel, new_rel))
     175             :                     {
     176         644 :                         (void) make_join_rel(root, old_rel, new_rel);
     177             :                     }
     178             :                 }
     179             :             }
     180             :         }
     181         340 :     }
     182             : 
     183             :     /*----------
     184             :      * Last-ditch effort: if we failed to find any usable joins so far, force
     185             :      * a set of cartesian-product joins to be generated.  This handles the
     186             :      * special case where all the available rels have join clauses but we
     187             :      * cannot use any of those clauses yet.  This can only happen when we are
     188             :      * considering a join sub-problem (a sub-joinlist) and all the rels in the
     189             :      * sub-problem have only join clauses with rels outside the sub-problem.
     190             :      * An example is
     191             :      *
     192             :      *      SELECT ... FROM a INNER JOIN b ON TRUE, c, d, ...
     193             :      *      WHERE a.w = c.x and b.y = d.z;
     194             :      *
     195             :      * If the "a INNER JOIN b" sub-problem does not get flattened into the
     196             :      * upper level, we must be willing to make a cartesian join of a and b;
     197             :      * but the code above will not have done so, because it thought that both
     198             :      * a and b have joinclauses.  We consider only left-sided and right-sided
     199             :      * cartesian joins in this case (no bushy).
     200             :      *----------
     201             :      */
     202        3718 :     if (joinrels[level] == NIL)
     203             :     {
     204             :         /*
     205             :          * This loop is just like the first one, except we always call
     206             :          * make_rels_by_clauseless_joins().
     207             :          */
     208           9 :         foreach(r, joinrels[level - 1])
     209             :         {
     210           6 :             RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);
     211             : 
     212           6 :             make_rels_by_clauseless_joins(root,
     213             :                                           old_rel,
     214           6 :                                           list_head(joinrels[1]));
     215             :         }
     216             : 
     217             :         /*----------
     218             :          * When special joins are involved, there may be no legal way
     219             :          * to make an N-way join for some values of N.  For example consider
     220             :          *
     221             :          * SELECT ... FROM t1 WHERE
     222             :          *   x IN (SELECT ... FROM t2,t3 WHERE ...) AND
     223             :          *   y IN (SELECT ... FROM t4,t5 WHERE ...)
     224             :          *
     225             :          * We will flatten this query to a 5-way join problem, but there are
     226             :          * no 4-way joins that join_is_legal() will consider legal.  We have
     227             :          * to accept failure at level 4 and go on to discover a workable
     228             :          * bushy plan at level 5.
     229             :          *
     230             :          * However, if there are no special joins and no lateral references
     231             :          * then join_is_legal() should never fail, and so the following sanity
     232             :          * check is useful.
     233             :          *----------
     234             :          */
     235           4 :         if (joinrels[level] == NIL &&
     236           1 :             root->join_info_list == NIL &&
     237           0 :             !root->hasLateralRTEs)
     238           0 :             elog(ERROR, "failed to build any %d-way joins", level);
     239             :     }
     240        3718 : }
     241             : 
     242             : /*
     243             :  * make_rels_by_clause_joins
     244             :  *    Build joins between the given relation 'old_rel' and other relations
     245             :  *    that participate in join clauses that 'old_rel' also participates in
     246             :  *    (or participate in join-order restrictions with it).
     247             :  *    The join rels are returned in root->join_rel_level[join_cur_level].
     248             :  *
     249             :  * Note: at levels above 2 we will generate the same joined relation in
     250             :  * multiple ways --- for example (a join b) join c is the same RelOptInfo as
     251             :  * (b join c) join a, though the second case will add a different set of Paths
     252             :  * to it.  This is the reason for using the join_rel_level mechanism, which
     253             :  * automatically ensures that each new joinrel is only added to the list once.
     254             :  *
     255             :  * 'old_rel' is the relation entry for the relation to be joined
     256             :  * 'other_rels': the first cell in a linked list containing the other
     257             :  * rels to be considered for joining
     258             :  *
     259             :  * Currently, this is only used with initial rels in other_rels, but it
     260             :  * will work for joining to joinrels too.
     261             :  */
     262             : static void
     263        7829 : make_rels_by_clause_joins(PlannerInfo *root,
     264             :                           RelOptInfo *old_rel,
     265             :                           ListCell *other_rels)
     266             : {
     267             :     ListCell   *l;
     268             : 
     269       20570 :     for_each_cell(l, other_rels)
     270             :     {
     271       12741 :         RelOptInfo *other_rel = (RelOptInfo *) lfirst(l);
     272             : 
     273       20728 :         if (!bms_overlap(old_rel->relids, other_rel->relids) &&
     274        9843 :             (have_relevant_joinclause(root, old_rel, other_rel) ||
     275        1856 :              have_join_order_restriction(root, old_rel, other_rel)))
     276             :         {
     277        6345 :             (void) make_join_rel(root, old_rel, other_rel);
     278             :         }
     279             :     }
     280        7829 : }
     281             : 
     282             : /*
     283             :  * make_rels_by_clauseless_joins
     284             :  *    Given a relation 'old_rel' and a list of other relations
     285             :  *    'other_rels', create a join relation between 'old_rel' and each
     286             :  *    member of 'other_rels' that isn't already included in 'old_rel'.
     287             :  *    The join rels are returned in root->join_rel_level[join_cur_level].
     288             :  *
     289             :  * 'old_rel' is the relation entry for the relation to be joined
     290             :  * 'other_rels': the first cell of a linked list containing the
     291             :  * other rels to be considered for joining
     292             :  *
     293             :  * Currently, this is only used with initial rels in other_rels, but it would
     294             :  * work for joining to joinrels too.
     295             :  */
     296             : static void
     297         730 : make_rels_by_clauseless_joins(PlannerInfo *root,
     298             :                               RelOptInfo *old_rel,
     299             :                               ListCell *other_rels)
     300             : {
     301             :     ListCell   *l;
     302             : 
     303        2290 :     for_each_cell(l, other_rels)
     304             :     {
     305        1560 :         RelOptInfo *other_rel = (RelOptInfo *) lfirst(l);
     306             : 
     307        1560 :         if (!bms_overlap(other_rel->relids, old_rel->relids))
     308             :         {
     309         768 :             (void) make_join_rel(root, old_rel, other_rel);
     310             :         }
     311             :     }
     312         730 : }
     313             : 
     314             : 
     315             : /*
     316             :  * join_is_legal
     317             :  *     Determine whether a proposed join is legal given the query's
     318             :  *     join order constraints; and if it is, determine the join type.
