Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * array_selfuncs.c
4 : * Functions for selectivity estimation of array operators
5 : *
6 : * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
7 : * Portions Copyright (c) 1994, Regents of the University of California
8 : *
9 : *
10 : * IDENTIFICATION
11 : * src/backend/utils/adt/array_selfuncs.c
12 : *
13 : *-------------------------------------------------------------------------
14 : */
15 : #include "postgres.h"
16 :
17 : #include <math.h>
18 :
19 : #include "access/htup_details.h"
20 : #include "catalog/pg_collation.h"
21 : #include "catalog/pg_operator.h"
22 : #include "catalog/pg_statistic.h"
23 : #include "optimizer/clauses.h"
24 : #include "utils/array.h"
25 : #include "utils/builtins.h"
26 : #include "utils/lsyscache.h"
27 : #include "utils/selfuncs.h"
28 : #include "utils/typcache.h"
29 :
30 :
31 : /* Default selectivity constant for "@>" and "<@" operators */
32 : #define DEFAULT_CONTAIN_SEL 0.005
33 :
34 : /* Default selectivity constant for "&&" operator */
35 : #define DEFAULT_OVERLAP_SEL 0.01
36 :
37 : /* Default selectivity for given operator */
38 : #define DEFAULT_SEL(operator) \
39 : ((operator) == OID_ARRAY_OVERLAP_OP ? \
40 : DEFAULT_OVERLAP_SEL : DEFAULT_CONTAIN_SEL)
41 :
42 : static Selectivity calc_arraycontsel(VariableStatData *vardata, Datum constval,
43 : Oid elemtype, Oid operator);
44 : static Selectivity mcelem_array_selec(ArrayType *array,
45 : TypeCacheEntry *typentry,
46 : Datum *mcelem, int nmcelem,
47 : float4 *numbers, int nnumbers,
48 : float4 *hist, int nhist,
49 : Oid operator, FmgrInfo *cmpfunc);
50 : static Selectivity mcelem_array_contain_overlap_selec(Datum *mcelem, int nmcelem,
51 : float4 *numbers, int nnumbers,
52 : Datum *array_data, int nitems,
53 : Oid operator, FmgrInfo *cmpfunc);
54 : static Selectivity mcelem_array_contained_selec(Datum *mcelem, int nmcelem,
55 : float4 *numbers, int nnumbers,
56 : Datum *array_data, int nitems,
57 : float4 *hist, int nhist,
58 : Oid operator, FmgrInfo *cmpfunc);
59 : static float *calc_hist(const float4 *hist, int nhist, int n);
60 : static float *calc_distr(const float *p, int n, int m, float rest);
61 : static int floor_log2(uint32 n);
62 : static bool find_next_mcelem(Datum *mcelem, int nmcelem, Datum value,
63 : int *index, FmgrInfo *cmpfunc);
64 : static int element_compare(const void *key1, const void *key2, void *arg);
65 : static int float_compare_desc(const void *key1, const void *key2);
66 :
67 :
68 : /*
69 : * scalararraysel_containment
70 : * Estimate selectivity of ScalarArrayOpExpr via array containment.
71 : *
72 : * If we have const =/<> ANY/ALL (array_var) then we can estimate the
73 : * selectivity as though this were an array containment operator,
74 : * array_var op ARRAY[const].
75 : *
76 : * scalararraysel() has already verified that the ScalarArrayOpExpr's operator
77 : * is the array element type's default equality or inequality operator, and
78 : * has aggressively simplified both inputs to constants.
79 : *
80 : * Returns selectivity (0..1), or -1 if we fail to estimate selectivity.
81 : */
82 : Selectivity
83 492 : scalararraysel_containment(PlannerInfo *root,
84 : Node *leftop, Node *rightop,
85 : Oid elemtype, bool isEquality, bool useOr,
86 : int varRelid)
87 : {
88 : Selectivity selec;
89 : VariableStatData vardata;
90 : Datum constval;
91 : TypeCacheEntry *typentry;
92 : FmgrInfo *cmpfunc;
93 :
94 : /*
95 : * rightop must be a variable, else punt.
96 : */
97 492 : examine_variable(root, rightop, varRelid, &vardata);
98 492 : if (!vardata.rel)
99 : {
100 482 : ReleaseVariableStats(vardata);
101 482 : return -1.0;
102 : }
103 :
104 : /*
105 : * leftop must be a constant, else punt.
106 : */
107 10 : if (!IsA(leftop, Const))
108 : {
109 2 : ReleaseVariableStats(vardata);
110 2 : return -1.0;
111 : }
112 8 : if (((Const *) leftop)->constisnull)
113 : {
114 : /* qual can't succeed if null on left */
115 0 : ReleaseVariableStats(vardata);
116 0 : return (Selectivity) 0.0;
117 : }
118 8 : constval = ((Const *) leftop)->constvalue;
119 :
120 : /* Get element type's default comparison function */
121 8 : typentry = lookup_type_cache(elemtype, TYPECACHE_CMP_PROC_FINFO);
122 8 : if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid))
123 : {
124 0 : ReleaseVariableStats(vardata);
125 0 : return -1.0;
126 : }
127 8 : cmpfunc = &typentry->cmp_proc_finfo;
128 :
129 : /*
130 : * If the operator is <>, swap ANY/ALL, then invert the result later.
