Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * typcache.c
4 : * POSTGRES type cache code
5 : *
6 : * The type cache exists to speed lookup of certain information about data
7 : * types that is not directly available from a type's pg_type row. For
8 : * example, we use a type's default btree opclass, or the default hash
9 : * opclass if no btree opclass exists, to determine which operators should
10 : * be used for grouping and sorting the type (GROUP BY, ORDER BY ASC/DESC).
11 : *
12 : * Several seemingly-odd choices have been made to support use of the type
13 : * cache by generic array and record handling routines, such as array_eq(),
14 : * record_cmp(), and hash_array(). Because those routines are used as index
15 : * support operations, they cannot leak memory. To allow them to execute
16 : * efficiently, all information that they would like to re-use across calls
17 : * is kept in the type cache.
18 : *
19 : * Once created, a type cache entry lives as long as the backend does, so
20 : * there is no need for a call to release a cache entry. If the type is
21 : * dropped, the cache entry simply becomes wasted storage. This is not
22 : * expected to happen often, and assuming that typcache entries are good
23 : * permanently allows caching pointers to them in long-lived places.
24 : *
25 : * We have some provisions for updating cache entries if the stored data
26 : * becomes obsolete. Information dependent on opclasses is cleared if we
27 : * detect updates to pg_opclass. We also support clearing the tuple
28 : * descriptor and operator/function parts of a rowtype's cache entry,
29 : * since those may need to change as a consequence of ALTER TABLE.
30 : * Domain constraint changes are also tracked properly.
31 : *
32 : *
33 : * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
34 : * Portions Copyright (c) 1994, Regents of the University of California
35 : *
36 : * IDENTIFICATION
37 : * src/backend/utils/cache/typcache.c
38 : *
39 : *-------------------------------------------------------------------------
40 : */
41 : #include "postgres.h"
42 :
43 : #include <limits.h>
44 :
45 : #include "access/hash.h"
46 : #include "access/heapam.h"
47 : #include "access/htup_details.h"
48 : #include "access/nbtree.h"
49 : #include "catalog/indexing.h"
50 : #include "catalog/pg_am.h"
51 : #include "catalog/pg_constraint.h"
52 : #include "catalog/pg_enum.h"
53 : #include "catalog/pg_operator.h"
54 : #include "catalog/pg_range.h"
55 : #include "catalog/pg_type.h"
56 : #include "commands/defrem.h"
57 : #include "executor/executor.h"
58 : #include "optimizer/planner.h"
59 : #include "utils/builtins.h"
60 : #include "utils/catcache.h"
61 : #include "utils/fmgroids.h"
62 : #include "utils/inval.h"
63 : #include "utils/lsyscache.h"
64 : #include "utils/memutils.h"
65 : #include "utils/rel.h"
66 : #include "utils/snapmgr.h"
67 : #include "utils/syscache.h"
68 : #include "utils/typcache.h"
69 :
70 :
71 : /* The main type cache hashtable searched by lookup_type_cache */
72 : static HTAB *TypeCacheHash = NULL;
73 :
74 : /* List of type cache entries for domain types */
75 : static TypeCacheEntry *firstDomainTypeEntry = NULL;
76 :
77 : /* Private flag bits in the TypeCacheEntry.flags field */
78 : #define TCFLAGS_CHECKED_BTREE_OPCLASS 0x0001
79 : #define TCFLAGS_CHECKED_HASH_OPCLASS 0x0002
80 : #define TCFLAGS_CHECKED_EQ_OPR 0x0004
81 : #define TCFLAGS_CHECKED_LT_OPR 0x0008
82 : #define TCFLAGS_CHECKED_GT_OPR 0x0010
83 : #define TCFLAGS_CHECKED_CMP_PROC 0x0020
84 : #define TCFLAGS_CHECKED_HASH_PROC 0x0040
85 : #define TCFLAGS_CHECKED_ELEM_PROPERTIES 0x0080
86 : #define TCFLAGS_HAVE_ELEM_EQUALITY 0x0100
87 : #define TCFLAGS_HAVE_ELEM_COMPARE 0x0200
88 : #define TCFLAGS_HAVE_ELEM_HASHING 0x0400
89 : #define TCFLAGS_CHECKED_FIELD_PROPERTIES 0x0800
90 : #define TCFLAGS_HAVE_FIELD_EQUALITY 0x1000
91 : #define TCFLAGS_HAVE_FIELD_COMPARE 0x2000
92 : #define TCFLAGS_CHECKED_DOMAIN_CONSTRAINTS 0x4000
93 : #define TCFLAGS_CHECKED_HASH_EXTENDED_PROC 0x8000
94 :
95 : /*
96 : * Data stored about a domain type's constraints. Note that we do not create
97 : * this struct for the common case of a constraint-less domain; we just set
98 : * domainData to NULL to indicate that.
99 : *
100 : * Within a DomainConstraintCache, we store expression plan trees, but the
101 : * check_exprstate fields of the DomainConstraintState nodes are just NULL.
102 : * When needed, expression evaluation nodes are built by flat-copying the
103 : * DomainConstraintState nodes and applying ExecInitExpr to check_expr.
104 : * Such a node tree is not part of the DomainConstraintCache, but is
105 : * considered to belong to a DomainConstraintRef.
106 : */
107 : struct DomainConstraintCache
108 : {
109 : List *constraints; /* list of DomainConstraintState nodes */
110 : MemoryContext dccContext; /* memory context holding all associated data */
111 : long dccRefCount; /* number of references to this struct */
112 : };
113 :
114 : /* Private information to support comparisons of enum values */
115 : typedef struct
116 : {
117 : Oid enum_oid; /* OID of one enum value */
118 : float4 sort_order; /* its sort position */
119 : } EnumItem;
120 :
121 : typedef struct TypeCacheEnumData
122 : {
123 : Oid bitmap_base; /* OID corresponding to bit 0 of bitmapset */
124 : Bitmapset *sorted_values; /* Set of OIDs known to be in order */
125 : int num_values; /* total number of values in enum */
126 : EnumItem enum_values[FLEXIBLE_ARRAY_MEMBER];
127 : } TypeCacheEnumData;
128 :
129 : /*
130 : * We use a separate table for storing the definitions of non-anonymous
131 : * record types. Once defined, a record type will be remembered for the
132 : * life of the backend. Subsequent uses of the "same" record type (where
133 : * sameness means equalTupleDescs) will refer to the existing table entry.
134 : *
135 : * Stored record types are remembered in a linear array of TupleDescs,
136 : * which can be indexed quickly with the assigned typmod. There is also
137 : * a hash table to speed searches for matching TupleDescs.
138 : */
139 :
140 : typedef struct RecordCacheEntry
141 : {
142 : TupleDesc tupdesc;
143 : } RecordCacheEntry;
144 :
145 : static HTAB *RecordCacheHash = NULL;
146 :
147 : static TupleDesc *RecordCacheArray = NULL;
148 : static int32 RecordCacheArrayLen = 0; /* allocated length of array */
149 : static int32 NextRecordTypmod = 0; /* number of entries used */
150 :
151 : static void load_typcache_tupdesc(TypeCacheEntry *typentry);
152 : static void load_rangetype_info(TypeCacheEntry *typentry);
153 : static void load_domaintype_info(TypeCacheEntry *typentry);
154 : static int dcs_cmp(const void *a, const void *b);
155 : static void decr_dcc_refcount(DomainConstraintCache *dcc);
156 : static void dccref_deletion_callback(void *arg);
157 : static List *prep_domain_constraints(List *constraints, MemoryContext execctx);
158 : static bool array_element_has_equality(TypeCacheEntry *typentry);
159 : static bool array_element_has_compare(TypeCacheEntry *typentry);
160 : static bool array_element_has_hashing(TypeCacheEntry *typentry);
161 : static void cache_array_element_properties(TypeCacheEntry *typentry);
162 : static bool record_fields_have_equality(TypeCacheEntry *typentry);
163 : static bool record_fields_have_compare(TypeCacheEntry *typentry);
164 : static void cache_record_field_properties(TypeCacheEntry *typentry);
165 : static void TypeCacheRelCallback(Datum arg, Oid relid);
166 : static void TypeCacheOpcCallback(Datum arg, int cacheid, uint32 hashvalue);
167 : static void TypeCacheConstrCallback(Datum arg, int cacheid, uint32 hashvalue);
168 : static void load_enum_cache_data(TypeCacheEntry *tcache);
169 : static EnumItem *find_enumitem(TypeCacheEnumData *enumdata, Oid arg);
170 : static int enum_oid_cmp(const void *left, const void *right);
171 :
172 :
173 : /*
174 : * lookup_type_cache
175 : *
176 : * Fetch the type cache entry for the specified datatype, and make sure that
177 : * all the fields requested by bits in 'flags' are valid.
178 : *
179 : * The result is never NULL --- we will ereport() if the passed type OID is
180 : * invalid. Note however that we may fail to find one or more of the
181 : * values requested by 'flags'; the caller needs to check whether the fields
182 : * are InvalidOid or not.
183 : */
184 : TypeCacheEntry *
185 22683 : lookup_type_cache(Oid type_id, int flags)
186 : {
187 : TypeCacheEntry *typentry;
188 : bool found;
189 :
190 22683 : if (TypeCacheHash == NULL)
191 : {
192 : /* First time through: initialize the hash table */
193 : HASHCTL ctl;
194 :
195 133 : MemSet(&ctl, 0, sizeof(ctl));
196 133 : ctl.keysize = sizeof(Oid);
197 133 : ctl.entrysize = sizeof(TypeCacheEntry);
198 133 : TypeCacheHash = hash_create("Type information cache", 64,
199 : &ctl, HASH_ELEM | HASH_BLOBS);
200 :
201 : /* Also set up callbacks for SI invalidations */
202 133 : CacheRegisterRelcacheCallback(TypeCacheRelCallback, (Datum) 0);
203 133 : CacheRegisterSyscacheCallback(CLAOID, TypeCacheOpcCallback, (Datum) 0);
204 133 : CacheRegisterSyscacheCallback(CONSTROID, TypeCacheConstrCallback, (Datum) 0);
205 133 : CacheRegisterSyscacheCallback(TYPEOID, TypeCacheConstrCallback, (Datum) 0);
206 :
207 : /* Also make sure CacheMemoryContext exists */
208 133 : if (!CacheMemoryContext)
209 0 : CreateCacheMemoryContext();
210 : }
211 :
212 : /* Try to look up an existing entry */
213 22683 : typentry = (TypeCacheEntry *) hash_search(TypeCacheHash,
214 : (void *) &type_id,
215 : HASH_FIND, NULL);
216 22683 : if (typentry == NULL)
217 : {
218 : /*
219 : * If we didn't find one, we want to make one. But first look up the
220 : * pg_type row, just to make sure we don't make a cache entry for an
221 : * invalid type OID. If the type OID is not valid, present a
222 : * user-facing error, since some code paths such as domain_in() allow
223 : * this function to be reached with a user-supplied OID.