     319             :  *
     320             :  * Caller must supply not only the two rels, but the union of their relids.
     321             :  * (We could simplify the API by computing joinrelids locally, but this
     322             :  * would be redundant work in the normal path through make_join_rel.)
     323             :  *
     324             :  * On success, *sjinfo_p is set to NULL if this is to be a plain inner join,
     325             :  * else it's set to point to the associated SpecialJoinInfo node.  Also,
     326             :  * *reversed_p is set TRUE if the given relations need to be swapped to
     327             :  * match the SpecialJoinInfo node.
     328             :  */
     329             : static bool
     330        8583 : join_is_legal(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2,
     331             :               Relids joinrelids,
     332             :               SpecialJoinInfo **sjinfo_p, bool *reversed_p)
     333             : {
     334             :     SpecialJoinInfo *match_sjinfo;
     335             :     bool        reversed;
     336             :     bool        unique_ified;
     337             :     bool        must_be_leftjoin;
     338             :     ListCell   *l;
     339             : 
     340             :     /*
     341             :      * Ensure output params are set on failure return.  This is just to
     342             :      * suppress uninitialized-variable warnings from overly anal compilers.
     343             :      */
     344        8583 :     *sjinfo_p = NULL;
     345        8583 :     *reversed_p = false;
     346             : 
     347             :     /*
     348             :      * If we have any special joins, the proposed join might be illegal; and
     349             :      * in any case we have to determine its join type.  Scan the join info
     350             :      * list for matches and conflicts.
     351             :      */
     352        8583 :     match_sjinfo = NULL;
     353        8583 :     reversed = false;
     354        8583 :     unique_ified = false;
     355        8583 :     must_be_leftjoin = false;
     356             : 
     357       16164 :     foreach(l, root->join_info_list)
     358             :     {
     359        8547 :         SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
     360             : 
     361             :         /*
     362             :          * This special join is not relevant unless its RHS overlaps the
     363             :          * proposed join.  (Check this first as a fast path for dismissing
     364             :          * most irrelevant SJs quickly.)
     365             :          */
     366        8547 :         if (!bms_overlap(sjinfo->min_righthand, joinrelids))
     367        3485 :             continue;
     368             : 
     369             :         /*
     370             :          * Also, not relevant if proposed join is fully contained within RHS
     371             :          * (ie, we're still building up the RHS).
     372             :          */
     373        5062 :         if (bms_is_subset(joinrelids, sjinfo->min_righthand))
     374         437 :             continue;
     375             : 
     376             :         /*
     377             :          * Also, not relevant if SJ is already done within either input.
     378             :          */
     379        8136 :         if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
     380        3511 :             bms_is_subset(sjinfo->min_righthand, rel1->relids))
     381        1216 :             continue;
     382        4081 :         if (bms_is_subset(sjinfo->min_lefthand, rel2->relids) &&
     383         672 :             bms_is_subset(sjinfo->min_righthand, rel2->relids))
     384         246 :             continue;
     385             : 
     386             :         /*
     387             :          * If it's a semijoin and we already joined the RHS to any other rels
     388             :          * within either input, then we must have unique-ified the RHS at that
     389             :          * point (see below).  Therefore the semijoin is no longer relevant in
     390             :          * this join path.
     391             :          */
     392        3163 :         if (sjinfo->jointype == JOIN_SEMI)
     393             :         {
     394         876 :             if (bms_is_subset(sjinfo->syn_righthand, rel1->relids) &&
     395         154 :                 !bms_equal(sjinfo->syn_righthand, rel1->relids))
     396           3 :                 continue;
     397         994 :             if (bms_is_subset(sjinfo->syn_righthand, rel2->relids) &&
     398         275 :                 !bms_equal(sjinfo->syn_righthand, rel2->relids))
     399           1 :                 continue;
     400             :         }
     401             : 
     402             :         /*
     403             :          * If one input contains min_lefthand and the other contains
     404             :          * min_righthand, then we can perform the SJ at this join.
     405             :          *
     406             :          * Reject if we get matches to more than one SJ; that implies we're
     407             :          * considering something that's not really valid.
     408             :          */
     409        5453 :         if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
     410        2294 :             bms_is_subset(sjinfo->min_righthand, rel2->relids))
     411             :         {
     412        1593 :             if (match_sjinfo)
     413           0 :                 return false;   /* invalid join path */
     414        1593 :             match_sjinfo = sjinfo;
     415        1593 :             reversed = false;
     416             :         }
     417        1991 :         else if (bms_is_subset(sjinfo->min_lefthand, rel2->relids) &&
     418         425 :                  bms_is_subset(sjinfo->min_righthand, rel1->relids))
     419             :         {
     420         315 :             if (match_sjinfo)
     421           0 :                 return false;   /* invalid join path */
     422         315 :             match_sjinfo = sjinfo;
     423         315 :             reversed = true;
     424             :         }
     425        1648 :         else if (sjinfo->jointype == JOIN_SEMI &&
     426         450 :                  bms_equal(sjinfo->syn_righthand, rel2->relids) &&
     427          53 :                  create_unique_path(root, rel2, rel2->cheapest_total_path,
     428             :                                     sjinfo) != NULL)
     429             :         {
     430             :             /*----------
     431             :              * For a semijoin, we can join the RHS to anything else by
     432             :              * unique-ifying the RHS (if the RHS can be unique-ified).
     433             :              * We will only get here if we have the full RHS but less
     434             :              * than min_lefthand on the LHS.
     435             :              *
     436             :              * The reason to consider such a join path is exemplified by
     437             :              *  SELECT ... FROM a,b WHERE (a.x,b.y) IN (SELECT c1,c2 FROM c)
     438             :              * If we insist on doing this as a semijoin we will first have
     439             :              * to form the cartesian product of A*B.  But if we unique-ify
     440             :              * C then the semijoin becomes a plain innerjoin and we can join
     441             :              * in any order, eg C to A and then to B.  When C is much smaller
     442             :              * than A and B this can be a huge win.  So we allow C to be
     443             :              * joined to just A or just B here, and then make_join_rel has
     444             :              * to handle the case properly.
     445             :              *
     446             :              * Note that actually we'll allow unique-ified C to be joined to
     447             :              * some other relation D here, too.  That is legal, if usually not
     448             :              * very sane, and this routine is only concerned with legality not
     449             :              * with whether the join is good strategy.
