Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * dependency.c
4 : * Routines to support inter-object dependencies.
5 : *
6 : *
7 : * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
8 : * Portions Copyright (c) 1994, Regents of the University of California
9 : *
10 : * IDENTIFICATION
11 : * src/backend/catalog/dependency.c
12 : *
13 : *-------------------------------------------------------------------------
14 : */
15 : #include "postgres.h"
16 :
17 : #include "access/htup_details.h"
18 : #include "access/xact.h"
19 : #include "catalog/dependency.h"
20 : #include "catalog/heap.h"
21 : #include "catalog/index.h"
22 : #include "catalog/objectaccess.h"
23 : #include "catalog/pg_am.h"
24 : #include "catalog/pg_amop.h"
25 : #include "catalog/pg_amproc.h"
26 : #include "catalog/pg_attrdef.h"
27 : #include "catalog/pg_authid.h"
28 : #include "catalog/pg_cast.h"
29 : #include "catalog/pg_collation.h"
30 : #include "catalog/pg_collation_fn.h"
31 : #include "catalog/pg_constraint.h"
32 : #include "catalog/pg_constraint_fn.h"
33 : #include "catalog/pg_conversion.h"
34 : #include "catalog/pg_conversion_fn.h"
35 : #include "catalog/pg_database.h"
36 : #include "catalog/pg_default_acl.h"
37 : #include "catalog/pg_depend.h"
38 : #include "catalog/pg_event_trigger.h"
39 : #include "catalog/pg_extension.h"
40 : #include "catalog/pg_foreign_data_wrapper.h"
41 : #include "catalog/pg_foreign_server.h"
42 : #include "catalog/pg_init_privs.h"
43 : #include "catalog/pg_language.h"
44 : #include "catalog/pg_largeobject.h"
45 : #include "catalog/pg_namespace.h"
46 : #include "catalog/pg_opclass.h"
47 : #include "catalog/pg_operator.h"
48 : #include "catalog/pg_opfamily.h"
49 : #include "catalog/pg_policy.h"
50 : #include "catalog/pg_proc.h"
51 : #include "catalog/pg_publication.h"
52 : #include "catalog/pg_publication_rel.h"
53 : #include "catalog/pg_rewrite.h"
54 : #include "catalog/pg_statistic_ext.h"
55 : #include "catalog/pg_subscription.h"
56 : #include "catalog/pg_tablespace.h"
57 : #include "catalog/pg_transform.h"
58 : #include "catalog/pg_trigger.h"
59 : #include "catalog/pg_ts_config.h"
60 : #include "catalog/pg_ts_dict.h"
61 : #include "catalog/pg_ts_parser.h"
62 : #include "catalog/pg_ts_template.h"
63 : #include "catalog/pg_type.h"
64 : #include "catalog/pg_user_mapping.h"
65 : #include "commands/comment.h"
66 : #include "commands/defrem.h"
67 : #include "commands/event_trigger.h"
68 : #include "commands/extension.h"
69 : #include "commands/policy.h"
70 : #include "commands/proclang.h"
71 : #include "commands/publicationcmds.h"
72 : #include "commands/schemacmds.h"
73 : #include "commands/seclabel.h"
74 : #include "commands/sequence.h"
75 : #include "commands/trigger.h"
76 : #include "commands/typecmds.h"
77 : #include "nodes/nodeFuncs.h"
78 : #include "parser/parsetree.h"
79 : #include "rewrite/rewriteRemove.h"
80 : #include "storage/lmgr.h"
81 : #include "utils/fmgroids.h"
82 : #include "utils/guc.h"
83 : #include "utils/lsyscache.h"
84 : #include "utils/syscache.h"
85 : #include "utils/tqual.h"
86 :
87 :
88 : /*
89 : * Deletion processing requires additional state for each ObjectAddress that
90 : * it's planning to delete. For simplicity and code-sharing we make the
91 : * ObjectAddresses code support arrays with or without this extra state.