131 : */
132 8 : if (!isEquality)
133 6 : useOr = !useOr;
134 :
135 : /* Get array element stats for var, if available */
136 16 : if (HeapTupleIsValid(vardata.statsTuple) &&
137 8 : statistic_proc_security_check(&vardata, cmpfunc->fn_oid))
138 8 : {
139 : Form_pg_statistic stats;
140 : AttStatsSlot sslot;
141 : AttStatsSlot hslot;
142 :
143 8 : stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple);
144 :
145 : /* MCELEM will be an array of same type as element */
146 8 : if (get_attstatsslot(&sslot, vardata.statsTuple,
147 : STATISTIC_KIND_MCELEM, InvalidOid,
148 : ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS))
149 : {
150 : /* For ALL case, also get histogram of distinct-element counts */
151 0 : if (useOr ||
152 0 : !get_attstatsslot(&hslot, vardata.statsTuple,
153 : STATISTIC_KIND_DECHIST, InvalidOid,
154 : ATTSTATSSLOT_NUMBERS))
155 0 : memset(&hslot, 0, sizeof(hslot));
156 :
157 : /*
158 : * For = ANY, estimate as var @> ARRAY[const].
159 : *
160 : * For = ALL, estimate as var <@ ARRAY[const].
161 : */
162 0 : if (useOr)
163 0 : selec = mcelem_array_contain_overlap_selec(sslot.values,
164 : sslot.nvalues,
165 : sslot.numbers,
166 : sslot.nnumbers,
167 : &constval, 1,
168 : OID_ARRAY_CONTAINS_OP,
169 : cmpfunc);
170 : else
171 0 : selec = mcelem_array_contained_selec(sslot.values,
172 : sslot.nvalues,
173 : sslot.numbers,
174 : sslot.nnumbers,
175 : &constval, 1,
176 : hslot.numbers,
177 : hslot.nnumbers,
178 : OID_ARRAY_CONTAINED_OP,
179 : cmpfunc);
180 :
181 0 : free_attstatsslot(&hslot);
182 0 : free_attstatsslot(&sslot);
183 : }
184 : else
185 : {
186 : /* No most-common-elements info, so do without */
187 8 : if (useOr)
188 8 : selec = mcelem_array_contain_overlap_selec(NULL, 0,
189 : NULL, 0,
190 : &constval, 1,
191 : OID_ARRAY_CONTAINS_OP,
192 : cmpfunc);
193 : else
194 0 : selec = mcelem_array_contained_selec(NULL, 0,
195 : NULL, 0,
196 : &constval, 1,
197 : NULL, 0,
198 : OID_ARRAY_CONTAINED_OP,
199 : cmpfunc);
200 : }
201 :
202 : /*
203 : * MCE stats count only non-null rows, so adjust for null rows.
204 : */
205 8 : selec *= (1.0 - stats->stanullfrac);
206 : }
207 : else
208 : {
209 : /* No stats at all, so do without */
210 0 : if (useOr)
211 0 : selec = mcelem_array_contain_overlap_selec(NULL, 0,
212 : NULL, 0,
213 : &constval, 1,
214 : OID_ARRAY_CONTAINS_OP,
215 : cmpfunc);
216 : else
217 0 : selec = mcelem_array_contained_selec(NULL, 0,
218 : NULL, 0,
219 : &constval, 1,
220 : NULL, 0,
221 : OID_ARRAY_CONTAINED_OP,
222 : cmpfunc);
223 : /* we assume no nulls here, so no stanullfrac correction */
224 : }
225 :
226 8 : ReleaseVariableStats(vardata);
227 :
228 : /*
229 : * If the operator is <>, invert the results.
230 : */
231 8 : if (!isEquality)
232 6 : selec = 1.0 - selec;
233 :
234 8 : CLAMP_PROBABILITY(selec);
235 :
236 8 : return selec;
237 : }
238 :
239 : /*
240 : * arraycontsel -- restriction selectivity for array @>, &&, <@ operators
241 : */
242 : Datum
243 60 : arraycontsel(PG_FUNCTION_ARGS)
244 : {
245 60 : PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
246 60 : Oid operator = PG_GETARG_OID(1);
247 60 : List *args = (List *) PG_GETARG_POINTER(2);
248 60 : int varRelid = PG_GETARG_INT32(3);
249 : VariableStatData vardata;
250 : Node *other;
251 : bool varonleft;
252 : Selectivity selec;
253 : Oid element_typeid;
254 :
255 : /*
256 : * If expression is not (variable op something) or (something op
257 : * variable), then punt and return a default estimate.
258 : */
259 60 : if (!get_restriction_variable(root, args, varRelid,
260 : &vardata, &other, &varonleft))
261 0 : PG_RETURN_FLOAT8(DEFAULT_SEL(operator));
262 :
263 : /*
264 : * Can't do anything useful if the something is not a constant, either.
265 : */
266 60 : if (!IsA(other, Const))
267 : {
268 0 : ReleaseVariableStats(vardata);
269 0 : PG_RETURN_FLOAT8(DEFAULT_SEL(operator));
270 : }
271 :
272 : /*
273 : * The "&&", "@>" and "<@" operators are strict, so we can cope with a
274 : * NULL constant right away.
275 : */
276 60 : if (((Const *) other)->constisnull)
277 : {
278 0 : ReleaseVariableStats(vardata);
279 0 : PG_RETURN_FLOAT8(0.0);
280 : }
281 :
282 : /*
283 : * If var is on the right, commute the operator, so that we can assume the
284 : * var is on the left in what follows.
285 : */
286 60 : if (!varonleft)
287 : {
288 0 : if (operator == OID_ARRAY_CONTAINS_OP)
289 0 : operator = OID_ARRAY_CONTAINED_OP;
290 0 : else if (operator == OID_ARRAY_CONTAINED_OP)
291 0 : operator = OID_ARRAY_CONTAINS_OP;
292 : }
293 :
294 : /*
295 : * OK, there's a Var and a Const we're dealing with here. We need the
296 : * Const to be an array with same element type as column, else we can't do
297 : * anything useful. (Such cases will likely fail at runtime, but here
298 : * we'd rather just return a default estimate.)