224 : */
225 : HeapTuple tp;
226 : Form_pg_type typtup;
227 :
228 779 : tp = SearchSysCache1(TYPEOID, ObjectIdGetDatum(type_id));
229 779 : if (!HeapTupleIsValid(tp))
230 0 : ereport(ERROR,
231 : (errcode(ERRCODE_UNDEFINED_OBJECT),
232 : errmsg("type with OID %u does not exist", type_id)));
233 779 : typtup = (Form_pg_type) GETSTRUCT(tp);
234 779 : if (!typtup->typisdefined)
235 0 : ereport(ERROR,
236 : (errcode(ERRCODE_UNDEFINED_OBJECT),
237 : errmsg("type \"%s\" is only a shell",
238 : NameStr(typtup->typname))));
239 :
240 : /* Now make the typcache entry */
241 779 : typentry = (TypeCacheEntry *) hash_search(TypeCacheHash,
242 : (void *) &type_id,
243 : HASH_ENTER, &found);
244 779 : Assert(!found); /* it wasn't there a moment ago */
245 :
246 779 : MemSet(typentry, 0, sizeof(TypeCacheEntry));
247 779 : typentry->type_id = type_id;
248 779 : typentry->typlen = typtup->typlen;
249 779 : typentry->typbyval = typtup->typbyval;
250 779 : typentry->typalign = typtup->typalign;
251 779 : typentry->typstorage = typtup->typstorage;
252 779 : typentry->typtype = typtup->typtype;
253 779 : typentry->typrelid = typtup->typrelid;
254 :
255 : /* If it's a domain, immediately thread it into the domain cache list */
256 779 : if (typentry->typtype == TYPTYPE_DOMAIN)
257 : {
258 79 : typentry->nextDomain = firstDomainTypeEntry;
259 79 : firstDomainTypeEntry = typentry;
260 : }
261 :
262 779 : ReleaseSysCache(tp);
263 : }
264 :
265 : /*
266 : * Look up opclasses if we haven't already and any dependent info is
267 : * requested.
268 : */
269 22683 : if ((flags & (TYPECACHE_EQ_OPR | TYPECACHE_LT_OPR | TYPECACHE_GT_OPR |
270 : TYPECACHE_CMP_PROC |
271 : TYPECACHE_EQ_OPR_FINFO | TYPECACHE_CMP_PROC_FINFO |
272 7057 : TYPECACHE_BTREE_OPFAMILY)) &&
273 7057 : !(typentry->flags & TCFLAGS_CHECKED_BTREE_OPCLASS))
274 : {
275 : Oid opclass;
276 :
277 556 : opclass = GetDefaultOpClass(type_id, BTREE_AM_OID);
278 556 : if (OidIsValid(opclass))
279 : {
280 538 : typentry->btree_opf = get_opclass_family(opclass);
281 538 : typentry->btree_opintype = get_opclass_input_type(opclass);
282 : }
283 : else
284 : {
285 18 : typentry->btree_opf = typentry->btree_opintype = InvalidOid;
286 : }
287 :
288 : /*
289 : * Reset information derived from btree opclass. Note in particular
290 : * that we'll redetermine the eq_opr even if we previously found one;
291 : * this matters in case a btree opclass has been added to a type that
292 : * previously had only a hash opclass.
293 : */
294 556 : typentry->flags &= ~(TCFLAGS_CHECKED_EQ_OPR |
295 : TCFLAGS_CHECKED_LT_OPR |
296 : TCFLAGS_CHECKED_GT_OPR |
297 : TCFLAGS_CHECKED_CMP_PROC);
298 556 : typentry->flags |= TCFLAGS_CHECKED_BTREE_OPCLASS;
299 : }
300 :
301 : /*
302 : * If we need to look up equality operator, and there's no btree opclass,
303 : * force lookup of hash opclass.
304 : */
305 29100 : if ((flags & (TYPECACHE_EQ_OPR | TYPECACHE_EQ_OPR_FINFO)) &&
306 6957 : !(typentry->flags & TCFLAGS_CHECKED_EQ_OPR) &&
307 540 : typentry->btree_opf == InvalidOid)
308 17 : flags |= TYPECACHE_HASH_OPFAMILY;
309 :
310 22683 : if ((flags & (TYPECACHE_HASH_PROC | TYPECACHE_HASH_PROC_FINFO |
311 : TYPECACHE_HASH_EXTENDED_PROC |
312 : TYPECACHE_HASH_EXTENDED_PROC_FINFO |
313 4523 : TYPECACHE_HASH_OPFAMILY)) &&
314 4523 : !(typentry->flags & TCFLAGS_CHECKED_HASH_OPCLASS))
315 : {
316 : Oid opclass;
317 :
318 408 : opclass = GetDefaultOpClass(type_id, HASH_AM_OID);
319 408 : if (OidIsValid(opclass))
320 : {
321 389 : typentry->hash_opf = get_opclass_family(opclass);
322 389 : typentry->hash_opintype = get_opclass_input_type(opclass);
323 : }
324 : else
325 : {
326 19 : typentry->hash_opf = typentry->hash_opintype = InvalidOid;
327 : }
328 :
329 : /*
330 : * Reset information derived from hash opclass. We do *not* reset the
331 : * eq_opr; if we already found one from the btree opclass, that
332 : * decision is still good.
333 : */
334 408 : typentry->flags &= ~(TCFLAGS_CHECKED_HASH_PROC);
335 408 : typentry->flags &= ~(TCFLAGS_CHECKED_HASH_EXTENDED_PROC);
336 408 : typentry->flags |= TCFLAGS_CHECKED_HASH_OPCLASS;
337 : }
338 :
339 : /*
340 : * Look for requested operators and functions, if we haven't already.
341 : */
342 29100 : if ((flags & (TYPECACHE_EQ_OPR | TYPECACHE_EQ_OPR_FINFO)) &&
343 6417 : !(typentry->flags & TCFLAGS_CHECKED_EQ_OPR))
344 : {
345 540 : Oid eq_opr = InvalidOid;
346 :
347 540 : if (typentry->btree_opf != InvalidOid)
348 523 : eq_opr = get_opfamily_member(typentry->btree_opf,
349 : typentry->btree_opintype,
350 : typentry->btree_opintype,
351 : BTEqualStrategyNumber);
352 557 : if (eq_opr == InvalidOid &&
353 17 : typentry->hash_opf != InvalidOid)
354 6 : eq_opr = get_opfamily_member(typentry->hash_opf,
355 : typentry->hash_opintype,
356 : typentry->hash_opintype,
357 : HTEqualStrategyNumber);
358 :
359 : /*
360 : * If the proposed equality operator is array_eq or record_eq, check
361 : * to see if the element type or column types support equality. If
362 : * not, array_eq or record_eq would fail at runtime, so we don't want
363 : * to report that the type has equality.
364 : */
365 557 : if (eq_opr == ARRAY_EQ_OP &&
366 17 : !array_element_has_equality(typentry))
367 0 : eq_opr = InvalidOid;
368 549 : else if (eq_opr == RECORD_EQ_OP &&
369 9 : !record_fields_have_equality(typentry))
370 2 : eq_opr = InvalidOid;
371 :
372 : /* Force update of eq_opr_finfo only if we're changing state */
373 540 : if (typentry->eq_opr != eq_opr)
374 494 : typentry->eq_opr_finfo.fn_oid = InvalidOid;
375 :
376 540 : typentry->eq_opr = eq_opr;
377 :
378 : /*
379 : * Reset info about hash functions whenever we pick up new info about
380 : * equality operator. This is so we can ensure that the hash functions
381 : * match the operator.
382 : */
383 540 : typentry->flags &= ~(TCFLAGS_CHECKED_HASH_PROC);
384 540 : typentry->flags &= ~(TCFLAGS_CHECKED_HASH_EXTENDED_PROC);
385 540 : typentry->flags |= TCFLAGS_CHECKED_EQ_OPR;
386 : }
387 28690 : if ((flags & TYPECACHE_LT_OPR) &&
388 6007 : !(typentry->flags & TCFLAGS_CHECKED_LT_OPR))
389 : {
390 491 : Oid lt_opr = InvalidOid;
391 :
392 491 : if (typentry->btree_opf != InvalidOid)
393 475 : lt_opr = get_opfamily_member(typentry->btree_opf,
394 : typentry->btree_opintype,
395 : typentry->btree_opintype,
396 : BTLessStrategyNumber);
397 :
398 : /* As above, make sure array_cmp or record_cmp will succeed */
399 508 : if (lt_opr == ARRAY_LT_OP &&
400 17 : !array_element_has_compare(typentry))
401 2 : lt_opr = InvalidOid;
402 495 : else if (lt_opr == RECORD_LT_OP &&
403 6 : !record_fields_have_compare(typentry))
404 2 : lt_opr = InvalidOid;
405 :
406 491 : typentry->lt_opr = lt_opr;
407 491 : typentry->flags |= TCFLAGS_CHECKED_LT_OPR;
408 : }
409 28514 : if ((flags & TYPECACHE_GT_OPR) &&
410 5831 : !(typentry->flags & TCFLAGS_CHECKED_GT_OPR))
411 : {
412 489 : Oid gt_opr = InvalidOid;
413 :
414 489 : if (typentry->btree_opf != InvalidOid)
415 473 : gt_opr = get_opfamily_member(typentry->btree_opf,
416 : typentry->btree_opintype,
417 : typentry->btree_opintype,
418 : BTGreaterStrategyNumber);
419 :
420 : /* As above, make sure array_cmp or record_cmp will succeed */
421 506 : if (gt_opr == ARRAY_GT_OP &&
422 17 : !array_element_has_compare(typentry))
423 2 : gt_opr = InvalidOid;
424 493 : else if (gt_opr == RECORD_GT_OP &&
425 6 : !record_fields_have_compare(typentry))
426 2 : gt_opr = InvalidOid;
427 :
428 489 : typentry->gt_opr = gt_opr;
429 489 : typentry->flags |= TCFLAGS_CHECKED_GT_OPR;
430 : }
431 23053 : if ((flags & (TYPECACHE_CMP_PROC | TYPECACHE_CMP_PROC_FINFO)) &&
432 370 : !(typentry->flags & TCFLAGS_CHECKED_CMP_PROC))
433 : {
434 50 : Oid cmp_proc = InvalidOid;
435 :
436 50 : if (typentry->btree_opf != InvalidOid)
437 46 : cmp_proc = get_opfamily_proc(typentry->btree_opf,
438 : typentry->btree_opintype,
439 : typentry->btree_opintype,
440 : BTORDER_PROC);
441 :
442 : /* As above, make sure array_cmp or record_cmp will succeed */
443 55 : if (cmp_proc == F_BTARRAYCMP &&
444 5 : !array_element_has_compare(typentry))
445 0 : cmp_proc = InvalidOid;
446 54 : else if (cmp_proc == F_BTRECORDCMP &&
447 4 : !record_fields_have_compare(typentry))
448 0 : cmp_proc = InvalidOid;
449 :
450 : /* Force update of cmp_proc_finfo only if we're changing state */
451 50 : if (typentry->cmp_proc != cmp_proc)
452 45 : typentry->cmp_proc_finfo.fn_oid = InvalidOid;
453 :
454 50 : typentry->cmp_proc = cmp_proc;
455 50 : typentry->flags |= TCFLAGS_CHECKED_CMP_PROC;
456 : }
457 27191 : if ((flags & (TYPECACHE_HASH_PROC | TYPECACHE_HASH_PROC_FINFO)) &&
458 4508 : !(typentry->flags & TCFLAGS_CHECKED_HASH_PROC))
459 : {
460 395 : Oid hash_proc = InvalidOid;
461 :
462 : /*
463 : * We insist that the eq_opr, if one has been determined, match the
464 : * hash opclass; else report there is no hash function.