92 : */
93 : typedef struct
94 : {
95 : int flags; /* bitmask, see bit definitions below */
96 : ObjectAddress dependee; /* object whose deletion forced this one */
97 : } ObjectAddressExtra;
98 :
99 : /* ObjectAddressExtra flag bits */
100 : #define DEPFLAG_ORIGINAL 0x0001 /* an original deletion target */
101 : #define DEPFLAG_NORMAL 0x0002 /* reached via normal dependency */
102 : #define DEPFLAG_AUTO 0x0004 /* reached via auto dependency */
103 : #define DEPFLAG_INTERNAL 0x0008 /* reached via internal dependency */
104 : #define DEPFLAG_EXTENSION 0x0010 /* reached via extension dependency */
105 : #define DEPFLAG_REVERSE 0x0020 /* reverse internal/extension link */
106 :
107 :
108 : /* expansible list of ObjectAddresses */
109 : struct ObjectAddresses
110 : {
111 : ObjectAddress *refs; /* => palloc'd array */
112 : ObjectAddressExtra *extras; /* => palloc'd array, or NULL if not used */
113 : int numrefs; /* current number of references */
114 : int maxrefs; /* current size of palloc'd array(s) */
115 : };
116 :
117 : /* typedef ObjectAddresses appears in dependency.h */
118 :
119 : /* threaded list of ObjectAddresses, for recursion detection */
120 : typedef struct ObjectAddressStack
121 : {
122 : const ObjectAddress *object; /* object being visited */
123 : int flags; /* its current flag bits */
124 : struct ObjectAddressStack *next; /* next outer stack level */
125 : } ObjectAddressStack;
126 :
127 : /* for find_expr_references_walker */
128 : typedef struct
129 : {
130 : ObjectAddresses *addrs; /* addresses being accumulated */
131 : List *rtables; /* list of rangetables to resolve Vars */
132 : } find_expr_references_context;
133 :
134 : /*
135 : * This constant table maps ObjectClasses to the corresponding catalog OIDs.
136 : * See also getObjectClass().
137 : */
138 : static const Oid object_classes[] = {
139 : RelationRelationId, /* OCLASS_CLASS */
140 : ProcedureRelationId, /* OCLASS_PROC */
141 : TypeRelationId, /* OCLASS_TYPE */
142 : CastRelationId, /* OCLASS_CAST */
143 : CollationRelationId, /* OCLASS_COLLATION */
144 : ConstraintRelationId, /* OCLASS_CONSTRAINT */
145 : ConversionRelationId, /* OCLASS_CONVERSION */
146 : AttrDefaultRelationId, /* OCLASS_DEFAULT */
147 : LanguageRelationId, /* OCLASS_LANGUAGE */
148 : LargeObjectRelationId, /* OCLASS_LARGEOBJECT */
149 : OperatorRelationId, /* OCLASS_OPERATOR */
150 : OperatorClassRelationId, /* OCLASS_OPCLASS */
151 : OperatorFamilyRelationId, /* OCLASS_OPFAMILY */
152 : AccessMethodRelationId, /* OCLASS_AM */
153 : AccessMethodOperatorRelationId, /* OCLASS_AMOP */
154 : AccessMethodProcedureRelationId, /* OCLASS_AMPROC */
155 : RewriteRelationId, /* OCLASS_REWRITE */
156 : TriggerRelationId, /* OCLASS_TRIGGER */
157 : NamespaceRelationId, /* OCLASS_SCHEMA */
158 : StatisticExtRelationId, /* OCLASS_STATISTIC_EXT */
159 : TSParserRelationId, /* OCLASS_TSPARSER */
160 : TSDictionaryRelationId, /* OCLASS_TSDICT */
161 : TSTemplateRelationId, /* OCLASS_TSTEMPLATE */
162 : TSConfigRelationId, /* OCLASS_TSCONFIG */
163 : AuthIdRelationId, /* OCLASS_ROLE */
164 : DatabaseRelationId, /* OCLASS_DATABASE */
165 : TableSpaceRelationId, /* OCLASS_TBLSPACE */
166 : ForeignDataWrapperRelationId, /* OCLASS_FDW */
167 : ForeignServerRelationId, /* OCLASS_FOREIGN_SERVER */
168 : UserMappingRelationId, /* OCLASS_USER_MAPPING */
169 : DefaultAclRelationId, /* OCLASS_DEFACL */
170 : ExtensionRelationId, /* OCLASS_EXTENSION */
171 : EventTriggerRelationId, /* OCLASS_EVENT_TRIGGER */
172 : PolicyRelationId, /* OCLASS_POLICY */
173 : PublicationRelationId, /* OCLASS_PUBLICATION */