299 : */
300 60 : element_typeid = get_base_element_type(((Const *) other)->consttype);
301 120 : if (element_typeid != InvalidOid &&
302 60 : element_typeid == get_base_element_type(vardata.vartype))
303 : {
304 60 : selec = calc_arraycontsel(&vardata, ((Const *) other)->constvalue,
305 : element_typeid, operator);
306 : }
307 : else
308 : {
309 0 : selec = DEFAULT_SEL(operator);
310 : }
311 :
312 60 : ReleaseVariableStats(vardata);
313 :
314 60 : CLAMP_PROBABILITY(selec);
315 :
316 60 : PG_RETURN_FLOAT8((float8) selec);
317 : }
318 :
319 : /*
320 : * arraycontjoinsel -- join selectivity for array @>, &&, <@ operators
321 : */
322 : Datum
323 0 : arraycontjoinsel(PG_FUNCTION_ARGS)
324 : {
325 : /* For the moment this is just a stub */
326 0 : Oid operator = PG_GETARG_OID(1);
327 :
328 0 : PG_RETURN_FLOAT8(DEFAULT_SEL(operator));
329 : }
330 :
331 : /*
332 : * Calculate selectivity for "arraycolumn @> const", "arraycolumn && const"
333 : * or "arraycolumn <@ const" based on the statistics
334 : *
335 : * This function is mainly responsible for extracting the pg_statistic data
336 : * to be used; we then pass the problem on to mcelem_array_selec().
337 : */
338 : static Selectivity
339 60 : calc_arraycontsel(VariableStatData *vardata, Datum constval,
340 : Oid elemtype, Oid operator)
341 : {
342 : Selectivity selec;
343 : TypeCacheEntry *typentry;
344 : FmgrInfo *cmpfunc;
345 : ArrayType *array;
346 :
347 : /* Get element type's default comparison function */
348 60 : typentry = lookup_type_cache(elemtype, TYPECACHE_CMP_PROC_FINFO);
349 60 : if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid))
350 0 : return DEFAULT_SEL(operator);
351 60 : cmpfunc = &typentry->cmp_proc_finfo;
352 :
353 : /*
354 : * The caller made sure the const is an array with same element type, so
355 : * get it now
356 : */
357 60 : array = DatumGetArrayTypeP(constval);
358 :
359 117 : if (HeapTupleIsValid(vardata->statsTuple) &&
360 57 : statistic_proc_security_check(vardata, cmpfunc->fn_oid))
361 57 : {
362 : Form_pg_statistic stats;
363 : AttStatsSlot sslot;
364 : AttStatsSlot hslot;
365 :
366 57 : stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
367 :
368 : /* MCELEM will be an array of same type as column */
369 57 : if (get_attstatsslot(&sslot, vardata->statsTuple,
370 : STATISTIC_KIND_MCELEM, InvalidOid,
371 : ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS))
372 : {
373 : /*
374 : * For "array <@ const" case we also need histogram of distinct
375 : * element counts.
376 : */
377 68 : if (operator != OID_ARRAY_CONTAINED_OP ||
378 11 : !get_attstatsslot(&hslot, vardata->statsTuple,
379 : STATISTIC_KIND_DECHIST, InvalidOid,
380 : ATTSTATSSLOT_NUMBERS))
381 46 : memset(&hslot, 0, sizeof(hslot));
382 :
383 : /* Use the most-common-elements slot for the array Var. */
384 57 : selec = mcelem_array_selec(array, typentry,
385 : sslot.values, sslot.nvalues,
386 : sslot.numbers, sslot.nnumbers,
387 : hslot.numbers, hslot.nnumbers,
388 : operator, cmpfunc);
389 :
390 57 : free_attstatsslot(&hslot);
391 57 : free_attstatsslot(&sslot);
392 : }
393 : else
394 : {
395 : /* No most-common-elements info, so do without */
396 0 : selec = mcelem_array_selec(array, typentry,
397 : NULL, 0, NULL, 0, NULL, 0,
398 : operator, cmpfunc);
399 : }
400 :
401 : /*
402 : * MCE stats count only non-null rows, so adjust for null rows.
403 : */
404 57 : selec *= (1.0 - stats->stanullfrac);
405 : }
406 : else
407 : {
408 : /* No stats at all, so do without */
409 3 : selec = mcelem_array_selec(array, typentry,
410 : NULL, 0, NULL, 0, NULL, 0,
411 : operator, cmpfunc);
412 : /* we assume no nulls here, so no stanullfrac correction */
413 : }
414 :
415 : /* If constant was toasted, release the copy we made */
416 60 : if (PointerGetDatum(array) != constval)
417 0 : pfree(array);
418 :
419 60 : return selec;
420 : }
421 :
422 : /*
423 : * Array selectivity estimation based on most common elements statistics
424 : *
425 : * This function just deconstructs and sorts the array constant's contents,
426 : * and then passes the problem on to mcelem_array_contain_overlap_selec or
427 : * mcelem_array_contained_selec depending on the operator.
428 : */
429 : static Selectivity
430 60 : mcelem_array_selec(ArrayType *array, TypeCacheEntry *typentry,
431 : Datum *mcelem, int nmcelem,
432 : float4 *numbers, int nnumbers,
433 : float4 *hist, int nhist,
434 : Oid operator, FmgrInfo *cmpfunc)
435 : {
436 : Selectivity selec;
437 : int num_elems;
438 : Datum *elem_values;
439 : bool *elem_nulls;
440 : bool null_present;
441 : int nonnull_nitems;
442 : int i;
443 :
444 : /*
445 : * Prepare constant array data for sorting. Sorting lets us find unique
446 : * elements and efficiently merge with the MCELEM array.