465 : */
466 782 : if (typentry->hash_opf != InvalidOid &&
467 772 : (!OidIsValid(typentry->eq_opr) ||
468 385 : typentry->eq_opr == get_opfamily_member(typentry->hash_opf,
469 : typentry->hash_opintype,
470 : typentry->hash_opintype,
471 : HTEqualStrategyNumber)))
472 387 : hash_proc = get_opfamily_proc(typentry->hash_opf,
473 : typentry->hash_opintype,
474 : typentry->hash_opintype,
475 : HASHSTANDARD_PROC);
476 :
477 : /*
478 : * As above, make sure hash_array will succeed. We don't currently
479 : * support hashing for composite types, but when we do, we'll need
480 : * more logic here to check that case too.
481 : */
482 397 : if (hash_proc == F_HASH_ARRAY &&
483 2 : !array_element_has_hashing(typentry))
484 1 : hash_proc = InvalidOid;
485 :
486 : /* Force update of hash_proc_finfo only if we're changing state */
487 395 : if (typentry->hash_proc != hash_proc)
488 357 : typentry->hash_proc_finfo.fn_oid = InvalidOid;
489 :
490 395 : typentry->hash_proc = hash_proc;
491 395 : typentry->flags |= TCFLAGS_CHECKED_HASH_PROC;
492 : }
493 22683 : if ((flags & (TYPECACHE_HASH_EXTENDED_PROC |
494 2 : TYPECACHE_HASH_EXTENDED_PROC_FINFO)) &&
495 2 : !(typentry->flags & TCFLAGS_CHECKED_HASH_EXTENDED_PROC))
496 : {
497 1 : Oid hash_extended_proc = InvalidOid;
498 :
499 : /*
500 : * We insist that the eq_opr, if one has been determined, match the
501 : * hash opclass; else report there is no hash function.
502 : */
503 2 : if (typentry->hash_opf != InvalidOid &&
504 1 : (!OidIsValid(typentry->eq_opr) ||
505 0 : typentry->eq_opr == get_opfamily_member(typentry->hash_opf,
506 : typentry->hash_opintype,
507 : typentry->hash_opintype,
508 : HTEqualStrategyNumber)))
509 1 : hash_extended_proc = get_opfamily_proc(typentry->hash_opf,
510 : typentry->hash_opintype,
511 : typentry->hash_opintype,
512 : HASHEXTENDED_PROC);
513 :
514 : /*
515 : * As above, make sure hash_array_extended will succeed. We don't
516 : * currently support hashing for composite types, but when we do,
517 : * we'll need more logic here to check that case too.
518 : */
519 1 : if (hash_extended_proc == F_HASH_ARRAY_EXTENDED &&
520 0 : !array_element_has_hashing(typentry))
521 0 : hash_extended_proc = InvalidOid;
522 :
523 : /* Force update of hash_proc_finfo only if we're changing state */
524 1 : if (typentry->hash_extended_proc != hash_extended_proc)
525 1 : typentry->hash_extended_proc_finfo.fn_oid = InvalidOid;
526 :
527 1 : typentry->hash_extended_proc = hash_extended_proc;
528 1 : typentry->flags |= TCFLAGS_CHECKED_HASH_EXTENDED_PROC;
529 : }
530 :
531 : /*
532 : * Set up fmgr lookup info as requested
533 : *
534 : * Note: we tell fmgr the finfo structures live in CacheMemoryContext,
535 : * which is not quite right (they're really in the hash table's private
536 : * memory context) but this will do for our purposes.
537 : *
538 : * Note: the code above avoids invalidating the finfo structs unless the
539 : * referenced operator/function OID actually changes. This is to prevent
540 : * unnecessary leakage of any subsidiary data attached to an finfo, since
541 : * that would cause session-lifespan memory leaks.
542 : */
543 22858 : if ((flags & TYPECACHE_EQ_OPR_FINFO) &&
544 201 : typentry->eq_opr_finfo.fn_oid == InvalidOid &&
545 26 : typentry->eq_opr != InvalidOid)
546 : {
547 : Oid eq_opr_func;
548 :
549 26 : eq_opr_func = get_opcode(typentry->eq_opr);
550 26 : if (eq_opr_func != InvalidOid)
551 26 : fmgr_info_cxt(eq_opr_func, &typentry->eq_opr_finfo,
552 : CacheMemoryContext);
553 : }
554 22979 : if ((flags & TYPECACHE_CMP_PROC_FINFO) &&
555 342 : typentry->cmp_proc_finfo.fn_oid == InvalidOid &&
556 46 : typentry->cmp_proc != InvalidOid)
557 : {
558 27 : fmgr_info_cxt(typentry->cmp_proc, &typentry->cmp_proc_finfo,
559 : CacheMemoryContext);
560 : }
561 22752 : if ((flags & TYPECACHE_HASH_PROC_FINFO) &&
562 84 : typentry->hash_proc_finfo.fn_oid == InvalidOid &&
563 15 : typentry->hash_proc != InvalidOid)
564 : {
565 15 : fmgr_info_cxt(typentry->hash_proc, &typentry->hash_proc_finfo,
566 : CacheMemoryContext);
567 : }
568 22685 : if ((flags & TYPECACHE_HASH_EXTENDED_PROC_FINFO) &&
569 3 : typentry->hash_extended_proc_finfo.fn_oid == InvalidOid &&
570 1 : typentry->hash_extended_proc != InvalidOid)
571 : {
572 1 : fmgr_info_cxt(typentry->hash_extended_proc,
573 : &typentry->hash_extended_proc_finfo,
574 : CacheMemoryContext);
575 : }
576 :
577 : /*
578 : * If it's a composite type (row type), get tupdesc if requested
579 : */
580 26797 : if ((flags & TYPECACHE_TUPDESC) &&
581 4258 : typentry->tupDesc == NULL &&
582 144 : typentry->typtype == TYPTYPE_COMPOSITE)
583 : {
584 144 : load_typcache_tupdesc(typentry);
585 : }
586 :
587 : /*
588 : * If requested, get information about a range type
589 : */
590 23564 : if ((flags & TYPECACHE_RANGE_INFO) &&
591 898 : typentry->rngelemtype == NULL &&
592 17 : typentry->typtype == TYPTYPE_RANGE)
593 : {
594 17 : load_rangetype_info(typentry);
595 : }
596 :
597 : /*
598 : * If requested, get information about a domain type
599 : */
600 24276 : if ((flags & TYPECACHE_DOMAIN_INFO) &&
601 2060 : (typentry->flags & TCFLAGS_CHECKED_DOMAIN_CONSTRAINTS) == 0 &&
602 467 : typentry->typtype == TYPTYPE_DOMAIN)
603 : {
604 338 : load_domaintype_info(typentry);
605 : }
606 :
607 22683 : return typentry;
608 : }
609 :
610 : /*
611 : * load_typcache_tupdesc --- helper routine to set up composite type's tupDesc
612 : */
613 : static void
614 145 : load_typcache_tupdesc(TypeCacheEntry *typentry)
615 : {
616 : Relation rel;
617 :
618 145 : if (!OidIsValid(typentry->typrelid)) /* should not happen */
619 0 : elog(ERROR, "invalid typrelid for composite type %u",
620 : typentry->type_id);
621 145 : rel = relation_open(typentry->typrelid, AccessShareLock);
622 145 : Assert(rel->rd_rel->reltype == typentry->type_id);
623 :
624 : /*
625 : * Link to the tupdesc and increment its refcount (we assert it's a
626 : * refcounted descriptor). We don't use IncrTupleDescRefCount() for this,
627 : * because the reference mustn't be entered in the current resource owner;
628 : * it can outlive the current query.
