Line data Source code
1 : /*
2 : * md5.c
3 : *
4 : * Implements the MD5 Message-Digest Algorithm as specified in
5 : * RFC 1321. This implementation is a simple one, in that it
6 : * needs every input byte to be buffered before doing any
7 : * calculations. I do not expect this file to be used for
8 : * general purpose MD5'ing of large amounts of data, only for
9 : * generating hashed passwords from limited input.
10 : *
11 : * Sverre H. Huseby <sverrehu@online.no>
12 : *
13 : * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
14 : * Portions Copyright (c) 1994, Regents of the University of California
15 : *
16 : * IDENTIFICATION
17 : * src/common/md5.c
18 : */
19 :
20 : #ifndef FRONTEND
21 : #include "postgres.h"
22 : #else
23 : #include "postgres_fe.h"
24 : #endif
25 :
26 : #include "common/md5.h"
27 :
28 :
29 : /*
30 : * PRIVATE FUNCTIONS
31 : */
32 :
33 :
34 : /*
35 : * The returned array is allocated using malloc. the caller should free it
36 : * when it is no longer needed.
37 : */
38 : static uint8 *
39 203 : createPaddedCopyWithLength(const uint8 *b, uint32 *l)
40 : {
41 : uint8 *ret;
42 : uint32 q;
43 : uint32 len,
44 : newLen448;
45 : uint32 len_high,
46 : len_low; /* 64-bit value split into 32-bit sections */
47 :
48 203 : len = ((b == NULL) ? 0 : *l);
49 203 : newLen448 = len + 64 - (len % 64) - 8;
50 203 : if (newLen448 <= len)
51 2 : newLen448 += 64;
52 :
53 203 : *l = newLen448 + 8;
54 203 : if ((ret = (uint8 *) malloc(sizeof(uint8) * *l)) == NULL)
55 0 : return NULL;
56 :
57 203 : if (b != NULL)
58 203 : memcpy(ret, b, sizeof(uint8) * len);
59 :
60 : /* pad */
61 203 : ret[len] = 0x80;
62 10556 : for (q = len + 1; q < newLen448; q++)
63 10353 : ret[q] = 0x00;
64 :
65 : /* append length as a 64 bit bitcount */
66 203 : len_low = len;
67 : /* split into two 32-bit values */
68 : /* we only look at the bottom 32-bits */
69 203 : len_high = len >> 29;
70 203 : len_low <<= 3;
71 203 : q = newLen448;
72 203 : ret[q++] = (len_low & 0xff);
73 203 : len_low >>= 8;
74 203 : ret[q++] = (len_low & 0xff);
75 203 : len_low >>= 8;
76 203 : ret[q++] = (len_low & 0xff);
77 203 : len_low >>= 8;
78 203 : ret[q++] = (len_low & 0xff);
79 203 : ret[q++] = (len_high & 0xff);
80 203 : len_high >>= 8;
81 203 : ret[q++] = (len_high & 0xff);
82 203 : len_high >>= 8;
83 203 : ret[q++] = (len_high & 0xff);
84 203 : len_high >>= 8;
85 203 : ret[q] = (len_high & 0xff);
86 :
87 203 : return ret;
88 : }
89 :
90 : #define F(x, y, z) (((x) & (y)) | (~(x) & (z)))
91 : #define G(x, y, z) (((x) & (z)) | ((y) & ~(z)))
92 : #define H(x, y, z) ((x) ^ (y) ^ (z))
93 : #define I(x, y, z) ((y) ^ ((x) | ~(z)))
94 : #define ROT_LEFT(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
95 :
96 : static void
97 29134 : doTheRounds(uint32 X[16], uint32 state[4])
98 : {
99 : uint32 a,
100 : b,
101 : c,
102 : d;
103 :
104 29134 : a = state[0];
105 29134 : b = state[1];
106 29134 : c = state[2];
107 29134 : d = state[3];
108 :
109 : /* round 1 */
110 29134 : a = b + ROT_LEFT((a + F(b, c, d) + X[0] + 0xd76aa478), 7); /* 1 */
111 29134 : d = a + ROT_LEFT((d + F(a, b, c) + X[1] + 0xe8c7b756), 12); /* 2 */