447 : */
448 180 : deconstruct_array(array,
449 : typentry->type_id,
450 60 : typentry->typlen,
451 60 : typentry->typbyval,
452 60 : typentry->typalign,
453 : &elem_values, &elem_nulls, &num_elems);
454 :
455 : /* Collapse out any null elements */
456 60 : nonnull_nitems = 0;
457 60 : null_present = false;
458 132 : for (i = 0; i < num_elems; i++)
459 : {
460 72 : if (elem_nulls[i])
461 7 : null_present = true;
462 : else
463 65 : elem_values[nonnull_nitems++] = elem_values[i];
464 : }
465 :
466 : /*
467 : * Query "column @> '{anything, null}'" matches nothing. For the other
468 : * two operators, presence of a null in the constant can be ignored.
469 : */
470 60 : if (null_present && operator == OID_ARRAY_CONTAINS_OP)
471 : {
472 2 : pfree(elem_values);
473 2 : pfree(elem_nulls);
474 2 : return (Selectivity) 0.0;
475 : }
476 :
477 : /* Sort extracted elements using their default comparison function. */
478 58 : qsort_arg(elem_values, nonnull_nitems, sizeof(Datum),
479 : element_compare, cmpfunc);
480 :
481 : /* Separate cases according to operator */
482 58 : if (operator == OID_ARRAY_CONTAINS_OP || operator == OID_ARRAY_OVERLAP_OP)
483 47 : selec = mcelem_array_contain_overlap_selec(mcelem, nmcelem,
484 : numbers, nnumbers,
485 : elem_values, nonnull_nitems,
486 : operator, cmpfunc);
487 11 : else if (operator == OID_ARRAY_CONTAINED_OP)
488 11 : selec = mcelem_array_contained_selec(mcelem, nmcelem,
489 : numbers, nnumbers,
490 : elem_values, nonnull_nitems,
491 : hist, nhist,
492 : operator, cmpfunc);
493 : else
494 : {
495 0 : elog(ERROR, "arraycontsel called for unrecognized operator %u",
496 : operator);
497 : selec = 0.0; /* keep compiler quiet */
498 : }
499 :
500 58 : pfree(elem_values);
501 58 : pfree(elem_nulls);
502 58 : return selec;
503 : }
504 :
505 : /*
506 : * Estimate selectivity of "column @> const" and "column && const" based on
507 : * most common element statistics. This estimation assumes element
508 : * occurrences are independent.
509 : *
510 : * mcelem (of length nmcelem) and numbers (of length nnumbers) are from
511 : * the array column's MCELEM statistics slot, or are NULL/0 if stats are
512 : * not available. array_data (of length nitems) is the constant's elements.
513 : *
514 : * Both the mcelem and array_data arrays are assumed presorted according
515 : * to the element type's cmpfunc. Null elements are not present.
516 : *
517 : * TODO: this estimate probably could be improved by using the distinct
518 : * elements count histogram. For example, excepting the special case of
519 : * "column @> '{}'", we can multiply the calculated selectivity by the
520 : * fraction of nonempty arrays in the column.
521 : */
522 : static Selectivity
523 55 : mcelem_array_contain_overlap_selec(Datum *mcelem, int nmcelem,
524 : float4 *numbers, int nnumbers,
525 : Datum *array_data, int nitems,
526 : Oid operator, FmgrInfo *cmpfunc)
527 : {
528 : Selectivity selec,
529 : elem_selec;
530 : int mcelem_index,
531 : i;
532 : bool use_bsearch;
533 : float4 minfreq;
534 :
535 : /*
536 : * There should be three more Numbers than Values, because the last three
537 : * cells should hold minimal and maximal frequency among the non-null
538 : * elements, and then the frequency of null elements. Ignore the Numbers
539 : * if not right.
540 : */
541 55 : if (nnumbers != nmcelem + 3)
542 : {
543 11 : numbers = NULL;
544 11 : nnumbers = 0;
545 : }
546 :
547 55 : if (numbers)
548 : {
549 : /* Grab the lowest observed frequency */
550 44 : minfreq = numbers[nmcelem];
551 : }
552 : else
553 : {
554 : /* Without statistics make some default assumptions */
555 11 : minfreq = 2 * (float4) DEFAULT_CONTAIN_SEL;
556 : }
557 :
558 : /* Decide whether it is faster to use binary search or not. */
559 55 : if (nitems * floor_log2((uint32) nmcelem) < nmcelem + nitems)
560 55 : use_bsearch = true;
561 : else
562 0 : use_bsearch = false;
563 :
564 55 : if (operator == OID_ARRAY_CONTAINS_OP)
565 : {
566 : /*
567 : * Initial selectivity for "column @> const" query is 1.0, and it will
568 : * be decreased with each element of constant array.
569 : */
570 33 : selec = 1.0;
571 : }
572 : else
573 : {
574 : /*
575 : * Initial selectivity for "column && const" query is 0.0, and it will
576 : * be increased with each element of constant array.