629 : */
630 145 : typentry->tupDesc = RelationGetDescr(rel);
631 :
632 145 : Assert(typentry->tupDesc->tdrefcount > 0);
633 145 : typentry->tupDesc->tdrefcount++;
634 :
635 145 : relation_close(rel, AccessShareLock);
636 145 : }
637 :
638 : /*
639 : * load_rangetype_info --- helper routine to set up range type information
640 : */
641 : static void
642 17 : load_rangetype_info(TypeCacheEntry *typentry)
643 : {
644 : Form_pg_range pg_range;
645 : HeapTuple tup;
646 : Oid subtypeOid;
647 : Oid opclassOid;
648 : Oid canonicalOid;
649 : Oid subdiffOid;
650 : Oid opfamilyOid;
651 : Oid opcintype;
652 : Oid cmpFnOid;
653 :
654 : /* get information from pg_range */
655 17 : tup = SearchSysCache1(RANGETYPE, ObjectIdGetDatum(typentry->type_id));
656 : /* should not fail, since we already checked typtype ... */
657 17 : if (!HeapTupleIsValid(tup))
658 0 : elog(ERROR, "cache lookup failed for range type %u",
659 : typentry->type_id);
660 17 : pg_range = (Form_pg_range) GETSTRUCT(tup);
661 :
662 17 : subtypeOid = pg_range->rngsubtype;
663 17 : typentry->rng_collation = pg_range->rngcollation;
664 17 : opclassOid = pg_range->rngsubopc;
665 17 : canonicalOid = pg_range->rngcanonical;
666 17 : subdiffOid = pg_range->rngsubdiff;
667 :
668 17 : ReleaseSysCache(tup);
669 :
670 : /* get opclass properties and look up the comparison function */
671 17 : opfamilyOid = get_opclass_family(opclassOid);
672 17 : opcintype = get_opclass_input_type(opclassOid);
673 :
674 17 : cmpFnOid = get_opfamily_proc(opfamilyOid, opcintype, opcintype,
675 : BTORDER_PROC);
676 17 : if (!RegProcedureIsValid(cmpFnOid))
677 0 : elog(ERROR, "missing support function %d(%u,%u) in opfamily %u",
678 : BTORDER_PROC, opcintype, opcintype, opfamilyOid);
679 :
680 : /* set up cached fmgrinfo structs */
681 17 : fmgr_info_cxt(cmpFnOid, &typentry->rng_cmp_proc_finfo,
682 : CacheMemoryContext);
683 17 : if (OidIsValid(canonicalOid))
684 6 : fmgr_info_cxt(canonicalOid, &typentry->rng_canonical_finfo,
685 : CacheMemoryContext);
686 17 : if (OidIsValid(subdiffOid))
687 10 : fmgr_info_cxt(subdiffOid, &typentry->rng_subdiff_finfo,
688 : CacheMemoryContext);
689 :
690 : /* Lastly, set up link to the element type --- this marks data valid */
691 17 : typentry->rngelemtype = lookup_type_cache(subtypeOid, 0);
692 17 : }
693 :
694 :
695 : /*
696 : * load_domaintype_info --- helper routine to set up domain constraint info
697 : *
698 : * Note: we assume we're called in a relatively short-lived context, so it's
699 : * okay to leak data into the current context while scanning pg_constraint.
700 : * We build the new DomainConstraintCache data in a context underneath
701 : * CurrentMemoryContext, and reparent it under CacheMemoryContext when
702 : * complete.
703 : */
704 : static void
705 338 : load_domaintype_info(TypeCacheEntry *typentry)
706 : {
707 338 : Oid typeOid = typentry->type_id;
708 : DomainConstraintCache *dcc;
709 338 : bool notNull = false;
710 : DomainConstraintState **ccons;
711 : int cconslen;
712 : Relation conRel;
713 : MemoryContext oldcxt;
714 :
715 : /*
716 : * If we're here, any existing constraint info is stale, so release it.
717 : * For safety, be sure to null the link before trying to delete the data.
718 : */
719 338 : if (typentry->domainData)
720 : {
721 139 : dcc = typentry->domainData;
722 139 : typentry->domainData = NULL;
723 139 : decr_dcc_refcount(dcc);
724 : }
725 :
726 : /*
727 : * We try to optimize the common case of no domain constraints, so don't
728 : * create the dcc object and context until we find a constraint. Likewise
729 : * for the temp sorting array.
730 : */
731 338 : dcc = NULL;
732 338 : ccons = NULL;
733 338 : cconslen = 0;
734 :
735 : /*
736 : * Scan pg_constraint for relevant constraints. We want to find
737 : * constraints for not just this domain, but any ancestor domains, so the
738 : * outer loop crawls up the domain stack.
739 : */
740 338 : conRel = heap_open(ConstraintRelationId, AccessShareLock);
741 :
742 : for (;;)
743 : {
744 : HeapTuple tup;
745 : HeapTuple conTup;
746 : Form_pg_type typTup;
747 692 : int nccons = 0;
748 : ScanKeyData key[1];
749 : SysScanDesc scan;
750 :
751 692 : tup = SearchSysCache1(TYPEOID, ObjectIdGetDatum(typeOid));
752 692 : if (!HeapTupleIsValid(tup))
753 0 : elog(ERROR, "cache lookup failed for type %u", typeOid);
754 692 : typTup = (Form_pg_type) GETSTRUCT(tup);
755 :
756 692 : if (typTup->typtype != TYPTYPE_DOMAIN)
757 : {
758 : /* Not a domain, so done */
759 338 : ReleaseSysCache(tup);
760 338 : break;
761 : }
762 :
763 : /* Test for NOT NULL Constraint */
764 354 : if (typTup->typnotnull)
765 27 : notNull = true;
766 :
767 : /* Look for CHECK Constraints on this domain */
768 354 : ScanKeyInit(&key[0],
769 : Anum_pg_constraint_contypid,
770 : BTEqualStrategyNumber, F_OIDEQ,
771 : ObjectIdGetDatum(typeOid));
772 :
773 354 : scan = systable_beginscan(conRel, ConstraintTypidIndexId, true,
774 : NULL, 1, key);
775 :
776 874 : while (HeapTupleIsValid(conTup = systable_getnext(scan)))
777 : {
778 166 : Form_pg_constraint c = (Form_pg_constraint) GETSTRUCT(conTup);
779 : Datum val;
780 : bool isNull;
781 : char *constring;
782 : Expr *check_expr;
783 : DomainConstraintState *r;
784 :
785 : /* Ignore non-CHECK constraints (presently, shouldn't be any) */
786 166 : if (c->contype != CONSTRAINT_CHECK)
787 0 : continue;
788 :
789 : /* Not expecting conbin to be NULL, but we'll test for it anyway */
790 166 : val = fastgetattr(conTup, Anum_pg_constraint_conbin,
791 : conRel->rd_att, &isNull);
792 166 : if (isNull)
793 0 : elog(ERROR, "domain \"%s\" constraint \"%s\" has NULL conbin",
794 : NameStr(typTup->typname), NameStr(c->conname));
795 :
796 : /* Convert conbin to C string in caller context */
797 166 : constring = TextDatumGetCString(val);
798 :
799 : /* Create the DomainConstraintCache object and context if needed */
800 166 : if (dcc == NULL)
801 : {
802 : MemoryContext cxt;
803 :
804 156 : cxt = AllocSetContextCreate(CurrentMemoryContext,
805 : "Domain constraints",
806 : ALLOCSET_SMALL_SIZES);
807 156 : dcc = (DomainConstraintCache *)
808 : MemoryContextAlloc(cxt, sizeof(DomainConstraintCache));
809 156 : dcc->constraints = NIL;
810 156 : dcc->dccContext = cxt;
811 156 : dcc->dccRefCount = 0;
812 : }
813 :
814 : /* Create node trees in DomainConstraintCache's context */
815 166 : oldcxt = MemoryContextSwitchTo(dcc->dccContext);
816 :
817 166 : check_expr = (Expr *) stringToNode(constring);
818 :
819 : /* ExecInitExpr will assume we've planned the expression */
820 166 : check_expr = expression_planner(check_expr);
821 :
822 166 : r = makeNode(DomainConstraintState);
823 166 : r->constrainttype = DOM_CONSTRAINT_CHECK;
824 166 : r->name = pstrdup(NameStr(c->conname));
825 166 : r->check_expr = check_expr;
826 166 : r->check_exprstate = NULL;
827 :
828 166 : MemoryContextSwitchTo(oldcxt);
829 :
830 : /* Accumulate constraints in an array, for sorting below */
831 166 : if (ccons == NULL)
832 : {
833 156 : cconslen = 8;
834 156 : ccons = (DomainConstraintState **)
835 156 : palloc(cconslen * sizeof(DomainConstraintState *));
836 : }
837 10 : else if (nccons >= cconslen)
838 : {
839 0 : cconslen *= 2;
840 0 : ccons = (DomainConstraintState **)
841 0 : repalloc(ccons, cconslen * sizeof(DomainConstraintState *));
842 : }
843 166 : ccons[nccons++] = r;
844 : }
845 :
846 354 : systable_endscan(scan);
847 :
848 354 : if (nccons > 0)
849 : {
850 : /*
851 : * Sort the items for this domain, so that CHECKs are applied in a
852 : * deterministic order.
853 : */
854 165 : if (nccons > 1)
855 1 : qsort(ccons, nccons, sizeof(DomainConstraintState *), dcs_cmp);
856 :
857 : /*
858 : * Now attach them to the overall list. Use lcons() here because
859 : * constraints of parent domains should be applied earlier.
860 : */
861 165 : oldcxt = MemoryContextSwitchTo(dcc->dccContext);
862 496 : while (nccons > 0)
863 166 : dcc->constraints = lcons(ccons[--nccons], dcc->constraints);
864 165 : MemoryContextSwitchTo(oldcxt);
865 : }
866 :
867 : /* loop to next domain in stack */
868 354 : typeOid = typTup->typbasetype;
869 354 : ReleaseSysCache(tup);
870 354 : }
871 :
872 338 : heap_close(conRel, AccessShareLock);
873 :
874 : /*
875 : * Only need to add one NOT NULL check regardless of how many domains in
876 : * the stack request it.
877 : */
878 338 : if (notNull)
879 : {
880 : DomainConstraintState *r;
881 :
882 : /* Create the DomainConstraintCache object and context if needed */
883 27 : if (dcc == NULL)
884 : {
885 : MemoryContext cxt;
886 :
887 17 : cxt = AllocSetContextCreate(CurrentMemoryContext,
888 : "Domain constraints",
889 : ALLOCSET_SMALL_SIZES);
890 17 : dcc = (DomainConstraintCache *)
891 : MemoryContextAlloc(cxt, sizeof(DomainConstraintCache));
892 17 : dcc->constraints = NIL;
893 17 : dcc->dccContext = cxt;
894 17 : dcc->dccRefCount = 0;
895 : }
896 :
897 : /* Create node trees in DomainConstraintCache's context */
898 27 : oldcxt = MemoryContextSwitchTo(dcc->dccContext);
899 :
900 27 : r = makeNode(DomainConstraintState);
901 :
902 27 : r->constrainttype = DOM_CONSTRAINT_NOTNULL;
903 27 : r->name = pstrdup("NOT NULL");
904 27 : r->check_expr = NULL;
905 27 : r->check_exprstate = NULL;
906 :
907 : /* lcons to apply the nullness check FIRST */
908 27 : dcc->constraints = lcons(r, dcc->constraints);
909 :
910 27 : MemoryContextSwitchTo(oldcxt);
911 : }
912 :
913 : /*
914 : * If we made a constraint object, move it into CacheMemoryContext and
915 : * attach it to the typcache entry.