174 : PublicationRelRelationId, /* OCLASS_PUBLICATION_REL */
175 : SubscriptionRelationId, /* OCLASS_SUBSCRIPTION */
176 : TransformRelationId /* OCLASS_TRANSFORM */
177 : };
178 :
179 :
180 : static void findDependentObjects(const ObjectAddress *object,
181 : int objflags,
182 : int flags,
183 : ObjectAddressStack *stack,
184 : ObjectAddresses *targetObjects,
185 : const ObjectAddresses *pendingObjects,
186 : Relation *depRel);
187 : static void reportDependentObjects(const ObjectAddresses *targetObjects,
188 : DropBehavior behavior,
189 : int flags,
190 : const ObjectAddress *origObject);
191 : static void deleteOneObject(const ObjectAddress *object,
192 : Relation *depRel, int32 flags);
193 : static void doDeletion(const ObjectAddress *object, int flags);
194 : static void AcquireDeletionLock(const ObjectAddress *object, int flags);
195 : static void ReleaseDeletionLock(const ObjectAddress *object);
196 : static bool find_expr_references_walker(Node *node,
197 : find_expr_references_context *context);
198 : static void eliminate_duplicate_dependencies(ObjectAddresses *addrs);
199 : static int object_address_comparator(const void *a, const void *b);
200 : static void add_object_address(ObjectClass oclass, Oid objectId, int32 subId,
201 : ObjectAddresses *addrs);
202 : static void add_exact_object_address_extra(const ObjectAddress *object,
203 : const ObjectAddressExtra *extra,
204 : ObjectAddresses *addrs);
205 : static bool object_address_present_add_flags(const ObjectAddress *object,
206 : int flags,
207 : ObjectAddresses *addrs);
208 : static bool stack_address_present_add_flags(const ObjectAddress *object,
209 : int flags,
210 : ObjectAddressStack *stack);
211 : static void DeleteInitPrivs(const ObjectAddress *object);
212 :
213 :
214 : /*
215 : * Go through the objects given running the final actions on them, and execute
216 : * the actual deletion.
217 : */
218 : static void
219 1679 : deleteObjectsInList(ObjectAddresses *targetObjects, Relation *depRel,
220 : int flags)
221 : {
222 : int i;
223 :
224 : /*
225 : * Keep track of objects for event triggers, if necessary.
226 : */
227 1679 : if (trackDroppedObjectsNeeded() && !(flags & PERFORM_DELETION_INTERNAL))
228 : {
229 173 : for (i = 0; i < targetObjects->numrefs; i++)
230 : {
231 146 : const ObjectAddress *thisobj = &targetObjects->refs[i];
232 146 : const ObjectAddressExtra *extra = &targetObjects->extras[i];
233 146 : bool original = false;
234 146 : bool normal = false;
235 :
236 146 : if (extra->flags & DEPFLAG_ORIGINAL)
237 33 : original = true;
238 146 : if (extra->flags & DEPFLAG_NORMAL)
239 28 : normal = true;
240 146 : if (extra->flags & DEPFLAG_REVERSE)
241 0 : normal = true;
242 :
243 146 : if (EventTriggerSupportsObjectClass(getObjectClass(thisobj)))
244 : {
245 136 : EventTriggerSQLDropAddObject(thisobj, original, normal);
246 : }
247 : }
248 : }
249 :
250 : /*
251 : * Delete all the objects in the proper order, except that if told to, we
252 : * should skip the original object(s).
253 : */
254 10831 : for (i = 0; i < targetObjects->numrefs; i++)
255 : {
256 9152 : ObjectAddress *thisobj = targetObjects->refs + i;
257 9152 : ObjectAddressExtra *thisextra = targetObjects->extras + i;
258 :
259 10285 : if ((flags & PERFORM_DELETION_SKIP_ORIGINAL) &&
260 1133 : (thisextra->flags & DEPFLAG_ORIGINAL))
261 95 : continue;
262 :
263 9057 : deleteOneObject(thisobj, depRel, flags);
264 : }
265 1679 : }
266 :
267 : /*
268 : * performDeletion: attempt to drop the specified object. If CASCADE
269 : * behavior is specified, also drop any dependent objects (recursively).