577 : */
578 22 : selec = 0.0;
579 : }
580 :
581 : /* Scan mcelem and array in parallel. */
582 55 : mcelem_index = 0;
583 108 : for (i = 0; i < nitems; i++)
584 : {
585 53 : bool match = false;
586 :
587 : /* Ignore any duplicates in the array data. */
588 61 : if (i > 0 &&
589 8 : element_compare(&array_data[i - 1], &array_data[i], cmpfunc) == 0)
590 0 : continue;
591 :
592 : /* Find the smallest MCELEM >= this array item. */
593 53 : if (use_bsearch)
594 : {
595 53 : match = find_next_mcelem(mcelem, nmcelem, array_data[i],
596 : &mcelem_index, cmpfunc);
597 : }
598 : else
599 : {
600 0 : while (mcelem_index < nmcelem)
601 : {
602 0 : int cmp = element_compare(&mcelem[mcelem_index],
603 0 : &array_data[i],
604 : cmpfunc);
605 :
606 0 : if (cmp < 0)
607 0 : mcelem_index++;
608 : else
609 : {
610 0 : if (cmp == 0)
611 0 : match = true; /* mcelem is found */
612 0 : break;
613 : }
614 : }
615 : }
616 :
617 53 : if (match && numbers)
618 : {
619 : /* MCELEM matches the array item; use its frequency. */
620 42 : elem_selec = numbers[mcelem_index];
621 42 : mcelem_index++;
622 : }
623 : else
624 : {
625 : /*
626 : * The element is not in MCELEM. Punt, but assume that the
627 : * selectivity cannot be more than minfreq / 2.
628 : */
629 11 : elem_selec = Min(DEFAULT_CONTAIN_SEL, minfreq / 2);
630 : }
631 :
632 : /*
633 : * Update overall selectivity using the current element's selectivity
634 : * and an assumption of element occurrence independence.
635 : */
636 53 : if (operator == OID_ARRAY_CONTAINS_OP)
637 33 : selec *= elem_selec;
638 : else
639 20 : selec = selec + elem_selec - selec * elem_selec;
640 :
641 : /* Clamp intermediate results to stay sane despite roundoff error */
642 53 : CLAMP_PROBABILITY(selec);
643 : }
644 :
645 55 : return selec;
646 : }
647 :
648 : /*
649 : * Estimate selectivity of "column <@ const" based on most common element
650 : * statistics.
651 : *
652 : * mcelem (of length nmcelem) and numbers (of length nnumbers) are from
653 : * the array column's MCELEM statistics slot, or are NULL/0 if stats are
654 : * not available. array_data (of length nitems) is the constant's elements.
655 : * hist (of length nhist) is from the array column's DECHIST statistics slot,
656 : * or is NULL/0 if those stats are not available.
657 : *
658 : * Both the mcelem and array_data arrays are assumed presorted according
659 : * to the element type's cmpfunc. Null elements are not present.
660 : *
661 : * Independent element occurrence would imply a particular distribution of
662 : * distinct element counts among matching rows. Real data usually falsifies
663 : * that assumption. For example, in a set of 11-element integer arrays having
664 : * elements in the range [0..10], element occurrences are typically not
665 : * independent. If they were, a sufficiently-large set would include all
666 : * distinct element counts 0 through 11. We correct for this using the
667 : * histogram of distinct element counts.
668 : *
669 : * In the "column @> const" and "column && const" cases, we usually have a
670 : * "const" with low number of elements (otherwise we have selectivity close
671 : * to 0 or 1 respectively). That's why the effect of dependence related
672 : * to distinct element count distribution is negligible there. In the
673 : * "column <@ const" case, number of elements is usually high (otherwise we
674 : * have selectivity close to 0). That's why we should do a correction with
675 : * the array distinct element count distribution here.
676 : *
677 : * Using the histogram of distinct element counts produces a different
678 : * distribution law than independent occurrences of elements. This
679 : * distribution law can be described as follows:
680 : *
681 : * P(o1, o2, ..., on) = f1^o1 * (1 - f1)^(1 - o1) * f2^o2 *
682 : * (1 - f2)^(1 - o2) * ... * fn^on * (1 - fn)^(1 - on) * hist[m] / ind[m]
683 : *
684 : * where:
685 : * o1, o2, ..., on - occurrences of elements 1, 2, ..., n
686 : * (1 - occurrence, 0 - no occurrence) in row
687 : * f1, f2, ..., fn - frequencies of elements 1, 2, ..., n
688 : * (scalar values in [0..1]) according to collected statistics
689 : * m = o1 + o2 + ... + on = total number of distinct elements in row
690 : * hist[m] - histogram data for occurrence of m elements.
691 : * ind[m] - probability of m occurrences from n events assuming their
692 : * probabilities to be equal to frequencies of array elements.
693 : *
694 : * ind[m] = sum(f1^o1 * (1 - f1)^(1 - o1) * f2^o2 * (1 - f2)^(1 - o2) *
695 : * ... * fn^on * (1 - fn)^(1 - on), o1, o2, ..., on) | o1 + o2 + .. on = m
696 : */
697 : static Selectivity
698 11 : mcelem_array_contained_selec(Datum *mcelem, int nmcelem,
699 : float4 *numbers, int nnumbers,
700 : Datum *array_data, int nitems,
701 : float4 *hist, int nhist,
702 : Oid operator, FmgrInfo *cmpfunc)
703 : {
704 : int mcelem_index,
705 : i,
706 11 : unique_nitems = 0;
707 : float selec,
708 : minfreq,
709 : nullelem_freq;
710 : float *dist,
711 : *mcelem_dist,
712 : *hist_part;
713 : float avg_count,
714 : mult,
715 : rest;
716 : float *elem_selec;
717 :
718 : /*
719 : * There should be three more Numbers than Values in the MCELEM slot,
720 : * because the last three cells should hold minimal and maximal frequency
721 : * among the non-null elements, and then the frequency of null elements.
722 : * Punt if not right, because we can't do much without the element freqs.