916 : */
917 338 : if (dcc)
918 : {
919 173 : MemoryContextSetParent(dcc->dccContext, CacheMemoryContext);
920 173 : typentry->domainData = dcc;
921 173 : dcc->dccRefCount++; /* count the typcache's reference */
922 : }
923 :
924 : /* Either way, the typcache entry's domain data is now valid. */
925 338 : typentry->flags |= TCFLAGS_CHECKED_DOMAIN_CONSTRAINTS;
926 338 : }
927 :
928 : /*
929 : * qsort comparator to sort DomainConstraintState pointers by name
930 : */
931 : static int
932 1 : dcs_cmp(const void *a, const void *b)
933 : {
934 1 : const DomainConstraintState *const *ca = (const DomainConstraintState *const *) a;
935 1 : const DomainConstraintState *const *cb = (const DomainConstraintState *const *) b;
936 :
937 1 : return strcmp((*ca)->name, (*cb)->name);
938 : }
939 :
940 : /*
941 : * decr_dcc_refcount --- decrement a DomainConstraintCache's refcount,
942 : * and free it if no references remain
943 : */
944 : static void
945 811 : decr_dcc_refcount(DomainConstraintCache *dcc)
946 : {
947 811 : Assert(dcc->dccRefCount > 0);
948 811 : if (--(dcc->dccRefCount) <= 0)
949 139 : MemoryContextDelete(dcc->dccContext);
950 811 : }
951 :
952 : /*
953 : * Context reset/delete callback for a DomainConstraintRef
954 : */
955 : static void
956 1461 : dccref_deletion_callback(void *arg)
957 : {
958 1461 : DomainConstraintRef *ref = (DomainConstraintRef *) arg;
959 1461 : DomainConstraintCache *dcc = ref->dcc;
960 :
961 : /* Paranoia --- be sure link is nulled before trying to release */
962 1461 : if (dcc)
963 : {
964 672 : ref->constraints = NIL;
965 672 : ref->dcc = NULL;
966 672 : decr_dcc_refcount(dcc);
967 : }
968 1461 : }
969 :
970 : /*
971 : * prep_domain_constraints --- prepare domain constraints for execution
972 : *
973 : * The expression trees stored in the DomainConstraintCache's list are
974 : * converted to executable expression state trees stored in execctx.
975 : */
976 : static List *
977 332 : prep_domain_constraints(List *constraints, MemoryContext execctx)
978 : {
979 332 : List *result = NIL;
980 : MemoryContext oldcxt;
981 : ListCell *lc;
982 :
983 332 : oldcxt = MemoryContextSwitchTo(execctx);
984 :
985 668 : foreach(lc, constraints)
986 : {
987 336 : DomainConstraintState *r = (DomainConstraintState *) lfirst(lc);
988 : DomainConstraintState *newr;
989 :
990 336 : newr = makeNode(DomainConstraintState);
991 336 : newr->constrainttype = r->constrainttype;
992 336 : newr->name = r->name;
993 336 : newr->check_expr = r->check_expr;
994 336 : newr->check_exprstate = ExecInitExpr(r->check_expr, NULL);
995 :
996 336 : result = lappend(result, newr);
997 : }
998 :
999 332 : MemoryContextSwitchTo(oldcxt);
1000 :
1001 332 : return result;
1002 : }
1003 :
1004 : /*
1005 : * InitDomainConstraintRef --- initialize a DomainConstraintRef struct
1006 : *
1007 : * Caller must tell us the MemoryContext in which the DomainConstraintRef
1008 : * lives. The ref will be cleaned up when that context is reset/deleted.
1009 : *
1010 : * Caller must also tell us whether it wants check_exprstate fields to be
1011 : * computed in the DomainConstraintState nodes attached to this ref.
1012 : * If it doesn't, we need not make a copy of the DomainConstraintState list.
1013 : */
1014 : void
1015 1461 : InitDomainConstraintRef(Oid type_id, DomainConstraintRef *ref,
1016 : MemoryContext refctx, bool need_exprstate)
1017 : {
1018 : /* Look up the typcache entry --- we assume it survives indefinitely */
1019 1461 : ref->tcache = lookup_type_cache(type_id, TYPECACHE_DOMAIN_INFO);
1020 1461 : ref->need_exprstate = need_exprstate;
1021 : /* For safety, establish the callback before acquiring a refcount */
1022 1461 : ref->refctx = refctx;
1023 1461 : ref->dcc = NULL;
1024 1461 : ref->callback.func = dccref_deletion_callback;
1025 1461 : ref->callback.arg = (void *) ref;
1026 1461 : MemoryContextRegisterResetCallback(refctx, &ref->callback);
1027 : /* Acquire refcount if there are constraints, and set up exported list */
1028 1461 : if (ref->tcache->domainData)
1029 : {
1030 672 : ref->dcc = ref->tcache->domainData;
1031 672 : ref->dcc->dccRefCount++;
1032 672 : if (ref->need_exprstate)
1033 332 : ref->constraints = prep_domain_constraints(ref->dcc->constraints,
1034 : ref->refctx);
1035 : else
1036 340 : ref->constraints = ref->dcc->constraints;
1037 : }
1038 : else
1039 789 : ref->constraints = NIL;
1040 1461 : }
1041 :
1042 : /*
1043 : * UpdateDomainConstraintRef --- recheck validity of domain constraint info
1044 : *
1045 : * If the domain's constraint set changed, ref->constraints is updated to
1046 : * point at a new list of cached constraints.
1047 : *
1048 : * In the normal case where nothing happened to the domain, this is cheap
1049 : * enough that it's reasonable (and expected) to check before *each* use
1050 : * of the constraint info.
1051 : */
1052 : void
1053 4529 : UpdateDomainConstraintRef(DomainConstraintRef *ref)
1054 : {
1055 4529 : TypeCacheEntry *typentry = ref->tcache;
1056 :
1057 : /* Make sure typcache entry's data is up to date */
1058 4529 : if ((typentry->flags & TCFLAGS_CHECKED_DOMAIN_CONSTRAINTS) == 0 &&
1059 0 : typentry->typtype == TYPTYPE_DOMAIN)
1060 0 : load_domaintype_info(typentry);
1061 :
1062 : /* Transfer to ref object if there's new info, adjusting refcounts */
1063 4529 : if (ref->dcc != typentry->domainData)
1064 : {
1065 : /* Paranoia --- be sure link is nulled before trying to release */
1066 0 : DomainConstraintCache *dcc = ref->dcc;
1067 :
1068 0 : if (dcc)
1069 : {
1070 : /*
1071 : * Note: we just leak the previous list of executable domain
1072 : * constraints. Alternatively, we could keep those in a child
1073 : * context of ref->refctx and free that context at this point.
1074 : * However, in practice this code path will be taken so seldom
1075 : * that the extra bookkeeping for a child context doesn't seem
1076 : * worthwhile; we'll just allow a leak for the lifespan of refctx.
1077 : */
1078 0 : ref->constraints = NIL;
1079 0 : ref->dcc = NULL;
1080 0 : decr_dcc_refcount(dcc);
1081 : }
1082 0 : dcc = typentry->domainData;
1083 0 : if (dcc)
1084 : {
1085 0 : ref->dcc = dcc;
1086 0 : dcc->dccRefCount++;
1087 0 : if (ref->need_exprstate)
1088 0 : ref->constraints = prep_domain_constraints(dcc->constraints,
1089 : ref->refctx);
1090 : else
1091 0 : ref->constraints = dcc->constraints;
1092 : }
1093 : }
1094 4529 : }
1095 :
1096 : /*
1097 : * DomainHasConstraints --- utility routine to check if a domain has constraints
1098 : *
1099 : * This is defined to return false, not fail, if type is not a domain.
1100 : */
1101 : bool
1102 132 : DomainHasConstraints(Oid type_id)
1103 : {
1104 : TypeCacheEntry *typentry;
1105 :
1106 : /*
1107 : * Note: a side effect is to cause the typcache's domain data to become
1108 : * valid. This is fine since we'll likely need it soon if there is any.
1109 : */
1110 132 : typentry = lookup_type_cache(type_id, TYPECACHE_DOMAIN_INFO);
1111 :
1112 132 : return (typentry->domainData != NULL);
1113 : }
1114 :
1115 :
1116 : /*
1117 : * array_element_has_equality and friends are helper routines to check
1118 : * whether we should believe that array_eq and related functions will work
1119 : * on the given array type or composite type.
1120 : *
1121 : * The logic above may call these repeatedly on the same type entry, so we
1122 : * make use of the typentry->flags field to cache the results once known.
1123 : * Also, we assume that we'll probably want all these facts about the type
1124 : * if we want any, so we cache them all using only one lookup of the
1125 : * component datatype(s).