     450             :              *----------
     451             :              */
     452          52 :             if (match_sjinfo)
     453          20 :                 return false;   /* invalid join path */
     454          32 :             match_sjinfo = sjinfo;
     455          32 :             reversed = false;
     456          32 :             unique_ified = true;
     457             :         }
     458        1544 :         else if (sjinfo->jointype == JOIN_SEMI &&
     459         396 :                  bms_equal(sjinfo->syn_righthand, rel1->relids) &&
     460          51 :                  create_unique_path(root, rel1, rel1->cheapest_total_path,
     461             :                                     sjinfo) != NULL)
     462             :         {
     463             :             /* Reversed semijoin case */
     464          51 :             if (match_sjinfo)
     465          11 :                 return false;   /* invalid join path */
     466          40 :             match_sjinfo = sjinfo;
     467          40 :             reversed = true;
     468          40 :             unique_ified = true;
     469             :         }
     470             :         else
     471             :         {
     472             :             /*
     473             :              * Otherwise, the proposed join overlaps the RHS but isn't a valid
     474             :              * implementation of this SJ.  But don't panic quite yet: the RHS
     475             :              * violation might have occurred previously, in one or both input
     476             :              * relations, in which case we must have previously decided that
     477             :              * it was OK to commute some other SJ with this one.  If we need
     478             :              * to perform this join to finish building up the RHS, rejecting
     479             :              * it could lead to not finding any plan at all.  (This can occur
     480             :              * because of the heuristics elsewhere in this file that postpone
     481             :              * clauseless joins: we might not consider doing a clauseless join
     482             :              * within the RHS until after we've performed other, validly
     483             :              * commutable SJs with one or both sides of the clauseless join.)
     484             :              * This consideration boils down to the rule that if both inputs
     485             :              * overlap the RHS, we can allow the join --- they are either
     486             :              * fully within the RHS, or represent previously-allowed joins to
     487             :              * rels outside it.
     488             :              */
     489        1437 :             if (bms_overlap(rel1->relids, sjinfo->min_righthand) &&
     490         289 :                 bms_overlap(rel2->relids, sjinfo->min_righthand))
     491          20 :                 continue;       /* assume valid previous violation of RHS */
     492             : 
     493             :             /*
     494             :              * The proposed join could still be legal, but only if we're
     495             :              * allowed to associate it into the RHS of this SJ.  That means
     496             :              * this SJ must be a LEFT join (not SEMI or ANTI, and certainly
     497             :              * not FULL) and the proposed join must not overlap the LHS.
     498             :              */
     499        1941 :             if (sjinfo->jointype != JOIN_LEFT ||
     500         813 :                 bms_overlap(joinrelids, sjinfo->min_lefthand))
     501         935 :                 return false;   /* invalid join path */
     502             : 
     503             :             /*
     504             :              * To be valid, the proposed join must be a LEFT join; otherwise
     505             :              * it can't associate into this SJ's RHS.  But we may not yet have
     506             :              * found the SpecialJoinInfo matching the proposed join, so we
     507             :              * can't test that yet.  Remember the requirement for later.
     508             :              */
     509         193 :             must_be_leftjoin = true;
     510             :         }
     511             :     }
     512             : 
     513             :     /*
     514             :      * Fail if violated any SJ's RHS and didn't match to a LEFT SJ: the
     515             :      * proposed join can't associate into an SJ's RHS.
     516             :      *
     517             :      * Also, fail if the proposed join's predicate isn't strict; we're
     518             :      * essentially checking to see if we can apply outer-join identity 3, and
     519             :      * that's a requirement.  (This check may be redundant with checks in
     520             :      * make_outerjoininfo, but I'm not quite sure, and it's cheap to test.)
     521             :      */
     522        7617 :     if (must_be_leftjoin &&
     523          33 :         (match_sjinfo == NULL ||
     524          66 :          match_sjinfo->jointype != JOIN_LEFT ||
     525          33 :          !match_sjinfo->lhs_strict))
     526          44 :         return false;           /* invalid join path */
     527             : 
     528             :     /*
     529             :      * We also have to check for constraints imposed by LATERAL references.
     530             :      */
     531        7573 :     if (root->hasLateralRTEs)
     532             :     {
     533             :         bool        lateral_fwd;
     534             :         bool        lateral_rev;
     535             :         Relids      join_lateral_rels;
     536             : 
     537             :         /*
     538             :          * The proposed rels could each contain lateral references to the
     539             :          * other, in which case the join is impossible.  If there are lateral
     540             :          * references in just one direction, then the join has to be done with
     541             :          * a nestloop with the lateral referencer on the inside.  If the join
     542             :          * matches an SJ that cannot be implemented by such a nestloop, the
     543             :          * join is impossible.
     544             :          *
     545             :          * Also, if the lateral reference is only indirect, we should reject
     546             :          * the join; whatever rel(s) the reference chain goes through must be
     547             :          * joined to first.
     548             :          *
     549             :          * Another case that might keep us from building a valid plan is the
     550             :          * implementation restriction described by have_dangerous_phv().
     551             :          */
     552         579 :         lateral_fwd = bms_overlap(rel1->relids, rel2->lateral_relids);
     553         579 :         lateral_rev = bms_overlap(rel2->relids, rel1->lateral_relids);
     554         579 :         if (lateral_fwd && lateral_rev)
     555           1 :             return false;       /* have lateral refs in both directions */
     556         578 :         if (lateral_fwd)
     557             :         {
     558             :             /* has to be implemented as nestloop with rel1 on left */
     559         208 :             if (match_sjinfo &&
     560          13 :                 (reversed ||
     561          11 :                  unique_ified ||
     562          11 :                  match_sjinfo->jointype == JOIN_FULL))
     563           2 :                 return false;   /* not implementable as nestloop */
     564             :             /* check there is a direct reference from rel2 to rel1 */
     565         206 :             if (!bms_overlap(rel1->relids, rel2->direct_lateral_relids))
     566           3 :                 return false;   /* only indirect refs, so reject */
     567             :             /* check we won't have a dangerous PHV */
     568         203 :             if (have_dangerous_phv(root, rel1->relids, rel2->lateral_relids))
     569          12 :                 return false;   /* might be unable to handle required PHV */
     570             :         }
     571         370 :         else if (lateral_rev)
     572             :         {
     573             :             /* has to be implemented as nestloop with rel2 on left */
     574          64 :             if (match_sjinfo &&
     575           2 :                 (!reversed ||
     576           2 :                  unique_ified ||
     577           2 :                  match_sjinfo->jointype == JOIN_FULL))
     578           0 :                 return false;   /* not implementable as nestloop */
     579             :             /* check there is a direct reference from rel1 to rel2 */
     580          64 :             if (!bms_overlap(rel2->relids, rel1->direct_lateral_relids))
     581           0 :                 return false;   /* only indirect refs, so reject */
     582             :             /* check we won't have a dangerous PHV */
     583          64 :             if (have_dangerous_phv(root, rel2->relids, rel1->lateral_relids))
     584          14 :                 return false;   /* might be unable to handle required PHV */
     585             :         }
     586             : 
     587             :         /*
     588             :          * LATERAL references could also cause problems later on if we accept
     589             :          * this join: if the join's minimum parameterization includes any rels
     590             :          * that would have to be on the inside of an outer join with this join
     591             :          * rel, then it's never going to be possible to build the complete
     592             :          * query using this join.  We should reject this join not only because
     593             :          * it'll save work, but because if we don't, the clauseless-join
     594             :          * heuristics might think that legality of this join means that some
     595             :          * other join rel need not be formed, and that could lead to failure
     596             :          * to find any plan at all.  We have to consider not only rels that
     597             :          * are directly on the inner side of an OJ with the joinrel, but also
     598             :          * ones that are indirectly so, so search to find all such rels.