723 : */
724 11 : if (numbers == NULL || nnumbers != nmcelem + 3)
725 0 : return DEFAULT_CONTAIN_SEL;
726 :
727 : /* Can't do much without a count histogram, either */
728 11 : if (hist == NULL || nhist < 3)
729 0 : return DEFAULT_CONTAIN_SEL;
730 :
731 : /*
732 : * Grab some of the summary statistics that compute_array_stats() stores:
733 : * lowest frequency, frequency of null elements, and average distinct
734 : * element count.
735 : */
736 11 : minfreq = numbers[nmcelem];
737 11 : nullelem_freq = numbers[nmcelem + 2];
738 11 : avg_count = hist[nhist - 1];
739 :
740 : /*
741 : * "rest" will be the sum of the frequencies of all elements not
742 : * represented in MCELEM. The average distinct element count is the sum
743 : * of the frequencies of *all* elements. Begin with that; we will proceed
744 : * to subtract the MCELEM frequencies.
745 : */
746 11 : rest = avg_count;
747 :
748 : /*
749 : * mult is a multiplier representing estimate of probability that each
750 : * mcelem that is not present in constant doesn't occur.
751 : */
752 11 : mult = 1.0f;
753 :
754 : /*
755 : * elem_selec is array of estimated frequencies for elements in the
756 : * constant.
757 : */
758 11 : elem_selec = (float *) palloc(sizeof(float) * nitems);
759 :
760 : /* Scan mcelem and array in parallel. */
761 11 : mcelem_index = 0;
762 31 : for (i = 0; i < nitems; i++)
763 : {
764 20 : bool match = false;
765 :
766 : /* Ignore any duplicates in the array data. */
767 36 : if (i > 0 &&
768 16 : element_compare(&array_data[i - 1], &array_data[i], cmpfunc) == 0)
769 0 : continue;
770 :
771 : /*
772 : * Iterate over MCELEM until we find an entry greater than or equal to
773 : * this element of the constant. Update "rest" and "mult" for mcelem
774 : * entries skipped over.
775 : */
776 560 : while (mcelem_index < nmcelem)
777 : {
778 1080 : int cmp = element_compare(&mcelem[mcelem_index],
779 540 : &array_data[i],
780 : cmpfunc);
781 :
782 540 : if (cmp < 0)
783 : {
784 520 : mult *= (1.0f - numbers[mcelem_index]);
785 520 : rest -= numbers[mcelem_index];
786 520 : mcelem_index++;
787 : }
788 : else
789 : {
790 20 : if (cmp == 0)
791 20 : match = true; /* mcelem is found */
792 20 : break;
793 : }
794 : }
795 :
796 20 : if (match)
797 : {
798 : /* MCELEM matches the array item. */
799 20 : elem_selec[unique_nitems] = numbers[mcelem_index];
800 : /* "rest" is decremented for all mcelems, matched or not */
801 20 : rest -= numbers[mcelem_index];
802 20 : mcelem_index++;
803 : }
804 : else
805 : {
806 : /*
807 : * The element is not in MCELEM. Punt, but assume that the
808 : * selectivity cannot be more than minfreq / 2.
809 : */
810 0 : elem_selec[unique_nitems] = Min(DEFAULT_CONTAIN_SEL,
811 : minfreq / 2);
812 : }
813 :
814 20 : unique_nitems++;
815 : }
816 :
817 : /*
818 : * If we handled all constant elements without exhausting the MCELEM
819 : * array, finish walking it to complete calculation of "rest" and "mult".
820 : */
821 935 : while (mcelem_index < nmcelem)
822 : {
823 913 : mult *= (1.0f - numbers[mcelem_index]);
824 913 : rest -= numbers[mcelem_index];
825 913 : mcelem_index++;
826 : }
827 :
828 : /*
829 : * The presence of many distinct rare elements materially decreases
830 : * selectivity. Use the Poisson distribution to estimate the probability
831 : * of a column value having zero occurrences of such elements. See above
832 : * for the definition of "rest".
833 : */
834 11 : mult *= exp(-rest);
835 :
836 : /*----------
837 : * Using the distinct element count histogram requires
838 : * O(unique_nitems * (nmcelem + unique_nitems))
839 : * operations. Beyond a certain computational cost threshold, it's
840 : * reasonable to sacrifice accuracy for decreased planning time. We limit
841 : * the number of operations to EFFORT * nmcelem; since nmcelem is limited
842 : * by the column's statistics target, the work done is user-controllable.
843 : *
844 : * If the number of operations would be too large, we can reduce it
845 : * without losing all accuracy by reducing unique_nitems and considering
846 : * only the most-common elements of the constant array. To make the
847 : * results exactly match what we would have gotten with only those
848 : * elements to start with, we'd have to remove any discarded elements'
849 : * frequencies from "mult", but since this is only an approximation
850 : * anyway, we don't bother with that. Therefore it's sufficient to qsort
851 : * elem_selec[] and take the largest elements. (They will no longer match
852 : * up with the elements of array_data[], but we don't care.)
853 : *----------
854 : */
855 : #define EFFORT 100
856 :
857 22 : if ((nmcelem + unique_nitems) > 0 &&
858 11 : unique_nitems > EFFORT * nmcelem / (nmcelem + unique_nitems))
859 : {
860 : /*
861 : * Use the quadratic formula to solve for largest allowable N. We
862 : * have A = 1, B = nmcelem, C = - EFFORT * nmcelem.
863 : */
864 0 : double b = (double) nmcelem;
865 : int n;
866 :
867 0 : n = (int) ((sqrt(b * b + 4 * EFFORT * b) - b) / 2);
868 :
869 : /* Sort, then take just the first n elements */
870 0 : qsort(elem_selec, unique_nitems, sizeof(float),
871 : float_compare_desc);
872 0 : unique_nitems = n;
873 : }
874 :
875 : /*
876 : * Calculate probabilities of each distinct element count for both mcelems
877 : * and constant elements. At this point, assume independent element
878 : * occurrence.