112 29134 : c = d + ROT_LEFT((c + F(d, a, b) + X[2] + 0x242070db), 17); /* 3 */
113 29134 : b = c + ROT_LEFT((b + F(c, d, a) + X[3] + 0xc1bdceee), 22); /* 4 */
114 29134 : a = b + ROT_LEFT((a + F(b, c, d) + X[4] + 0xf57c0faf), 7); /* 5 */
115 29134 : d = a + ROT_LEFT((d + F(a, b, c) + X[5] + 0x4787c62a), 12); /* 6 */
116 29134 : c = d + ROT_LEFT((c + F(d, a, b) + X[6] + 0xa8304613), 17); /* 7 */
117 29134 : b = c + ROT_LEFT((b + F(c, d, a) + X[7] + 0xfd469501), 22); /* 8 */
118 29134 : a = b + ROT_LEFT((a + F(b, c, d) + X[8] + 0x698098d8), 7); /* 9 */
119 29134 : d = a + ROT_LEFT((d + F(a, b, c) + X[9] + 0x8b44f7af), 12); /* 10 */
120 29134 : c = d + ROT_LEFT((c + F(d, a, b) + X[10] + 0xffff5bb1), 17); /* 11 */
121 29134 : b = c + ROT_LEFT((b + F(c, d, a) + X[11] + 0x895cd7be), 22); /* 12 */
122 29134 : a = b + ROT_LEFT((a + F(b, c, d) + X[12] + 0x6b901122), 7); /* 13 */
123 29134 : d = a + ROT_LEFT((d + F(a, b, c) + X[13] + 0xfd987193), 12); /* 14 */
124 29134 : c = d + ROT_LEFT((c + F(d, a, b) + X[14] + 0xa679438e), 17); /* 15 */
125 29134 : b = c + ROT_LEFT((b + F(c, d, a) + X[15] + 0x49b40821), 22); /* 16 */
126 :
127 : /* round 2 */
128 29134 : a = b + ROT_LEFT((a + G(b, c, d) + X[1] + 0xf61e2562), 5); /* 17 */
129 29134 : d = a + ROT_LEFT((d + G(a, b, c) + X[6] + 0xc040b340), 9); /* 18 */
130 29134 : c = d + ROT_LEFT((c + G(d, a, b) + X[11] + 0x265e5a51), 14); /* 19 */
131 29134 : b = c + ROT_LEFT((b + G(c, d, a) + X[0] + 0xe9b6c7aa), 20); /* 20 */
132 29134 : a = b + ROT_LEFT((a + G(b, c, d) + X[5] + 0xd62f105d), 5); /* 21 */
133 29134 : d = a + ROT_LEFT((d + G(a, b, c) + X[10] + 0x02441453), 9); /* 22 */
134 29134 : c = d + ROT_LEFT((c + G(d, a, b) + X[15] + 0xd8a1e681), 14); /* 23 */
135 29134 : b = c + ROT_LEFT((b + G(c, d, a) + X[4] + 0xe7d3fbc8), 20); /* 24 */
136 29134 : a = b + ROT_LEFT((a + G(b, c, d) + X[9] + 0x21e1cde6), 5); /* 25 */
137 29134 : d = a + ROT_LEFT((d + G(a, b, c) + X[14] + 0xc33707d6), 9); /* 26 */
138 29134 : c = d + ROT_LEFT((c + G(d, a, b) + X[3] + 0xf4d50d87), 14); /* 27 */
139 29134 : b = c + ROT_LEFT((b + G(c, d, a) + X[8] + 0x455a14ed), 20); /* 28 */
140 29134 : a = b + ROT_LEFT((a + G(b, c, d) + X[13] + 0xa9e3e905), 5); /* 29 */
141 29134 : d = a + ROT_LEFT((d + G(a, b, c) + X[2] + 0xfcefa3f8), 9); /* 30 */
142 29134 : c = d + ROT_LEFT((c + G(d, a, b) + X[7] + 0x676f02d9), 14); /* 31 */
143 29134 : b = c + ROT_LEFT((b + G(c, d, a) + X[12] + 0x8d2a4c8a), 20); /* 32 */
144 :
145 : /* round 3 */
146 29134 : a = b + ROT_LEFT((a + H(b, c, d) + X[5] + 0xfffa3942), 4); /* 33 */
147 29134 : d = a + ROT_LEFT((d + H(a, b, c) + X[8] + 0x8771f681), 11); /* 34 */
148 29134 : c = d + ROT_LEFT((c + H(d, a, b) + X[11] + 0x6d9d6122), 16); /* 35 */
149 29134 : b = c + ROT_LEFT((b + H(c, d, a) + X[14] + 0xfde5380c), 23); /* 36 */
150 29134 : a = b + ROT_LEFT((a + H(b, c, d) + X[1] + 0xa4beea44), 4); /* 37 */
151 29134 : d = a + ROT_LEFT((d + H(a, b, c) + X[4] + 0x4bdecfa9), 11); /* 38 */
152 29134 : c = d + ROT_LEFT((c + H(d, a, b) + X[7] + 0xf6bb4b60), 16); /* 39 */
153 29134 : b = c + ROT_LEFT((b + H(c, d, a) + X[10] + 0xbebfbc70), 23); /* 40 */
154 29134 : a = b + ROT_LEFT((a + H(b, c, d) + X[13] + 0x289b7ec6), 4); /* 41 */