     599             :          */
     600         547 :         join_lateral_rels = min_join_parameterization(root, joinrelids,
     601             :                                                       rel1, rel2);
     602         547 :         if (join_lateral_rels)
     603             :         {
     604          93 :             Relids      join_plus_rhs = bms_copy(joinrelids);
     605             :             bool        more;
     606             : 
     607             :             do
     608             :             {
     609         125 :                 more = false;
     610         241 :                 foreach(l, root->join_info_list)
     611             :                 {
     612         116 :                     SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
     613             : 
     614         224 :                     if (bms_overlap(sjinfo->min_lefthand, join_plus_rhs) &&
     615         108 :                         !bms_is_subset(sjinfo->min_righthand, join_plus_rhs))
     616             :                     {
     617          47 :                         join_plus_rhs = bms_add_members(join_plus_rhs,
     618          47 :                                                         sjinfo->min_righthand);
     619          47 :                         more = true;
     620             :                     }
     621             :                     /* full joins constrain both sides symmetrically */
     622         116 :                     if (sjinfo->jointype == JOIN_FULL &&
     623           0 :                         bms_overlap(sjinfo->min_righthand, join_plus_rhs) &&
     624           0 :                         !bms_is_subset(sjinfo->min_lefthand, join_plus_rhs))
     625             :                     {
     626           0 :                         join_plus_rhs = bms_add_members(join_plus_rhs,
     627           0 :                                                         sjinfo->min_lefthand);
     628           0 :                         more = true;
     629             :                     }
     630             :                 }
     631         125 :             } while (more);
     632          93 :             if (bms_overlap(join_plus_rhs, join_lateral_rels))
     633          32 :                 return false;   /* will not be able to join to some RHS rel */
     634             :         }
     635             :     }
     636             : 
     637             :     /* Otherwise, it's a valid join */
     638        7509 :     *sjinfo_p = match_sjinfo;
     639        7509 :     *reversed_p = reversed;
     640        7509 :     return true;
     641             : }
     642             : 
     643             : 
     644             : /*
     645             :  * make_join_rel
     646             :  *     Find or create a join RelOptInfo that represents the join of
     647             :  *     the two given rels, and add to it path information for paths
     648             :  *     created with the two rels as outer and inner rel.
     649             :  *     (The join rel may already contain paths generated from other
     650             :  *     pairs of rels that add up to the same set of base rels.)
     651             :  *
     652             :  * NB: will return NULL if attempted join is not valid.  This can happen
     653             :  * when working with outer joins, or with IN or EXISTS clauses that have been
     654             :  * turned into joins.
     655             :  */
     656             : RelOptInfo *
     657        8565 : make_join_rel(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2)
     658             : {
     659             :     Relids      joinrelids;
     660             :     SpecialJoinInfo *sjinfo;
     661             :     bool        reversed;
     662             :     SpecialJoinInfo sjinfo_data;
     663             :     RelOptInfo *joinrel;
     664             :     List       *restrictlist;
     665             : 
     666             :     /* We should never try to join two overlapping sets of rels. */
     667        8565 :     Assert(!bms_overlap(rel1->relids, rel2->relids));
     668             : 
     669             :     /* Construct Relids set that identifies the joinrel. */
     670        8565 :     joinrelids = bms_union(rel1->relids, rel2->relids);
     671             : 
     672             :     /* Check validity and determine join type. */
     673        8565 :     if (!join_is_legal(root, rel1, rel2, joinrelids,
     674             :                        &sjinfo, &reversed))
     675             :     {
     676             :         /* invalid join path */
     677        1064 :         bms_free(joinrelids);
     678        1064 :         return NULL;
     679             :     }
     680             : 
     681             :     /* Swap rels if needed to match the join info. */
     682        7501 :     if (reversed)
     683             :     {
     684         315 :         RelOptInfo *trel = rel1;
     685             : 
     686         315 :         rel1 = rel2;
     687         315 :         rel2 = trel;
     688             :     }
     689             : 
     690             :     /*
     691             :      * If it's a plain inner join, then we won't have found anything in
     692             :      * join_info_list.  Make up a SpecialJoinInfo so that selectivity
     693             :      * estimation functions will know what's being joined.
     694             :      */
     695        7501 :     if (sjinfo == NULL)
     696             :     {
     697        5595 :         sjinfo = &sjinfo_data;
     698        5595 :         sjinfo->type = T_SpecialJoinInfo;
     699        5595 :         sjinfo->min_lefthand = rel1->relids;
     700        5595 :         sjinfo->min_righthand = rel2->relids;
     701        5595 :         sjinfo->syn_lefthand = rel1->relids;
     702        5595 :         sjinfo->syn_righthand = rel2->relids;
     703        5595 :         sjinfo->jointype = JOIN_INNER;
     704             :         /* we don't bother trying to make the remaining fields valid */
     705        5595 :         sjinfo->lhs_strict = false;
     706        5595 :         sjinfo->delay_upper_joins = false;
     707        5595 :         sjinfo->semi_can_btree = false;
     708        5595 :         sjinfo->semi_can_hash = false;
     709        5595 :         sjinfo->semi_operators = NIL;
     710        5595 :         sjinfo->semi_rhs_exprs = NIL;
     711             :     }
     712             : 
     713             :     /*
     714             :      * Find or build the join RelOptInfo, and compute the restrictlist that
     715             :      * goes with this particular joining.
     716             :      */
     717        7501 :     joinrel = build_join_rel(root, joinrelids, rel1, rel2, sjinfo,
     718             :                              &restrictlist);
     719             : 
     720             :     /*
     721             :      * If we've already proven this join is empty, we needn't consider any
     722             :      * more paths for it.