879 : */
880 11 : dist = calc_distr(elem_selec, unique_nitems, unique_nitems, 0.0f);
881 11 : mcelem_dist = calc_distr(numbers, nmcelem, unique_nitems, rest);
882 :
883 : /* ignore hist[nhist-1], which is the average not a histogram member */
884 11 : hist_part = calc_hist(hist, nhist - 1, unique_nitems);
885 :
886 11 : selec = 0.0f;
887 42 : for (i = 0; i <= unique_nitems; i++)
888 : {
889 : /*
890 : * mult * dist[i] / mcelem_dist[i] gives us probability of qual
891 : * matching from assumption of independent element occurrence with the
892 : * condition that distinct element count = i.
893 : */
894 31 : if (mcelem_dist[i] > 0)
895 31 : selec += hist_part[i] * mult * dist[i] / mcelem_dist[i];
896 : }
897 :
898 11 : pfree(dist);
899 11 : pfree(mcelem_dist);
900 11 : pfree(hist_part);
901 11 : pfree(elem_selec);
902 :
903 : /* Take into account occurrence of NULL element. */
904 11 : selec *= (1.0f - nullelem_freq);
905 :
906 11 : CLAMP_PROBABILITY(selec);
907 :
908 11 : return selec;
909 : }
910 :
911 : /*
912 : * Calculate the first n distinct element count probabilities from a
913 : * histogram of distinct element counts.
914 : *
915 : * Returns a palloc'd array of n+1 entries, with array[k] being the
916 : * probability of element count k, k in [0..n].
917 : *
918 : * We assume that a histogram box with bounds a and b gives 1 / ((b - a + 1) *
919 : * (nhist - 1)) probability to each value in (a,b) and an additional half of
920 : * that to a and b themselves.
921 : */
922 : static float *
923 11 : calc_hist(const float4 *hist, int nhist, int n)
924 : {
925 : float *hist_part;
926 : int k,
927 11 : i = 0;
928 11 : float prev_interval = 0,
929 : next_interval;
930 : float frac;
931 :
932 11 : hist_part = (float *) palloc((n + 1) * sizeof(float));
933 :
934 : /*
935 : * frac is a probability contribution for each interval between histogram
936 : * values. We have nhist - 1 intervals, so contribution of each one will
937 : * be 1 / (nhist - 1).
938 : */
939 11 : frac = 1.0f / ((float) (nhist - 1));
940 :
941 42 : for (k = 0; k <= n; k++)
942 : {
943 31 : int count = 0;
944 :
945 : /*
946 : * Count the histogram boundaries equal to k. (Although the histogram
947 : * should theoretically contain only exact integers, entries are
948 : * floats so there could be roundoff error in large values. Treat any
949 : * fractional value as equal to the next larger k.)
950 : */
951 280 : while (i < nhist && hist[i] <= k)
952 : {
953 218 : count++;
954 218 : i++;
955 : }
956 :
957 31 : if (count > 0)
958 : {
959 : /* k is an exact bound for at least one histogram box. */
960 : float val;
961 :
962 : /* Find length between current histogram value and the next one */
963 31 : if (i < nhist)
964 31 : next_interval = hist[i] - hist[i - 1];
965 : else
966 0 : next_interval = 0;
967 :
968 : /*
969 : * count - 1 histogram boxes contain k exclusively. They
970 : * contribute a total of (count - 1) * frac probability. Also
971 : * factor in the partial histogram boxes on either side.
972 : */
973 31 : val = (float) (count - 1);
974 31 : if (next_interval > 0)
975 31 : val += 0.5f / next_interval;
976 31 : if (prev_interval > 0)
977 20 : val += 0.5f / prev_interval;
978 31 : hist_part[k] = frac * val;
979 :
980 31 : prev_interval = next_interval;
981 : }
982 : else
983 : {
984 : /* k does not appear as an exact histogram bound. */
985 0 : if (prev_interval > 0)
986 0 : hist_part[k] = frac / prev_interval;
987 : else
988 0 : hist_part[k] = 0.0f;
989 : }
990 : }
991 :
992 11 : return hist_part;
993 : }
994 :
995 : /*
996 : * Consider n independent events with probabilities p[]. This function
997 : * calculates probabilities of exact k of events occurrence for k in [0..m].
998 : * Returns a palloc'd array of size m+1.
999 : *
1000 : * "rest" is the sum of the probabilities of all low-probability events not
1001 : * included in p.
1002 : *
1003 : * Imagine matrix M of size (n + 1) x (m + 1). Element M[i,j] denotes the
1004 : * probability that exactly j of first i events occur. Obviously M[0,0] = 1.
1005 : * For any constant j, each increment of i increases the probability iff the
1006 : * event occurs. So, by the law of total probability:
1007 : * M[i,j] = M[i - 1, j] * (1 - p[i]) + M[i - 1, j - 1] * p[i]
1008 : * for i > 0, j > 0.
1009 : * M[i,0] = M[i - 1, 0] * (1 - p[i]) for i > 0.
1010 : */
1011 : static float *
1012 22 : calc_distr(const float *p, int n, int m, float rest)
1013 : {
1014 : float *row,
1015 : *prev_row,
1016 : *tmp;
1017 : int i,
1018 : j;
1019 :
1020 : /*
1021 : * Since we return only the last row of the matrix and need only the
1022 : * current and previous row for calculations, allocate two rows.