1126 : */
1127 :
1128 : static bool
1129 17 : array_element_has_equality(TypeCacheEntry *typentry)
1130 : {
1131 17 : if (!(typentry->flags & TCFLAGS_CHECKED_ELEM_PROPERTIES))
1132 16 : cache_array_element_properties(typentry);
1133 17 : return (typentry->flags & TCFLAGS_HAVE_ELEM_EQUALITY) != 0;
1134 : }
1135 :
1136 : static bool
1137 39 : array_element_has_compare(TypeCacheEntry *typentry)
1138 : {
1139 39 : if (!(typentry->flags & TCFLAGS_CHECKED_ELEM_PROPERTIES))
1140 5 : cache_array_element_properties(typentry);
1141 39 : return (typentry->flags & TCFLAGS_HAVE_ELEM_COMPARE) != 0;
1142 : }
1143 :
1144 : static bool
1145 2 : array_element_has_hashing(TypeCacheEntry *typentry)
1146 : {
1147 2 : if (!(typentry->flags & TCFLAGS_CHECKED_ELEM_PROPERTIES))
1148 0 : cache_array_element_properties(typentry);
1149 2 : return (typentry->flags & TCFLAGS_HAVE_ELEM_HASHING) != 0;
1150 : }
1151 :
1152 : static void
1153 21 : cache_array_element_properties(TypeCacheEntry *typentry)
1154 : {
1155 21 : Oid elem_type = get_base_element_type(typentry->type_id);
1156 :
1157 21 : if (OidIsValid(elem_type))
1158 : {
1159 : TypeCacheEntry *elementry;
1160 :
1161 21 : elementry = lookup_type_cache(elem_type,
1162 : TYPECACHE_EQ_OPR |
1163 : TYPECACHE_CMP_PROC |
1164 : TYPECACHE_HASH_PROC);
1165 21 : if (OidIsValid(elementry->eq_opr))
1166 21 : typentry->flags |= TCFLAGS_HAVE_ELEM_EQUALITY;
1167 21 : if (OidIsValid(elementry->cmp_proc))
1168 19 : typentry->flags |= TCFLAGS_HAVE_ELEM_COMPARE;
1169 21 : if (OidIsValid(elementry->hash_proc))
1170 20 : typentry->flags |= TCFLAGS_HAVE_ELEM_HASHING;
1171 : }
1172 21 : typentry->flags |= TCFLAGS_CHECKED_ELEM_PROPERTIES;
1173 21 : }
1174 :
1175 : static bool
1176 9 : record_fields_have_equality(TypeCacheEntry *typentry)
1177 : {
1178 9 : if (!(typentry->flags & TCFLAGS_CHECKED_FIELD_PROPERTIES))
1179 8 : cache_record_field_properties(typentry);
1180 9 : return (typentry->flags & TCFLAGS_HAVE_FIELD_EQUALITY) != 0;
1181 : }
1182 :
1183 : static bool
1184 16 : record_fields_have_compare(TypeCacheEntry *typentry)
1185 : {
1186 16 : if (!(typentry->flags & TCFLAGS_CHECKED_FIELD_PROPERTIES))
1187 3 : cache_record_field_properties(typentry);
1188 16 : return (typentry->flags & TCFLAGS_HAVE_FIELD_COMPARE) != 0;
1189 : }
1190 :
1191 : static void
1192 11 : cache_record_field_properties(TypeCacheEntry *typentry)
1193 : {
1194 : /*
1195 : * For type RECORD, we can't really tell what will work, since we don't
1196 : * have access here to the specific anonymous type. Just assume that
1197 : * everything will (we may get a failure at runtime ...)
1198 : */
1199 11 : if (typentry->type_id == RECORDOID)
1200 2 : typentry->flags |= (TCFLAGS_HAVE_FIELD_EQUALITY |
1201 : TCFLAGS_HAVE_FIELD_COMPARE);
1202 9 : else if (typentry->typtype == TYPTYPE_COMPOSITE)
1203 : {
1204 : TupleDesc tupdesc;
1205 : int newflags;
1206 : int i;
1207 :
1208 : /* Fetch composite type's tupdesc if we don't have it already */
1209 9 : if (typentry->tupDesc == NULL)
1210 1 : load_typcache_tupdesc(typentry);
1211 9 : tupdesc = typentry->tupDesc;
1212 :
1213 : /* Must bump the refcount while we do additional catalog lookups */
1214 9 : IncrTupleDescRefCount(tupdesc);
1215 :
1216 : /* Have each property if all non-dropped fields have the property */
1217 9 : newflags = (TCFLAGS_HAVE_FIELD_EQUALITY |
1218 : TCFLAGS_HAVE_FIELD_COMPARE);
1219 24 : for (i = 0; i < tupdesc->natts; i++)
1220 : {
1221 : TypeCacheEntry *fieldentry;
1222 17 : Form_pg_attribute attr = TupleDescAttr(tupdesc, i);
1223 :
1224 17 : if (attr->attisdropped)
1225 0 : continue;
1226 :
1227 17 : fieldentry = lookup_type_cache(attr->atttypid,
1228 : TYPECACHE_EQ_OPR |
1229 : TYPECACHE_CMP_PROC);
1230 17 : if (!OidIsValid(fieldentry->eq_opr))
1231 2 : newflags &= ~TCFLAGS_HAVE_FIELD_EQUALITY;
1232 17 : if (!OidIsValid(fieldentry->cmp_proc))
1233 2 : newflags &= ~TCFLAGS_HAVE_FIELD_COMPARE;
1234 :
1235 : /* We can drop out of the loop once we disprove all bits */
1236 17 : if (newflags == 0)
1237 2 : break;
1238 : }
1239 9 : typentry->flags |= newflags;
1240 :
1241 9 : DecrTupleDescRefCount(tupdesc);
1242 : }
1243 11 : typentry->flags |= TCFLAGS_CHECKED_FIELD_PROPERTIES;
1244 11 : }
1245 :
1246 :
1247 : /*
1248 : * lookup_rowtype_tupdesc_internal --- internal routine to lookup a rowtype
1249 : *
1250 : * Same API as lookup_rowtype_tupdesc_noerror, but the returned tupdesc
1251 : * hasn't had its refcount bumped.
1252 : */
1253 : static TupleDesc
1254 5573 : lookup_rowtype_tupdesc_internal(Oid type_id, int32 typmod, bool noError)
1255 : {
1256 5573 : if (type_id != RECORDOID)
1257 : {
1258 : /*
1259 : * It's a named composite type, so use the regular typcache.
1260 : */
1261 : TypeCacheEntry *typentry;
1262 :
1263 4114 : typentry = lookup_type_cache(type_id, TYPECACHE_TUPDESC);
1264 4114 : if (typentry->tupDesc == NULL && !noError)
1265 0 : ereport(ERROR,
1266 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1267 : errmsg("type %s is not composite",
1268 : format_type_be(type_id))));
1269 4114 : return typentry->tupDesc;
1270 : }
1271 : else
1272 : {
1273 : /*
1274 : * It's a transient record type, so look in our record-type table.
1275 : */
1276 1459 : if (typmod < 0 || typmod >= NextRecordTypmod)
1277 : {
1278 0 : if (!noError)
1279 0 : ereport(ERROR,
1280 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1281 : errmsg("record type has not been registered")));
1282 0 : return NULL;
1283 : }
1284 1459 : return RecordCacheArray[typmod];
1285 : }
1286 : }
1287 :
1288 : /*
1289 : * lookup_rowtype_tupdesc
1290 : *
1291 : * Given a typeid/typmod that should describe a known composite type,
1292 : * return the tuple descriptor for the type. Will ereport on failure.
1293 : * (Use ereport because this is reachable with user-specified OIDs,
1294 : * for example from record_in().)
1295 : *
1296 : * Note: on success, we increment the refcount of the returned TupleDesc,
1297 : * and log the reference in CurrentResourceOwner. Caller should call
1298 : * ReleaseTupleDesc or DecrTupleDescRefCount when done using the tupdesc.
1299 : */
1300 : TupleDesc
1301 3745 : lookup_rowtype_tupdesc(Oid type_id, int32 typmod)
1302 : {
1303 : TupleDesc tupDesc;
1304 :
1305 3745 : tupDesc = lookup_rowtype_tupdesc_internal(type_id, typmod, false);
1306 3745 : IncrTupleDescRefCount(tupDesc);
1307 3745 : return tupDesc;
1308 : }
1309 :
1310 : /*
1311 : * lookup_rowtype_tupdesc_noerror
1312 : *
1313 : * As above, but if the type is not a known composite type and noError
1314 : * is true, returns NULL instead of ereport'ing. (Note that if a bogus
1315 : * type_id is passed, you'll get an ereport anyway.)
1316 : */
1317 : TupleDesc
1318 0 : lookup_rowtype_tupdesc_noerror(Oid type_id, int32 typmod, bool noError)
1319 : {
1320 : TupleDesc tupDesc;
1321 :
1322 0 : tupDesc = lookup_rowtype_tupdesc_internal(type_id, typmod, noError);
1323 0 : if (tupDesc != NULL)
1324 0 : IncrTupleDescRefCount(tupDesc);
1325 0 : return tupDesc;
1326 : }
1327 :
1328 : /*
1329 : * lookup_rowtype_tupdesc_copy
1330 : *
1331 : * Like lookup_rowtype_tupdesc(), but the returned TupleDesc has been
1332 : * copied into the CurrentMemoryContext and is not reference-counted.
1333 : */
1334 : TupleDesc
1335 1828 : lookup_rowtype_tupdesc_copy(Oid type_id, int32 typmod)
1336 : {
1337 : TupleDesc tmp;
1338 :
1339 1828 : tmp = lookup_rowtype_tupdesc_internal(type_id, typmod, false);
1340 1828 : return CreateTupleDescCopyConstr(tmp);
1341 : }
1342 :
1343 : /*
1344 : * Hash function for the hash table of RecordCacheEntry.
1345 : */
1346 : static uint32
1347 4339 : record_type_typmod_hash(const void *data, size_t size)
1348 : {
1349 4339 : RecordCacheEntry *entry = (RecordCacheEntry *) data;
1350 :
1351 4339 : return hashTupleDesc(entry->tupdesc);
1352 : }
1353 :
1354 : /*
1355 : * Match function for the hash table of RecordCacheEntry.
1356 : */
1357 : static int
1358 4273 : record_type_typmod_compare(const void *a, const void *b, size_t size)
1359 : {
1360 4273 : RecordCacheEntry *left = (RecordCacheEntry *) a;
1361 4273 : RecordCacheEntry *right = (RecordCacheEntry *) b;
1362 :
1363 4273 : return equalTupleDescs(left->tupdesc, right->tupdesc) ? 0 : 1;
1364 : }
1365 :
1366 : /*
1367 : * assign_record_type_typmod
1368 : *
1369 : * Given a tuple descriptor for a RECORD type, find or create a cache entry
1370 : * for the type, and set the tupdesc's tdtypmod field to a value that will
1371 : * identify this cache entry to lookup_rowtype_tupdesc.