270 : * If RESTRICT behavior is specified, error out if there are any dependent
271 : * objects, except for those that should be implicitly dropped anyway
272 : * according to the dependency type.
273 : *
274 : * This is the outer control routine for all forms of DROP that drop objects
275 : * that can participate in dependencies. Note that performMultipleDeletions
276 : * is a variant on the same theme; if you change anything here you'll likely
277 : * need to fix that too.
278 : *
279 : * Bits in the flags argument can include:
280 : *
281 : * PERFORM_DELETION_INTERNAL: indicates that the drop operation is not the
282 : * direct result of a user-initiated action. For example, when a temporary
283 : * schema is cleaned out so that a new backend can use it, or when a column
284 : * default is dropped as an intermediate step while adding a new one, that's
285 : * an internal operation. On the other hand, when we drop something because
286 : * the user issued a DROP statement against it, that's not internal. Currently
287 : * this suppresses calling event triggers and making some permissions checks.
288 : *
289 : * PERFORM_DELETION_CONCURRENTLY: perform the drop concurrently. This does
290 : * not currently work for anything except dropping indexes; don't set it for
291 : * other object types or you may get strange results.
292 : *
293 : * PERFORM_DELETION_QUIETLY: reduce message level from NOTICE to DEBUG2.
294 : *
295 : * PERFORM_DELETION_SKIP_ORIGINAL: do not delete the specified object(s),
296 : * but only what depends on it/them.
297 : *
298 : * PERFORM_DELETION_SKIP_EXTENSIONS: do not delete extensions, even when
299 : * deleting objects that are part of an extension. This should generally
300 : * be used only when dropping temporary objects.
301 : */
302 : void
303 455 : performDeletion(const ObjectAddress *object,
304 : DropBehavior behavior, int flags)
305 : {
306 : Relation depRel;
307 : ObjectAddresses *targetObjects;
308 :
309 : /*
310 : * We save some cycles by opening pg_depend just once and passing the
311 : * Relation pointer down to all the recursive deletion steps.
312 : */
313 455 : depRel = heap_open(DependRelationId, RowExclusiveLock);
314 :
315 : /*
316 : * Acquire deletion lock on the target object. (Ideally the caller has
317 : * done this already, but many places are sloppy about it.)
318 : */
319 455 : AcquireDeletionLock(object, 0);
320 :
321 : /*
322 : * Construct a list of objects to delete (ie, the given object plus
323 : * everything directly or indirectly dependent on it).
324 : */
325 455 : targetObjects = new_object_addresses();
326 :
327 455 : findDependentObjects(object,
328 : DEPFLAG_ORIGINAL,
329 : flags,
330 : NULL, /* empty stack */
331 : targetObjects,
332 : NULL, /* no pendingObjects */
333 : &depRel);
334 :
335 : /*
336 : * Check if deletion is allowed, and report about cascaded deletes.
337 : */
338 455 : reportDependentObjects(targetObjects,
339 : behavior,
340 : flags,
341 : object);
342 :
343 : /* do the deed */
344 449 : deleteObjectsInList(targetObjects, &depRel, flags);
345 :
346 : /* And clean up */
347 449 : free_object_addresses(targetObjects);
348 :
349 449 : heap_close(depRel, RowExclusiveLock);
350 449 : }
351 :
352 : /*
353 : * performMultipleDeletions: Similar to performDeletion, but act on multiple
354 : * objects at once.
355 : *
356 : * The main difference from issuing multiple performDeletion calls is that the
357 : * list of objects that would be implicitly dropped, for each object to be
358 : * dropped, is the union of the implicit-object list for all objects. This
359 : * makes each check be more relaxed.
360 : */
361 : void
362 1339 : performMultipleDeletions(const ObjectAddresses *objects,
363 : DropBehavior behavior, int flags)
364 : {
365 : Relation depRel;
366 : ObjectAddresses *targetObjects;
367 : int i;
368 :
369 : /* No work if no objects... */
370 1339 : if (objects->numrefs <= 0)
371 1406 : return;
372 :
373 : /*
374 : * We save some cycles by opening pg_depend just once and passing the
375 : * Relation pointer down to all the recursive deletion steps.