1023 : */
1024 22 : row = (float *) palloc((m + 1) * sizeof(float));
1025 22 : prev_row = (float *) palloc((m + 1) * sizeof(float));
1026 :
1027 : /* M[0,0] = 1 */
1028 22 : row[0] = 1.0f;
1029 1495 : for (i = 1; i <= n; i++)
1030 : {
1031 1473 : float t = p[i - 1];
1032 :
1033 : /* Swap rows */
1034 1473 : tmp = row;
1035 1473 : row = prev_row;
1036 1473 : prev_row = tmp;
1037 :
1038 : /* Calculate next row */
1039 6038 : for (j = 0; j <= i && j <= m; j++)
1040 : {
1041 4565 : float val = 0.0f;
1042 :
1043 4565 : if (j < i)
1044 4525 : val += prev_row[j] * (1.0f - t);
1045 4565 : if (j > 0)
1046 3092 : val += prev_row[j - 1] * t;
1047 4565 : row[j] = val;
1048 : }
1049 : }
1050 :
1051 : /*
1052 : * The presence of many distinct rare (not in "p") elements materially
1053 : * decreases selectivity. Model their collective occurrence with the
1054 : * Poisson distribution.
1055 : */
1056 22 : if (rest > DEFAULT_CONTAIN_SEL)
1057 : {
1058 : float t;
1059 :
1060 : /* Swap rows */
1061 0 : tmp = row;
1062 0 : row = prev_row;
1063 0 : prev_row = tmp;
1064 :
1065 0 : for (i = 0; i <= m; i++)
1066 0 : row[i] = 0.0f;
1067 :
1068 : /* Value of Poisson distribution for 0 occurrences */
1069 0 : t = exp(-rest);
1070 :
1071 : /*
1072 : * Calculate convolution of previously computed distribution and the
1073 : * Poisson distribution.
1074 : */
1075 0 : for (i = 0; i <= m; i++)
1076 : {
1077 0 : for (j = 0; j <= m - i; j++)
1078 0 : row[j + i] += prev_row[j] * t;
1079 :
1080 : /* Get Poisson distribution value for (i + 1) occurrences */
1081 0 : t *= rest / (float) (i + 1);
1082 : }
1083 : }
1084 :
1085 22 : pfree(prev_row);
1086 22 : return row;
1087 : }
1088 :
1089 : /* Fast function for floor value of 2 based logarithm calculation. */
1090 : static int
1091 55 : floor_log2(uint32 n)
1092 : {
1093 55 : int logval = 0;
1094 :
1095 55 : if (n == 0)
1096 11 : return -1;
1097 44 : if (n >= (1 << 16))
1098 : {
1099 0 : n >>= 16;
1100 0 : logval += 16;
1101 : }
1102 44 : if (n >= (1 << 8))
1103 : {
1104 0 : n >>= 8;
1105 0 : logval += 8;
1106 : }
1107 44 : if (n >= (1 << 4))
1108 : {
1109 44 : n >>= 4;
1110 44 : logval += 4;
1111 : }
1112 44 : if (n >= (1 << 2))
1113 : {
1114 44 : n >>= 2;
1115 44 : logval += 2;
1116 : }
1117 44 : if (n >= (1 << 1))
1118 : {
1119 21 : logval += 1;
1120 : }
1121 44 : return logval;
1122 : }
1123 :
1124 : /*
1125 : * find_next_mcelem binary-searches a most common elements array, starting
1126 : * from *index, for the first member >= value. It saves the position of the
1127 : * match into *index and returns true if it's an exact match. (Note: we
1128 : * assume the mcelem elements are distinct so there can't be more than one
1129 : * exact match.)
1130 : */
1131 : static bool
1132 53 : find_next_mcelem(Datum *mcelem, int nmcelem, Datum value, int *index,
1133 : FmgrInfo *cmpfunc)
1134 : {
1135 53 : int l = *index,
1136 53 : r = nmcelem - 1,
1137 : i,
1138 : res;
1139 :
1140 318 : while (l <= r)
1141 : {
1142 254 : i = (l + r) / 2;
1143 254 : res = element_compare(&mcelem[i], &value, cmpfunc);
1144 254 : if (res == 0)
1145 : {
1146 42 : *index = i;
1147 42 : return true;
1148 : }
1149 212 : else if (res < 0)
1150 94 : l = i + 1;
1151 : else
1152 118 : r = i - 1;
1153 : }
1154 11 : *index = l;
1155 11 : return false;
1156 : }
1157 :
1158 : /*
1159 : * Comparison function for elements.
1160 : *
1161 : * We use the element type's default btree opclass, and the default collation
1162 : * if the type is collation-sensitive.
1163 : *
1164 : * XXX consider using SortSupport infrastructure
1165 : */
1166 : static int
1167 858 : element_compare(const void *key1, const void *key2, void *arg)
1168 : {
1169 858 : Datum d1 = *((const Datum *) key1);
1170 858 : Datum d2 = *((const Datum *) key2);
1171 858 : FmgrInfo *cmpfunc = (FmgrInfo *) arg;
1172 : Datum c;
1173 :
1174 858 : c = FunctionCall2Coll(cmpfunc, DEFAULT_COLLATION_OID, d1, d2);
1175 858 : return DatumGetInt32(c);
1176 : }
1177 :
1178 : /*
1179 : * Comparison function for sorting floats into descending order.
1180 : */
1181 : static int
1182 0 : float_compare_desc(const void *key1, const void *key2)
1183 : {
1184 0 : float d1 = *((const float *) key1);
1185 0 : float d2 = *((const float *) key2);
1186 :
1187 0 : if (d1 > d2)
1188 0 : return -1;
1189 0 : else if (d1 < d2)
1190 0 : return 1;
1191 : else
1192 0 : return 0;
1193 : }
|