1372 : */
1373 : void
1374 4339 : assign_record_type_typmod(TupleDesc tupDesc)
1375 : {
1376 : RecordCacheEntry *recentry;
1377 : TupleDesc entDesc;
1378 : bool found;
1379 : int32 newtypmod;
1380 : MemoryContext oldcxt;
1381 :
1382 4339 : Assert(tupDesc->tdtypeid == RECORDOID);
1383 :
1384 4339 : if (RecordCacheHash == NULL)
1385 : {
1386 : /* First time through: initialize the hash table */
1387 : HASHCTL ctl;
1388 :
1389 39 : MemSet(&ctl, 0, sizeof(ctl));
1390 39 : ctl.keysize = sizeof(TupleDesc); /* just the pointer */
1391 39 : ctl.entrysize = sizeof(RecordCacheEntry);
1392 39 : ctl.hash = record_type_typmod_hash;
1393 39 : ctl.match = record_type_typmod_compare;
1394 39 : RecordCacheHash = hash_create("Record information cache", 64,
1395 : &ctl,
1396 : HASH_ELEM | HASH_FUNCTION | HASH_COMPARE);
1397 :
1398 : /* Also make sure CacheMemoryContext exists */
1399 39 : if (!CacheMemoryContext)
1400 0 : CreateCacheMemoryContext();
1401 : }
1402 :
1403 : /* Find or create a hashtable entry for this tuple descriptor */
1404 4339 : recentry = (RecordCacheEntry *) hash_search(RecordCacheHash,
1405 : (void *) &tupDesc,
1406 : HASH_ENTER, &found);
1407 4339 : if (found && recentry->tupdesc != NULL)
1408 : {
1409 4151 : tupDesc->tdtypmod = recentry->tupdesc->tdtypmod;
1410 8490 : return;
1411 : }
1412 :
1413 : /* Not present, so need to manufacture an entry */
1414 188 : recentry->tupdesc = NULL;
1415 188 : oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
1416 :
1417 188 : if (RecordCacheArray == NULL)
1418 : {
1419 39 : RecordCacheArray = (TupleDesc *) palloc(64 * sizeof(TupleDesc));
1420 39 : RecordCacheArrayLen = 64;
1421 : }
1422 149 : else if (NextRecordTypmod >= RecordCacheArrayLen)
1423 : {
1424 0 : int32 newlen = RecordCacheArrayLen * 2;
1425 :
1426 0 : RecordCacheArray = (TupleDesc *) repalloc(RecordCacheArray,
1427 : newlen * sizeof(TupleDesc));
1428 0 : RecordCacheArrayLen = newlen;
1429 : }
1430 :
1431 : /* if fail in subrs, no damage except possibly some wasted memory... */
1432 188 : entDesc = CreateTupleDescCopy(tupDesc);
1433 188 : recentry->tupdesc = entDesc;
1434 : /* mark it as a reference-counted tupdesc */
1435 188 : entDesc->tdrefcount = 1;
1436 : /* now it's safe to advance NextRecordTypmod */
1437 188 : newtypmod = NextRecordTypmod++;
1438 188 : entDesc->tdtypmod = newtypmod;
1439 188 : RecordCacheArray[newtypmod] = entDesc;
1440 :
1441 : /* report to caller as well */
1442 188 : tupDesc->tdtypmod = newtypmod;
1443 :
1444 188 : MemoryContextSwitchTo(oldcxt);
1445 : }
1446 :
1447 : /*
1448 : * TypeCacheRelCallback
1449 : * Relcache inval callback function
1450 : *
1451 : * Delete the cached tuple descriptor (if any) for the given rel's composite
1452 : * type, or for all composite types if relid == InvalidOid. Also reset
1453 : * whatever info we have cached about the composite type's comparability.
1454 : *
1455 : * This is called when a relcache invalidation event occurs for the given
1456 : * relid. We must scan the whole typcache hash since we don't know the
1457 : * type OID corresponding to the relid. We could do a direct search if this
1458 : * were a syscache-flush callback on pg_type, but then we would need all
1459 : * ALTER-TABLE-like commands that could modify a rowtype to issue syscache
1460 : * invals against the rel's pg_type OID. The extra SI signaling could very
1461 : * well cost more than we'd save, since in most usages there are not very
1462 : * many entries in a backend's typcache. The risk of bugs-of-omission seems
1463 : * high, too.
1464 : *
1465 : * Another possibility, with only localized impact, is to maintain a second
1466 : * hashtable that indexes composite-type typcache entries by their typrelid.
1467 : * But it's still not clear it's worth the trouble.
1468 : */
1469 : static void
1470 57720 : TypeCacheRelCallback(Datum arg, Oid relid)
1471 : {
1472 : HASH_SEQ_STATUS status;
1473 : TypeCacheEntry *typentry;
1474 :
1475 : /* TypeCacheHash must exist, else this callback wouldn't be registered */
1476 57720 : hash_seq_init(&status, TypeCacheHash);
1477 638628 : while ((typentry = (TypeCacheEntry *) hash_seq_search(&status)) != NULL)
1478 : {
1479 523188 : if (typentry->typtype != TYPTYPE_COMPOSITE)
1480 446132 : continue; /* skip non-composites */
1481 :
1482 : /* Skip if no match, unless we're zapping all composite types */
1483 77056 : if (relid != typentry->typrelid && relid != InvalidOid)
1484 76587 : continue;
1485 :
1486 : /* Delete tupdesc if we have it */
1487 469 : if (typentry->tupDesc != NULL)
1488 : {
1489 : /*
1490 : * Release our refcount, and free the tupdesc if none remain.
1491 : * (Can't use DecrTupleDescRefCount because this reference is not
1492 : * logged in current resource owner.)
1493 : */
1494 112 : Assert(typentry->tupDesc->tdrefcount > 0);
1495 112 : if (--typentry->tupDesc->tdrefcount == 0)
1496 109 : FreeTupleDesc(typentry->tupDesc);
1497 112 : typentry->tupDesc = NULL;
1498 : }
1499 :
1500 : /* Reset equality/comparison/hashing validity information */
1501 469 : typentry->flags = 0;
1502 : }
1503 57720 : }
1504 :
1505 : /*
1506 : * TypeCacheOpcCallback
1507 : * Syscache inval callback function
1508 : *
1509 : * This is called when a syscache invalidation event occurs for any pg_opclass
1510 : * row. In principle we could probably just invalidate data dependent on the
1511 : * particular opclass, but since updates on pg_opclass are rare in production
1512 : * it doesn't seem worth a lot of complication: we just mark all cached data
1513 : * invalid.
1514 : *
1515 : * Note that we don't bother watching for updates on pg_amop or pg_amproc.
1516 : * This should be safe because ALTER OPERATOR FAMILY ADD/DROP OPERATOR/FUNCTION
1517 : * is not allowed to be used to add/drop the primary operators and functions
1518 : * of an opclass, only cross-type members of a family; and the latter sorts
1519 : * of members are not going to get cached here.
1520 : */
1521 : static void
1522 92 : TypeCacheOpcCallback(Datum arg, int cacheid, uint32 hashvalue)
1523 : {
1524 : HASH_SEQ_STATUS status;
1525 : TypeCacheEntry *typentry;
1526 :
1527 : /* TypeCacheHash must exist, else this callback wouldn't be registered */
1528 92 : hash_seq_init(&status, TypeCacheHash);
1529 630 : while ((typentry = (TypeCacheEntry *) hash_seq_search(&status)) != NULL)
1530 : {
1531 : /* Reset equality/comparison/hashing validity information */
1532 446 : typentry->flags = 0;
1533 : }
1534 92 : }
1535 :
1536 : /*
1537 : * TypeCacheConstrCallback
1538 : * Syscache inval callback function
1539 : *
1540 : * This is called when a syscache invalidation event occurs for any
1541 : * pg_constraint or pg_type row. We flush information about domain
1542 : * constraints when this happens.
1543 : *
1544 : * It's slightly annoying that we can't tell whether the inval event was for a
1545 : * domain constraint/type record or not; there's usually more update traffic
1546 : * for table constraints/types than domain constraints, so we'll do a lot of
1547 : * useless flushes. Still, this is better than the old no-caching-at-all
1548 : * approach to domain constraints.
1549 : */
1550 : static void
1551 35800 : TypeCacheConstrCallback(Datum arg, int cacheid, uint32 hashvalue)
1552 : {
1553 : TypeCacheEntry *typentry;
1554 :
1555 : /*
1556 : * Because this is called very frequently, and typically very few of the
1557 : * typcache entries are for domains, we don't use hash_seq_search here.
1558 : * Instead we thread all the domain-type entries together so that we can
1559 : * visit them cheaply.
1560 : */
1561 108146 : for (typentry = firstDomainTypeEntry;
1562 : typentry != NULL;
1563 36546 : typentry = typentry->nextDomain)
1564 : {
1565 : /* Reset domain constraint validity information */
1566 36546 : typentry->flags &= ~TCFLAGS_CHECKED_DOMAIN_CONSTRAINTS;
1567 : }
1568 35800 : }
1569 :
1570 :
1571 : /*
1572 : * Check if given OID is part of the subset that's sortable by comparisons
1573 : */
1574 : static inline bool
1575 17 : enum_known_sorted(TypeCacheEnumData *enumdata, Oid arg)
1576 : {
1577 : Oid offset;
1578 :
1579 17 : if (arg < enumdata->bitmap_base)
1580 0 : return false;
1581 17 : offset = arg - enumdata->bitmap_base;
1582 17 : if (offset > (Oid) INT_MAX)
1583 0 : return false;
1584 17 : return bms_is_member((int) offset, enumdata->sorted_values);
1585 : }
1586 :
1587 :
1588 : /*
1589 : * compare_values_of_enum
1590 : * Compare two members of an enum type.
1591 : * Return <0, 0, or >0 according as arg1 <, =, or > arg2.
1592 : *
1593 : * Note: currently, the enumData cache is refreshed only if we are asked
1594 : * to compare an enum value that is not already in the cache. This is okay
1595 : * because there is no support for re-ordering existing values, so comparisons
1596 : * of previously cached values will return the right answer even if other
1597 : * values have been added since we last loaded the cache.
1598 : *
1599 : * Note: the enum logic has a special-case rule about even-numbered versus
1600 : * odd-numbered OIDs, but we take no account of that rule here; this
1601 : * routine shouldn't even get called when that rule applies.