155 29134 : d = a + ROT_LEFT((d + H(a, b, c) + X[0] + 0xeaa127fa), 11); /* 42 */
156 29134 : c = d + ROT_LEFT((c + H(d, a, b) + X[3] + 0xd4ef3085), 16); /* 43 */
157 29134 : b = c + ROT_LEFT((b + H(c, d, a) + X[6] + 0x04881d05), 23); /* 44 */
158 29134 : a = b + ROT_LEFT((a + H(b, c, d) + X[9] + 0xd9d4d039), 4); /* 45 */
159 29134 : d = a + ROT_LEFT((d + H(a, b, c) + X[12] + 0xe6db99e5), 11); /* 46 */
160 29134 : c = d + ROT_LEFT((c + H(d, a, b) + X[15] + 0x1fa27cf8), 16); /* 47 */
161 29134 : b = c + ROT_LEFT((b + H(c, d, a) + X[2] + 0xc4ac5665), 23); /* 48 */
162 :
163 : /* round 4 */
164 29134 : a = b + ROT_LEFT((a + I(b, c, d) + X[0] + 0xf4292244), 6); /* 49 */
165 29134 : d = a + ROT_LEFT((d + I(a, b, c) + X[7] + 0x432aff97), 10); /* 50 */
166 29134 : c = d + ROT_LEFT((c + I(d, a, b) + X[14] + 0xab9423a7), 15); /* 51 */
167 29134 : b = c + ROT_LEFT((b + I(c, d, a) + X[5] + 0xfc93a039), 21); /* 52 */
168 29134 : a = b + ROT_LEFT((a + I(b, c, d) + X[12] + 0x655b59c3), 6); /* 53 */
169 29134 : d = a + ROT_LEFT((d + I(a, b, c) + X[3] + 0x8f0ccc92), 10); /* 54 */
170 29134 : c = d + ROT_LEFT((c + I(d, a, b) + X[10] + 0xffeff47d), 15); /* 55 */
171 29134 : b = c + ROT_LEFT((b + I(c, d, a) + X[1] + 0x85845dd1), 21); /* 56 */
172 29134 : a = b + ROT_LEFT((a + I(b, c, d) + X[8] + 0x6fa87e4f), 6); /* 57 */
173 29134 : d = a + ROT_LEFT((d + I(a, b, c) + X[15] + 0xfe2ce6e0), 10); /* 58 */
174 29134 : c = d + ROT_LEFT((c + I(d, a, b) + X[6] + 0xa3014314), 15); /* 59 */
175 29134 : b = c + ROT_LEFT((b + I(c, d, a) + X[13] + 0x4e0811a1), 21); /* 60 */
176 29134 : a = b + ROT_LEFT((a + I(b, c, d) + X[4] + 0xf7537e82), 6); /* 61 */
177 29134 : d = a + ROT_LEFT((d + I(a, b, c) + X[11] + 0xbd3af235), 10); /* 62 */
178 29134 : c = d + ROT_LEFT((c + I(d, a, b) + X[2] + 0x2ad7d2bb), 15); /* 63 */
179 29134 : b = c + ROT_LEFT((b + I(c, d, a) + X[9] + 0xeb86d391), 21); /* 64 */
180 :
181 29134 : state[0] += a;
182 29134 : state[1] += b;
183 29134 : state[2] += c;
184 29134 : state[3] += d;
185 29134 : }
186 :
187 : static int
188 203 : calculateDigestFromBuffer(const uint8 *b, uint32 len, uint8 sum[16])
189 : {
190 : register uint32 i,
191 : j,
192 : k,
193 : newI;
194 : uint32 l;
195 : uint8 *input;
196 : register uint32 *wbp;
197 : uint32 workBuff[16],
198 : state[4];
199 :
200 203 : l = len;
201 :
202 203 : state[0] = 0x67452301;
203 203 : state[1] = 0xEFCDAB89;
204 203 : state[2] = 0x98BADCFE;
205 203 : state[3] = 0x10325476;
206 :
207 203 : if ((input = createPaddedCopyWithLength(b, &l)) == NULL)
208 0 : return 0;
209 :
210 203 : for (i = 0;;)
211 : {
212 29337 : if ((newI = i + 16 * 4) > l)
213 203 : break;
214 29134 : k = i + 3;
215 495278 : for (j = 0; j < 16; j++)
216 : {
217 466144 : wbp = (workBuff + j);
218 466144 : *wbp = input[k--];
219 466144 : *wbp <<= 8;
220 466144 : *wbp |= input[k--];
221 466144 : *wbp <<= 8;
222 466144 : *wbp |= input[k--];
223 466144 : *wbp <<= 8;
224 466144 : *wbp |= input[k];
225 466144 : k += 7;
226 : }
227 29134 : doTheRounds(workBuff, state);
228 29134 : i = newI;
229 29134 : }
230 203 : free(input);
231 :
232 203 : j = 0;