     723             :      */
     724        7501 :     if (is_dummy_rel(joinrel))
     725             :     {
     726           0 :         bms_free(joinrelids);
     727           0 :         return joinrel;
     728             :     }
     729             : 
     730             :     /* Add paths to the join relation. */
     731        7501 :     populate_joinrel_with_paths(root, rel1, rel2, joinrel, sjinfo,
     732             :                                 restrictlist);
     733             : 
     734        7501 :     bms_free(joinrelids);
     735             : 
     736        7501 :     return joinrel;
     737             : }
     738             : 
     739             : /*
     740             :  * populate_joinrel_with_paths
     741             :  *    Add paths to the given joinrel for given pair of joining relations. The
     742             :  *    SpecialJoinInfo provides details about the join and the restrictlist
     743             :  *    contains the join clauses and the other clauses applicable for given pair
     744             :  *    of the joining relations.
     745             :  */
     746             : static void
     747        7501 : populate_joinrel_with_paths(PlannerInfo *root, RelOptInfo *rel1,
     748             :                             RelOptInfo *rel2, RelOptInfo *joinrel,
     749             :                             SpecialJoinInfo *sjinfo, List *restrictlist)
     750             : {
     751             :     /*
     752             :      * Consider paths using each rel as both outer and inner.  Depending on
     753             :      * the join type, a provably empty outer or inner rel might mean the join
     754             :      * is provably empty too; in which case throw away any previously computed
     755             :      * paths and mark the join as dummy.  (We do it this way since it's
     756             :      * conceivable that dummy-ness of a multi-element join might only be
     757             :      * noticeable for certain construction paths.)
     758             :      *
     759             :      * Also, a provably constant-false join restriction typically means that
     760             :      * we can skip evaluating one or both sides of the join.  We do this by
     761             :      * marking the appropriate rel as dummy.  For outer joins, a
     762             :      * constant-false restriction that is pushed down still means the whole
     763             :      * join is dummy, while a non-pushed-down one means that no inner rows
     764             :      * will join so we can treat the inner rel as dummy.
     765             :      *
     766             :      * We need only consider the jointypes that appear in join_info_list, plus
     767             :      * JOIN_INNER.
     768             :      */
     769        7501 :     switch (sjinfo->jointype)
     770             :     {
     771             :         case JOIN_INNER:
     772       11189 :             if (is_dummy_rel(rel1) || is_dummy_rel(rel2) ||
     773        5594 :                 restriction_is_constant_false(restrictlist, false))
     774             :             {
     775           3 :                 mark_dummy_rel(joinrel);
     776           3 :                 break;
     777             :             }
     778        5592 :             add_paths_to_joinrel(root, joinrel, rel1, rel2,
     779             :                                  JOIN_INNER, sjinfo,
     780             :                                  restrictlist);
     781        5592 :             add_paths_to_joinrel(root, joinrel, rel2, rel1,
     782             :                                  JOIN_INNER, sjinfo,
     783             :                                  restrictlist);
     784        5592 :             break;
     785             :         case JOIN_LEFT:
     786        2602 :             if (is_dummy_rel(rel1) ||
     787        1300 :                 restriction_is_constant_false(restrictlist, true))
     788             :             {
     789           2 :                 mark_dummy_rel(joinrel);
     790           2 :                 break;
     791             :             }
     792        1300 :             if (restriction_is_constant_false(restrictlist, false) &&
     793           0 :                 bms_is_subset(rel2->relids, sjinfo->syn_righthand))
     794           0 :                 mark_dummy_rel(rel2);
     795        1300 :             add_paths_to_joinrel(root, joinrel, rel1, rel2,
     796             :                                  JOIN_LEFT, sjinfo,
     797             :                                  restrictlist);
     798        1300 :             add_paths_to_joinrel(root, joinrel, rel2, rel1,
     799             :                                  JOIN_RIGHT, sjinfo,
     800             :                                  restrictlist);
     801        1300 :             break;
     802             :         case JOIN_FULL:
     803          58 :             if ((is_dummy_rel(rel1) && is_dummy_rel(rel2)) ||
     804          29 :                 restriction_is_constant_false(restrictlist, true))
     805             :             {
     806           0 :                 mark_dummy_rel(joinrel);
     807           0 :                 break;
     808             :             }
     809          29 :             add_paths_to_joinrel(root, joinrel, rel1, rel2,
     810             :                                  JOIN_FULL, sjinfo,
     811             :                                  restrictlist);
     812          29 :             add_paths_to_joinrel(root, joinrel, rel2, rel1,
     813             :                                  JOIN_FULL, sjinfo,
     814             :                                  restrictlist);
     815             : 
     816             :             /*
     817             :              * If there are join quals that aren't mergeable or hashable, we
     818             :              * may not be able to build any valid plan.  Complain here so that
     819             :              * we can give a somewhat-useful error message.  (Since we have no
     820             :              * flexibility of planning for a full join, there's no chance of
     821             :              * succeeding later with another pair of input rels.)
     822             :              */
     823          29 :             if (joinrel->pathlist == NIL)
     824           0 :                 ereport(ERROR,
     825             :                         (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     826             :                          errmsg("FULL JOIN is only supported with merge-joinable or hash-joinable join conditions")));
     827          29 :             break;
     828             :         case JOIN_SEMI:
     829             : 
     830             :             /*
     831             :              * We might have a normal semijoin, or a case where we don't have
     832             :              * enough rels to do the semijoin but can unique-ify the RHS and
     833             :              * then do an innerjoin (see comments in join_is_legal).  In the
     834             :              * latter case we can't apply JOIN_SEMI joining.
     835             :              */
     836         645 :             if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
     837         321 :                 bms_is_subset(sjinfo->min_righthand, rel2->relids))
     838             :             {
     839         641 :                 if (is_dummy_rel(rel1) || is_dummy_rel(rel2) ||
     840         320 :                     restriction_is_constant_false(restrictlist, false))
     841             :                 {
     842           2 :                     mark_dummy_rel(joinrel);
     843           2 :                     break;
     844             :                 }
     845         319 :                 add_paths_to_joinrel(root, joinrel, rel1, rel2,
     846             :                                      JOIN_SEMI, sjinfo,
     847             :                                      restrictlist);
     848             :             }
     849             : 
     850             :             /*
     851             :              * If we know how to unique-ify the RHS and one input rel is
     852             :              * exactly the RHS (not a superset) we can consider unique-ifying
     853             :              * it and then doing a regular join.  (The create_unique_path
     854             :              * check here is probably redundant with what join_is_legal did,
     855             :              * but if so the check is cheap because it's cached.  So test
     856             :              * anyway to be sure.)