1602 : */
1603 : int
1604 11 : compare_values_of_enum(TypeCacheEntry *tcache, Oid arg1, Oid arg2)
1605 : {
1606 : TypeCacheEnumData *enumdata;
1607 : EnumItem *item1;
1608 : EnumItem *item2;
1609 :
1610 : /*
1611 : * Equal OIDs are certainly equal --- this case was probably handled by
1612 : * our caller, but we may as well check.
1613 : */
1614 11 : if (arg1 == arg2)
1615 0 : return 0;
1616 :
1617 : /* Load up the cache if first time through */
1618 11 : if (tcache->enumData == NULL)
1619 1 : load_enum_cache_data(tcache);
1620 11 : enumdata = tcache->enumData;
1621 :
1622 : /*
1623 : * If both OIDs are known-sorted, we can just compare them directly.
1624 : */
1625 17 : if (enum_known_sorted(enumdata, arg1) &&
1626 6 : enum_known_sorted(enumdata, arg2))
1627 : {
1628 0 : if (arg1 < arg2)
1629 0 : return -1;
1630 : else
1631 0 : return 1;
1632 : }
1633 :
1634 : /*
1635 : * Slow path: we have to identify their actual sort-order positions.
1636 : */
1637 11 : item1 = find_enumitem(enumdata, arg1);
1638 11 : item2 = find_enumitem(enumdata, arg2);
1639 :
1640 11 : if (item1 == NULL || item2 == NULL)
1641 : {
1642 : /*
1643 : * We couldn't find one or both values. That means the enum has
1644 : * changed under us, so re-initialize the cache and try again. We
1645 : * don't bother retrying the known-sorted case in this path.
1646 : */
1647 0 : load_enum_cache_data(tcache);
1648 0 : enumdata = tcache->enumData;
1649 :
1650 0 : item1 = find_enumitem(enumdata, arg1);
1651 0 : item2 = find_enumitem(enumdata, arg2);
1652 :
1653 : /*
1654 : * If we still can't find the values, complain: we must have corrupt
1655 : * data.
1656 : */
1657 0 : if (item1 == NULL)
1658 0 : elog(ERROR, "enum value %u not found in cache for enum %s",
1659 : arg1, format_type_be(tcache->type_id));
1660 0 : if (item2 == NULL)
1661 0 : elog(ERROR, "enum value %u not found in cache for enum %s",
1662 : arg2, format_type_be(tcache->type_id));
1663 : }
1664 :
1665 11 : if (item1->sort_order < item2->sort_order)
1666 4 : return -1;
1667 7 : else if (item1->sort_order > item2->sort_order)
1668 7 : return 1;
1669 : else
1670 0 : return 0;
1671 : }
1672 :
1673 : /*
1674 : * Load (or re-load) the enumData member of the typcache entry.
1675 : */
1676 : static void
1677 1 : load_enum_cache_data(TypeCacheEntry *tcache)
1678 : {
1679 : TypeCacheEnumData *enumdata;
1680 : Relation enum_rel;
1681 : SysScanDesc enum_scan;
1682 : HeapTuple enum_tuple;
1683 : ScanKeyData skey;
1684 : EnumItem *items;
1685 : int numitems;
1686 : int maxitems;
1687 : Oid bitmap_base;
1688 : Bitmapset *bitmap;
1689 : MemoryContext oldcxt;
1690 : int bm_size,
1691 : start_pos;
1692 :
1693 : /* Check that this is actually an enum */
1694 1 : if (tcache->typtype != TYPTYPE_ENUM)
1695 0 : ereport(ERROR,
1696 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1697 : errmsg("%s is not an enum",
1698 : format_type_be(tcache->type_id))));
1699 :
1700 : /*
1701 : * Read all the information for members of the enum type. We collect the
1702 : * info in working memory in the caller's context, and then transfer it to
1703 : * permanent memory in CacheMemoryContext. This minimizes the risk of
1704 : * leaking memory from CacheMemoryContext in the event of an error partway
1705 : * through.
1706 : */
1707 1 : maxitems = 64;
1708 1 : items = (EnumItem *) palloc(sizeof(EnumItem) * maxitems);
1709 1 : numitems = 0;
1710 :
1711 : /* Scan pg_enum for the members of the target enum type. */
1712 1 : ScanKeyInit(&skey,
1713 : Anum_pg_enum_enumtypid,
1714 : BTEqualStrategyNumber, F_OIDEQ,
1715 : ObjectIdGetDatum(tcache->type_id));
1716 :
1717 1 : enum_rel = heap_open(EnumRelationId, AccessShareLock);
1718 1 : enum_scan = systable_beginscan(enum_rel,
1719 : EnumTypIdLabelIndexId,
1720 : true, NULL,
1721 : 1, &skey);
1722 :
1723 10 : while (HeapTupleIsValid(enum_tuple = systable_getnext(enum_scan)))
1724 : {
1725 8 : Form_pg_enum en = (Form_pg_enum) GETSTRUCT(enum_tuple);
1726 :
1727 8 : if (numitems >= maxitems)
1728 : {
1729 0 : maxitems *= 2;
1730 0 : items = (EnumItem *) repalloc(items, sizeof(EnumItem) * maxitems);
1731 : }
1732 8 : items[numitems].enum_oid = HeapTupleGetOid(enum_tuple);
1733 8 : items[numitems].sort_order = en->enumsortorder;
1734 8 : numitems++;
1735 : }
1736 :
1737 1 : systable_endscan(enum_scan);
1738 1 : heap_close(enum_rel, AccessShareLock);
1739 :
1740 : /* Sort the items into OID order */
1741 1 : qsort(items, numitems, sizeof(EnumItem), enum_oid_cmp);
1742 :
1743 : /*
1744 : * Here, we create a bitmap listing a subset of the enum's OIDs that are
1745 : * known to be in order and can thus be compared with just OID comparison.
1746 : *
1747 : * The point of this is that the enum's initial OIDs were certainly in
1748 : * order, so there is some subset that can be compared via OID comparison;
1749 : * and we'd rather not do binary searches unnecessarily.
1750 : *
1751 : * This is somewhat heuristic, and might identify a subset of OIDs that
1752 : * isn't exactly what the type started with. That's okay as long as the
1753 : * subset is correctly sorted.
1754 : */
1755 1 : bitmap_base = InvalidOid;
1756 1 : bitmap = NULL;
1757 1 : bm_size = 1; /* only save sets of at least 2 OIDs */
1758 :
1759 3 : for (start_pos = 0; start_pos < numitems - 1; start_pos++)
1760 : {
1761 : /*
1762 : * Identify longest sorted subsequence starting at start_pos
1763 : */
1764 3 : Bitmapset *this_bitmap = bms_make_singleton(0);
1765 3 : int this_bm_size = 1;
1766 3 : Oid start_oid = items[start_pos].enum_oid;
1767 3 : float4 prev_order = items[start_pos].sort_order;
1768 : int i;
1769 :
1770 21 : for (i = start_pos + 1; i < numitems; i++)
1771 : {
1772 : Oid offset;
1773 :
1774 18 : offset = items[i].enum_oid - start_oid;
1775 : /* quit if bitmap would be too large; cutoff is arbitrary */
1776 18 : if (offset >= 8192)
1777 0 : break;
1778 : /* include the item if it's in-order */
1779 18 : if (items[i].sort_order > prev_order)
1780 : {
1781 9 : prev_order = items[i].sort_order;
1782 9 : this_bitmap = bms_add_member(this_bitmap, (int) offset);
1783 9 : this_bm_size++;
1784 : }
1785 : }
1786 :
1787 : /* Remember it if larger than previous best */
1788 3 : if (this_bm_size > bm_size)
1789 : {
1790 1 : bms_free(bitmap);
1791 1 : bitmap_base = start_oid;
1792 1 : bitmap = this_bitmap;
1793 1 : bm_size = this_bm_size;
1794 : }
1795 : else
1796 2 : bms_free(this_bitmap);
1797 :
1798 : /*
1799 : * Done if it's not possible to find a longer sequence in the rest of
1800 : * the list. In typical cases this will happen on the first
1801 : * iteration, which is why we create the bitmaps on the fly instead of
1802 : * doing a second pass over the list.
1803 : */
1804 3 : if (bm_size >= (numitems - start_pos - 1))
1805 1 : break;
1806 : }
1807 :
1808 : /* OK, copy the data into CacheMemoryContext */
1809 1 : oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
1810 1 : enumdata = (TypeCacheEnumData *)
1811 1 : palloc(offsetof(TypeCacheEnumData, enum_values) +
1812 1 : numitems * sizeof(EnumItem));
1813 1 : enumdata->bitmap_base = bitmap_base;
1814 1 : enumdata->sorted_values = bms_copy(bitmap);
1815 1 : enumdata->num_values = numitems;
1816 1 : memcpy(enumdata->enum_values, items, numitems * sizeof(EnumItem));
1817 1 : MemoryContextSwitchTo(oldcxt);
1818 :
1819 1 : pfree(items);
1820 1 : bms_free(bitmap);
1821 :
1822 : /* And link the finished cache struct into the typcache */
1823 1 : if (tcache->enumData != NULL)
1824 0 : pfree(tcache->enumData);
1825 1 : tcache->enumData = enumdata;
1826 1 : }
1827 :
1828 : /*
1829 : * Locate the EnumItem with the given OID, if present
1830 : */
1831 : static EnumItem *
1832 22 : find_enumitem(TypeCacheEnumData *enumdata, Oid arg)
1833 : {
1834 : EnumItem srch;
1835 :
1836 : /* On some versions of Solaris, bsearch of zero items dumps core */
1837 22 : if (enumdata->num_values <= 0)
1838 0 : return NULL;
1839 :
1840 22 : srch.enum_oid = arg;
1841 22 : return bsearch(&srch, enumdata->enum_values, enumdata->num_values,
1842 : sizeof(EnumItem), enum_oid_cmp);
1843 : }
1844 :
1845 : /*
1846 : * qsort comparison function for OID-ordered EnumItems
1847 : */
1848 : static int
1849 79 : enum_oid_cmp(const void *left, const void *right)
1850 : {
1851 79 : const EnumItem *l = (const EnumItem *) left;
1852 79 : const EnumItem *r = (const EnumItem *) right;
1853 :
1854 79 : if (l->enum_oid < r->enum_oid)
1855 29 : return -1;
1856 50 : else if (l->enum_oid > r->enum_oid)
1857 28 : return 1;
1858 : else
1859 22 : return 0;
1860 : }
|