376 : */
377 1251 : depRel = heap_open(DependRelationId, RowExclusiveLock);
378 :
379 : /*
380 : * Construct a list of objects to delete (ie, the given objects plus
381 : * everything directly or indirectly dependent on them). Note that
382 : * because we pass the whole objects list as pendingObjects context, we
383 : * won't get a failure from trying to delete an object that is internally
384 : * dependent on another one in the list; we'll just skip that object and
385 : * delete it when we reach its owner.
386 : */
387 1251 : targetObjects = new_object_addresses();
388 :
389 2659 : for (i = 0; i < objects->numrefs; i++)
390 : {
391 1412 : const ObjectAddress *thisobj = objects->refs + i;
392 :
393 : /*
394 : * Acquire deletion lock on each target object. (Ideally the caller
395 : * has done this already, but many places are sloppy about it.)
396 : */
397 1412 : AcquireDeletionLock(thisobj, flags);
398 :
399 1412 : findDependentObjects(thisobj,
400 : DEPFLAG_ORIGINAL,
401 : flags,
402 : NULL, /* empty stack */
403 : targetObjects,
404 : objects,
405 : &depRel);
406 : }
407 :
408 : /*
409 : * Check if deletion is allowed, and report about cascaded deletes.
410 : *
411 : * If there's exactly one object being deleted, report it the same way as
412 : * in performDeletion(), else we have to be vaguer.
413 : */
414 1247 : reportDependentObjects(targetObjects,
415 : behavior,
416 : flags,
417 1247 : (objects->numrefs == 1 ? objects->refs : NULL));
418 :
419 : /* do the deed */
420 1230 : deleteObjectsInList(targetObjects, &depRel, flags);
421 :
422 : /* And clean up */
423 1230 : free_object_addresses(targetObjects);
424 :
425 1230 : heap_close(depRel, RowExclusiveLock);
426 : }
427 :
428 : /*
429 : * findDependentObjects - find all objects that depend on 'object'
430 : *
431 : * For every object that depends on the starting object, acquire a deletion
432 : * lock on the object, add it to targetObjects (if not already there),
433 : * and recursively find objects that depend on it. An object's dependencies
434 : * will be placed into targetObjects before the object itself; this means
435 : * that the finished list's order represents a safe deletion order.
436 : *
437 : * The caller must already have a deletion lock on 'object' itself,
438 : * but must not have added it to targetObjects. (Note: there are corner
439 : * cases where we won't add the object either, and will also release the
440 : * caller-taken lock. This is a bit ugly, but the API is set up this way
441 : * to allow easy rechecking of an object's liveness after we lock it. See
442 : * notes within the function.)
443 : *
444 : * When dropping a whole object (subId = 0), we find dependencies for
445 : * its sub-objects too.
446 : *
447 : * object: the object to add to targetObjects and find dependencies on
448 : * objflags: flags to be ORed into the object's targetObjects entry
449 : * flags: PERFORM_DELETION_xxx flags for the deletion operation as a whole
450 : * stack: list of objects being visited in current recursion; topmost item
451 : * is the object that we recursed from (NULL for external callers)
452 : * targetObjects: list of objects that are scheduled to be deleted
453 : * pendingObjects: list of other objects slated for destruction, but
454 : * not necessarily in targetObjects yet (can be NULL if none)
455 : * *depRel: already opened pg_depend relation
456 : *
457 : * Note: objflags describes the reason for visiting this particular object
458 : * at this time, and is not passed down when recursing. The flags argument
459 : * is passed down, since it describes what we're doing overall.
460 : */
461 : static void
462 11361 : findDependentObjects(const ObjectAddress *object,
463 : int objflags,
464 : int flags,
465 : ObjectAddressStack *stack,
466 : ObjectAddresses *targetObjects,
467 : const ObjectAddresses *pendingObjects,
468 : Relation *depRel)
469 : {
470 : ScanKeyData key[3];
471 : int nkeys;
472 : SysScanDesc scan;
473 : HeapTuple tup;
474 : ObjectAddress otherObject;
475 : ObjectAddressStack mystack;
476 : ObjectAddressExtra extra;
477 :
478 : /*
479 : * If the target object is already being visited in an outer recursion
480 : * level, just report the current objflags back to that level and exit.
481 : * This is needed to avoid infinite recursion in the face of circular
482 : * dependencies.
483 : *
484 : * The stack check alone would result in dependency loops being broken at
485 : * an arbitrary point, ie, the first member object of the loop to be
486 : * visited is the last one to be deleted. This is obviously unworkable.