     857             :              */
     858         644 :             if (bms_equal(sjinfo->syn_righthand, rel2->relids) &&
     859         322 :                 create_unique_path(root, rel2, rel2->cheapest_total_path,
     860             :                                    sjinfo) != NULL)
     861             :             {
     862         630 :                 if (is_dummy_rel(rel1) || is_dummy_rel(rel2) ||
     863         315 :                     restriction_is_constant_false(restrictlist, false))
     864             :                 {
     865           0 :                     mark_dummy_rel(joinrel);
     866           0 :                     break;
     867             :                 }
     868         315 :                 add_paths_to_joinrel(root, joinrel, rel1, rel2,
     869             :                                      JOIN_UNIQUE_INNER, sjinfo,
     870             :                                      restrictlist);
     871         315 :                 add_paths_to_joinrel(root, joinrel, rel2, rel1,
     872             :                                      JOIN_UNIQUE_OUTER, sjinfo,
     873             :                                      restrictlist);
     874             :             }
     875         322 :             break;
     876             :         case JOIN_ANTI:
     877         502 :             if (is_dummy_rel(rel1) ||
     878         251 :                 restriction_is_constant_false(restrictlist, true))
     879             :             {
     880           0 :                 mark_dummy_rel(joinrel);
     881           0 :                 break;
     882             :             }
     883         251 :             if (restriction_is_constant_false(restrictlist, false) &&
     884           0 :                 bms_is_subset(rel2->relids, sjinfo->syn_righthand))
     885           0 :                 mark_dummy_rel(rel2);
     886         251 :             add_paths_to_joinrel(root, joinrel, rel1, rel2,
     887             :                                  JOIN_ANTI, sjinfo,
     888             :                                  restrictlist);
     889         251 :             break;
     890             :         default:
     891             :             /* other values not expected here */
     892           0 :             elog(ERROR, "unrecognized join type: %d", (int) sjinfo->jointype);
     893             :             break;
     894             :     }
     895        7501 : }
     896             : 
     897             : 
     898             : /*
     899             :  * have_join_order_restriction
     900             :  *      Detect whether the two relations should be joined to satisfy
     901             :  *      a join-order restriction arising from special or lateral joins.
     902             :  *
     903             :  * In practice this is always used with have_relevant_joinclause(), and so
     904             :  * could be merged with that function, but it seems clearer to separate the
     905             :  * two concerns.  We need this test because there are degenerate cases where
     906             :  * a clauseless join must be performed to satisfy join-order restrictions.
     907             :  * Also, if one rel has a lateral reference to the other, or both are needed
     908             :  * to compute some PHV, we should consider joining them even if the join would
     909             :  * be clauseless.
     910             :  *
     911             :  * Note: this is only a problem if one side of a degenerate outer join
     912             :  * contains multiple rels, or a clauseless join is required within an
     913             :  * IN/EXISTS RHS; else we will find a join path via the "last ditch" case in
     914             :  * join_search_one_level().  We could dispense with this test if we were
     915             :  * willing to try bushy plans in the "last ditch" case, but that seems much
     916             :  * less efficient.
     917             :  */
     918             : bool
     919        2309 : have_join_order_restriction(PlannerInfo *root,
     920             :                             RelOptInfo *rel1, RelOptInfo *rel2)
     921             : {
     922        2309 :     bool        result = false;
     923             :     ListCell   *l;
     924             : 
     925             :     /*
     926             :      * If either side has a direct lateral reference to the other, attempt the
     927             :      * join regardless of outer-join considerations.
     928             :      */
     929        4449 :     if (bms_overlap(rel1->relids, rel2->direct_lateral_relids) ||
     930        2140 :         bms_overlap(rel2->relids, rel1->direct_lateral_relids))
     931         197 :         return true;
     932             : 
     933             :     /*
     934             :      * Likewise, if both rels are needed to compute some PlaceHolderVar,
     935             :      * attempt the join regardless of outer-join considerations.  (This is not
     936             :      * very desirable, because a PHV with a large eval_at set will cause a lot
     937             :      * of probably-useless joins to be considered, but failing to do this can
     938             :      * cause us to fail to construct a plan at all.)
     939             :      */
     940        2215 :     foreach(l, root->placeholder_list)
     941             :     {
     942         105 :         PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(l);
     943             : 
     944         130 :         if (bms_is_subset(rel1->relids, phinfo->ph_eval_at) &&
     945          25 :             bms_is_subset(rel2->relids, phinfo->ph_eval_at))
     946           2 :             return true;
     947             :     }
     948             : 
     949             :     /*
     950             :      * It's possible that the rels correspond to the left and right sides of a
     951             :      * degenerate outer join, that is, one with no joinclause mentioning the
     952             :      * non-nullable side; in which case we should force the join to occur.
     953             :      *
     954             :      * Also, the two rels could represent a clauseless join that has to be
     955             :      * completed to build up the LHS or RHS of an outer join.
     956             :      */
     957        6212 :     foreach(l, root->join_info_list)
     958             :     {
     959        4129 :         SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
     960             : 
     961             :         /* ignore full joins --- other mechanisms handle them */
     962        4129 :         if (sjinfo->jointype == JOIN_FULL)
     963           0 :             continue;
     964             : 
     965             :         /* Can we perform the SJ with these rels? */
     966        5194 :         if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
     967        1065 :             bms_is_subset(sjinfo->min_righthand, rel2->relids))
     968             :         {
     969          14 :             result = true;
     970          14 :             break;
     971             :         }
     972        4423 :         if (bms_is_subset(sjinfo->min_lefthand, rel2->relids) &&
     973         308 :             bms_is_subset(sjinfo->min_righthand, rel1->relids))
     974             :         {
     975           3 :             result = true;
     976           3 :             break;
     977             :         }
     978             : 
     979             :         /*
     980             :          * Might we need to join these rels to complete the RHS?  We have to
     981             :          * use "overlap" tests since either rel might include a lower SJ that
     982             :          * has been proven to commute with this one.