233 1015 : for (i = 0; i < 4; i++)
234 : {
235 812 : k = state[i];
236 812 : sum[j++] = (k & 0xff);
237 812 : k >>= 8;
238 812 : sum[j++] = (k & 0xff);
239 812 : k >>= 8;
240 812 : sum[j++] = (k & 0xff);
241 812 : k >>= 8;
242 812 : sum[j++] = (k & 0xff);
243 : }
244 203 : return 1;
245 : }
246 :
247 : static void
248 203 : bytesToHex(uint8 b[16], char *s)
249 : {
250 : static const char *hex = "0123456789abcdef";
251 : int q,
252 : w;
253 :
254 3451 : for (q = 0, w = 0; q < 16; q++)
255 : {
256 3248 : s[w++] = hex[(b[q] >> 4) & 0x0F];
257 3248 : s[w++] = hex[b[q] & 0x0F];
258 : }
259 203 : s[w] = '\0';
260 203 : }
261 :
262 : /*
263 : * PUBLIC FUNCTIONS
264 : */
265 :
266 : /*
267 : * pg_md5_hash
268 : *
269 : * Calculates the MD5 sum of the bytes in a buffer.
270 : *
271 : * SYNOPSIS #include "md5.h"
272 : * int pg_md5_hash(const void *buff, size_t len, char *hexsum)
273 : *
274 : * INPUT buff the buffer containing the bytes that you want
275 : * the MD5 sum of.
276 : * len number of bytes in the buffer.
277 : *
278 : * OUTPUT hexsum the MD5 sum as a '\0'-terminated string of
279 : * hexadecimal digits. an MD5 sum is 16 bytes long.
280 : * each byte is represented by two heaxadecimal
281 : * characters. you thus need to provide an array
282 : * of 33 characters, including the trailing '\0'.
283 : *
284 : * RETURNS false on failure (out of memory for internal buffers) or
285 : * true on success.
286 : *
287 : * STANDARDS MD5 is described in RFC 1321.
288 : *
289 : * AUTHOR Sverre H. Huseby <sverrehu@online.no>
290 : *
291 : */
292 : bool
293 203 : pg_md5_hash(const void *buff, size_t len, char *hexsum)
294 : {
295 : uint8 sum[16];
296 :
297 203 : if (!calculateDigestFromBuffer(buff, len, sum))
298 0 : return false;
299 :
300 203 : bytesToHex(sum, hexsum);
301 203 : return true;
302 : }
303 :
304 : bool
305 0 : pg_md5_binary(const void *buff, size_t len, void *outbuf)
306 : {
307 0 : if (!calculateDigestFromBuffer(buff, len, outbuf))
308 0 : return false;
309 0 : return true;
310 : }
311 :
312 :
313 : /*
314 : * Computes MD5 checksum of "passwd" (a null-terminated string) followed
315 : * by "salt" (which need not be null-terminated).
316 : *
317 : * Output format is "md5" followed by a 32-hex-digit MD5 checksum.
318 : * Hence, the output buffer "buf" must be at least 36 bytes long.
319 : *
320 : * Returns TRUE if okay, FALSE on error (out of memory).
321 : */
322 : bool
323 6 : pg_md5_encrypt(const char *passwd, const char *salt, size_t salt_len,
324 : char *buf)
325 : {
326 6 : size_t passwd_len = strlen(passwd);
327 :
328 : /* +1 here is just to avoid risk of unportable malloc(0) */
329 6 : char *crypt_buf = malloc(passwd_len + salt_len + 1);
330 : bool ret;
331 :
332 6 : if (!crypt_buf)
333 0 : return false;
334 :
335 : /*
336 : * Place salt at the end because it may be known by users trying to crack
337 : * the MD5 output.
338 : */
339 6 : memcpy(crypt_buf, passwd, passwd_len);
340 6 : memcpy(crypt_buf + passwd_len, salt, salt_len);
341 :
342 6 : strcpy(buf, "md5");
343 6 : ret = pg_md5_hash(crypt_buf, passwd_len + salt_len, buf + 3);
344 :
345 6 : free(crypt_buf);
346 :
347 6 : return ret;
348 : }
|