     983             :          */
     984        4902 :         if (bms_overlap(sjinfo->min_righthand, rel1->relids) &&
     985         790 :             bms_overlap(sjinfo->min_righthand, rel2->relids))
     986             :         {
     987           7 :             result = true;
     988           7 :             break;
     989             :         }
     990             : 
     991             :         /* Likewise for the LHS. */
     992        5541 :         if (bms_overlap(sjinfo->min_lefthand, rel1->relids) &&
     993        1436 :             bms_overlap(sjinfo->min_lefthand, rel2->relids))
     994             :         {
     995           3 :             result = true;
     996           3 :             break;
     997             :         }
     998             :     }
     999             : 
    1000             :     /*
    1001             :      * We do not force the join to occur if either input rel can legally be
    1002             :      * joined to anything else using joinclauses.  This essentially means that
    1003             :      * clauseless bushy joins are put off as long as possible. The reason is
    1004             :      * that when there is a join order restriction high up in the join tree
    1005             :      * (that is, with many rels inside the LHS or RHS), we would otherwise
    1006             :      * expend lots of effort considering very stupid join combinations within
    1007             :      * its LHS or RHS.
    1008             :      */
    1009        2110 :     if (result)
    1010             :     {
    1011          50 :         if (has_legal_joinclause(root, rel1) ||
    1012          23 :             has_legal_joinclause(root, rel2))
    1013           8 :             result = false;
    1014             :     }
    1015             : 
    1016        2110 :     return result;
    1017             : }
    1018             : 
    1019             : 
    1020             : /*
    1021             :  * has_join_restriction
    1022             :  *      Detect whether the specified relation has join-order restrictions,
    1023             :  *      due to being inside an outer join or an IN (sub-SELECT),
    1024             :  *      or participating in any LATERAL references or multi-rel PHVs.
    1025             :  *
    1026             :  * Essentially, this tests whether have_join_order_restriction() could
    1027             :  * succeed with this rel and some other one.  It's OK if we sometimes
    1028             :  * say "true" incorrectly.  (Therefore, we don't bother with the relatively
    1029             :  * expensive has_legal_joinclause test.)
    1030             :  */
    1031             : static bool
    1032         984 : has_join_restriction(PlannerInfo *root, RelOptInfo *rel)
    1033             : {
    1034             :     ListCell   *l;
    1035             : 
    1036         984 :     if (rel->lateral_relids != NULL || rel->lateral_referencers != NULL)
    1037         217 :         return true;
    1038             : 
    1039         788 :     foreach(l, root->placeholder_list)
    1040             :     {
    1041          21 :         PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(l);
    1042             : 
    1043          22 :         if (bms_is_subset(rel->relids, phinfo->ph_eval_at) &&
    1044           1 :             !bms_equal(rel->relids, phinfo->ph_eval_at))
    1045           0 :             return true;
    1046             :     }
    1047             : 
    1048         790 :     foreach(l, root->join_info_list)
    1049             :     {
    1050          55 :         SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
    1051             : 
    1052             :         /* ignore full joins --- other mechanisms preserve their ordering */
    1053          55 :         if (sjinfo->jointype == JOIN_FULL)
    1054           2 :             continue;
    1055             : 
    1056             :         /* ignore if SJ is already contained in rel */
    1057          78 :         if (bms_is_subset(sjinfo->min_lefthand, rel->relids) &&
    1058          25 :             bms_is_subset(sjinfo->min_righthand, rel->relids))
    1059          16 :             continue;
    1060             : 
    1061             :         /* restricted if it overlaps LHS or RHS, but doesn't contain SJ */
    1062          63 :         if (bms_overlap(sjinfo->min_lefthand, rel->relids) ||
    1063          26 :             bms_overlap(sjinfo->min_righthand, rel->relids))
    1064          32 :             return true;
    1065             :     }
    1066             : 
    1067         735 :     return false;
    1068             : }
    1069             : 
    1070             : 
    1071             : /*
    1072             :  * has_legal_joinclause
    1073             :  *      Detect whether the specified relation can legally be joined
    1074             :  *      to any other rels using join clauses.
    1075             :  *
    1076             :  * We consider only joins to single other relations in the current
    1077             :  * initial_rels list.  This is sufficient to get a "true" result in most real
    1078             :  * queries, and an occasional erroneous "false" will only cost a bit more
    1079             :  * planning time.  The reason for this limitation is that considering joins to
    1080             :  * other joins would require proving that the other join rel can legally be
    1081             :  * formed, which seems like too much trouble for something that's only a
    1082             :  * heuristic to save planning time.  (Note: we must look at initial_rels
    1083             :  * and not all of the query, since when we are planning a sub-joinlist we
    1084             :  * may be forced to make clauseless joins within initial_rels even though
    1085             :  * there are join clauses linking to other parts of the query.)
    1086             :  */
    1087             : static bool
    1088          50 : has_legal_joinclause(PlannerInfo *root, RelOptInfo *rel)
    1089             : {
    1090             :     ListCell   *lc;
    1091             : 
    1092         221 :     foreach(lc, root->initial_rels)
    1093             :     {
    1094         179 :         RelOptInfo *rel2 = (RelOptInfo *) lfirst(lc);
    1095             : 
    1096             :         /* ignore rels that are already in "rel" */
    1097         179 :         if (bms_overlap(rel->relids, rel2->relids))
    1098          60 :             continue;
    1099             : 
    1100         119 :         if (have_relevant_joinclause(root, rel, rel2))
    1101             :         {
    1102             :             Relids      joinrelids;
    1103             :             SpecialJoinInfo *sjinfo;
    1104             :             bool        reversed;
    1105             : 
    1106             :             /* join_is_legal needs relids of the union */
    1107          18 :             joinrelids = bms_union(rel->relids, rel2->relids);
    1108             : 
    1109          18 :             if (join_is_legal(root, rel, rel2, joinrelids,
    1110             :                               &sjinfo, &reversed))
    1111             :             {
    1112             :                 /* Yes, this will work */
    1113           8 :                 bms_free(joinrelids);
    1114           8 :                 return true;
    1115             :             }
    1116             : 
    1117          10 :             bms_free(joinrelids);
    1118             :         }
    1119             :     }
    1120             : 
    1121          42 :     return false;
    1122             : }
    1123             : 
    1124             : 
    1125             : /*
    1126             :  * There's a pitfall for creating parameterized nestloops: suppose the inner
    1127             :  * rel (call it A) has a parameter that is a PlaceHolderVar, and that PHV's
    1128             :  * minimum eval_at set includes the outer rel (B) and some third rel (C).
    1129             :  * We might think we could create a B/A nestloop join that's parameterized by
    1130             :  * C.  But we would end up with a plan in which the PHV's expression has to be
    1131             :  * evaluated as a nestloop parameter at the B/A join; and the executor is only
    1132             :  * set up to handle simple Vars as NestLoopParams.  Rather than add complexity
    1133             :  * and overhead to the executor for such corner cases, it seems better to
    1134             :  * forbid the join.  (Note that we can still make use of A's parameterized
    1135             :  * path with pre-joined B+C as the outer rel.  have_join_order_restriction()
    1136             :  * ensures that we will consider making such a join even if there are not
    1137             :  * other reasons to do so.)
    1138             :  *
    1139             :  * So we check whether any PHVs used in the query could pose such a hazard.
    1140             :  * We don't have any simple way of checking whether a risky PHV would actually
    1141             :  * be used in the inner plan, and the case is so unusual that it doesn't seem
    1142             :  * worth working very hard on it.
    1143             :  *
    1144             :  * This needs to be checked in two places.  If the inner rel's minimum
    1145             :  * parameterization would trigger the restriction, then join_is_legal() should
    1146             :  * reject the join altogether, because there will be no workable paths for it.
    1147             :  * But joinpath.c has to check again for every proposed nestloop path, because
    1148             :  * the inner path might have more than the minimum parameterization, causing
    1149             :  * some PHV to be dangerous for it that otherwise wouldn't be.
    1150             :  */
    1151             : bool
    1152        1062 : have_dangerous_phv(PlannerInfo *root,
    1153             :                    Relids outer_relids, Relids inner_params)
    1154             : {
    1155             :     ListCell   *lc;
    1156             : 
    1157        1294 :     foreach(lc, root->placeholder_list)
    1158             :     {
    1159         270 :         PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(lc);
    1160             : 
    1161         270 :         if (!bms_is_subset(phinfo->ph_eval_at, inner_params))
    1162         172 :             continue;           /* ignore, could not be a nestloop param */
    1163          98 :         if (!bms_overlap(phinfo->ph_eval_at, outer_relids))
    1164          22 :             continue;           /* ignore, not relevant to this join */
    1165          76 :         if (bms_is_subset(phinfo->ph_eval_at, outer_relids))
    1166          38 :             continue;           /* safe, it can be eval'd within outerrel */
    1167             :         /* Otherwise, it's potentially unsafe, so reject the join */
    1168          38 :         return true;
    1169             :     }
    1170             : 
    1171             :     /* OK to perform the join */
    1172        1024 :     return false;
    1173             : }
    1174             : 
    1175             : 
    1176             : /*
    1177             :  * is_dummy_rel --- has relation been proven empty?
    1178             :  */
    1179             : static bool
    1180       21550 : is_dummy_rel(RelOptInfo *rel)
    1181             : {
    1182       21550 :     return IS_DUMMY_REL(rel);
    1183             : }
    1184             : 
    1185             : /*
    1186             :  * Mark a relation as proven empty.
    1187             :  *
    1188             :  * During GEQO planning, this can get invoked more than once on the same
    1189             :  * baserel struct, so it's worth checking to see if the rel is already marked
    1190             :  * dummy.
    1191             :  *
    1192             :  * Also, when called during GEQO join planning, we are in a short-lived
    1193             :  * memory context.  We must make sure that the dummy path attached to a
    1194             :  * baserel survives the GEQO cycle, else the baserel is trashed for future
    1195             :  * GEQO cycles.  On the other hand, when we are marking a joinrel during GEQO,
    1196             :  * we don't want the dummy path to clutter the main planning context.  Upshot
    1197             :  * is that the best solution is to explicitly make the dummy path in the same
    1198             :  * context the given RelOptInfo is in.
    1199             :  */
    1200             : static void
    1201           7 : mark_dummy_rel(RelOptInfo *rel)
    1202             : {
    1203             :     MemoryContext oldcontext;
    1204             : 
    1205             :     /* Already marked? */
    1206           7 :     if (is_dummy_rel(rel))
    1207           7 :         return;
    1208             : 
    1209             :     /* No, so choose correct context to make the dummy path in */
    1210           7 :     oldcontext = MemoryContextSwitchTo(GetMemoryChunkContext(rel));
    1211             : 
    1212             :     /* Set dummy size estimate */
    1213           7 :     rel->rows = 0;
    1214             : 
    1215             :     /* Evict any previously chosen paths */
    1216           7 :     rel->pathlist = NIL;
    1217           7 :     rel->partial_pathlist = NIL;
    1218             : 
    1219             :     /* Set up the dummy path */
    1220           7 :     add_path(rel, (Path *) create_append_path(rel, NIL, NULL, 0, NIL));
    1221             : 
    1222             :     /* Set or update cheapest_total_path and related fields */
    1223           7 :     set_cheapest(rel);
    1224             : 
    1225           7 :     MemoryContextSwitchTo(oldcontext);
    1226             : }
    1227             : 
    1228             : 
    1229             : /*
    1230             :  * restriction_is_constant_false --- is a restrictlist just FALSE?
    1231             :  *
    1232             :  * In cases where a qual is provably constant FALSE, eval_const_expressions
    1233             :  * will generally have thrown away anything that's ANDed with it.  In outer
    1234             :  * join situations this will leave us computing cartesian products only to
    1235             :  * decide there's no match for an outer row, which is pretty stupid.  So,
    1236             :  * we need to detect the case.
    1237             :  *
    1238             :  * If only_pushed_down is TRUE, then consider only pushed-down quals.
    1239             :  */
    1240             : static bool
    1241        9360 : restriction_is_constant_false(List *restrictlist, bool only_pushed_down)
    1242             : {
    1243             :     ListCell   *lc;
    1244             : 
    1245             :     /*
    1246             :      * Despite the above comment, the restriction list we see here might
    1247             :      * possibly have other members besides the FALSE constant, since other
    1248             :      * quals could get "pushed down" to the outer join level.  So we check
    1249             :      * each member of the list.
    1250             :      */
    1251       18338 :     foreach(lc, restrictlist)
    1252             :     {
    1253        8981 :         RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);
    1254             : 
    1255        8981 :         if (only_pushed_down && !rinfo->is_pushed_down)
    1256        1975 :             continue;
    1257             : 
    1258        7006 :         if (rinfo->clause && IsA(rinfo->clause, Const))
    1259             :         {
    1260           3 :             Const      *con = (Const *) rinfo->clause;
    1261             : 
    1262             :             /* constant NULL is as good as constant FALSE for our purposes */
    1263           3 :             if (con->constisnull)
    1264           0 :                 return true;
    1265           3 :             if (!DatumGetBool(con->constvalue))
    1266           3 :                 return true;
    1267             :         }
    1268             :     }
    1269        9357 :     return false;
    1270             : }

Generated by: LCOV version 1.11