487 : * However, the check for internal dependency below guarantees that we
488 : * will not break a loop at an internal dependency: if we enter the loop
489 : * at an "owned" object we will switch and start at the "owning" object
490 : * instead. We could probably hack something up to avoid breaking at an
491 : * auto dependency, too, if we had to. However there are no known cases
492 : * where that would be necessary.
493 : */
494 11361 : if (stack_address_present_add_flags(object, objflags, stack))
495 1986 : return;
496 :
497 : /*
498 : * It's also possible that the target object has already been completely
499 : * processed and put into targetObjects. If so, again we just add the
500 : * specified objflags to its entry and return.
501 : *
502 : * (Note: in these early-exit cases we could release the caller-taken
503 : * lock, since the object is presumably now locked multiple times; but it
504 : * seems not worth the cycles.)
505 : */
506 11355 : if (object_address_present_add_flags(object, objflags, targetObjects))
507 1859 : return;
508 :
509 : /*
510 : * The target object might be internally dependent on some other object
511 : * (its "owner"), and/or be a member of an extension (also considered its
512 : * owner). If so, and if we aren't recursing from the owning object, we
513 : * have to transform this deletion request into a deletion request of the
514 : * owning object. (We'll eventually recurse back to this object, but the
515 : * owning object has to be visited first so it will be deleted after.) The
516 : * way to find out about this is to scan the pg_depend entries that show
517 : * what this object depends on.
518 : */
519 9496 : ScanKeyInit(&key[0],
520 : Anum_pg_depend_classid,
521 : BTEqualStrategyNumber, F_OIDEQ,
522 9496 : ObjectIdGetDatum(object->classId));
523 9496 : ScanKeyInit(&key[1],
524 : Anum_pg_depend_objid,
525 : BTEqualStrategyNumber, F_OIDEQ,
526 9496 : ObjectIdGetDatum(object->objectId));
527 9496 : if (object->objectSubId != 0)
528 : {
529 119 : ScanKeyInit(&key[2],
530 : Anum_pg_depend_objsubid,
531 : BTEqualStrategyNumber, F_INT4EQ,
532 119 : Int32GetDatum(object->objectSubId));
533 119 : nkeys = 3;
534 : }
535 : else
536 9377 : nkeys = 2;
537 :
538 9496 : scan = systable_beginscan(*depRel, DependDependerIndexId, true,
539 : NULL, nkeys, key);
540 :
541 9496 : while (HeapTupleIsValid(tup = systable_getnext(scan)))
542 : {
543 12844 : Form_pg_depend foundDep = (Form_pg_depend) GETSTRUCT(tup);
544 :
545 12844 : otherObject.classId = foundDep->refclassid;
546 12844 : otherObject.objectId = foundDep->refobjid;
547 12844 : otherObject.objectSubId = foundDep->refobjsubid;
548 :
549 12844 : switch (foundDep->deptype)
550 : {
551 : case DEPENDENCY_NORMAL:
552 : case DEPENDENCY_AUTO:
553 : case DEPENDENCY_AUTO_EXTENSION:
554 : /* no problem */
555 7500 : break;
556 :
557 : case DEPENDENCY_EXTENSION:
558 :
559 : /*
560 : * If told to, ignore EXTENSION dependencies altogether. This
561 : * flag is normally used to prevent dropping extensions during
562 : * temporary-object cleanup, even if a temp object was created
563 : * during an extension script.
564 : */
565 0 : if (flags & PERFORM_DELETION_SKIP_EXTENSIONS)
566 0 : break;
567 :
568 : /*
569 : * If the other object is the extension currently being
570 : * created/altered, ignore this dependency and continue with
571 : * the deletion. This allows dropping of an extension's
572 : * objects within the extension's scripts, as well as corner
573 : * cases such as dropping a transient object created within
574 : * such a script.
575 : */
576 0 : if (creating_extension &&
577 0 : otherObject.classId == ExtensionRelationId &&
578 0 : otherObject.objectId == CurrentExtensionObject)
579 0 : break;
580 :
581 : /* Otherwise, treat this like an internal dependency */
582 : /* FALL THRU */
583 :
584 : case DEPENDENCY_INTERNAL:
585 :
586 : /*
587 : * This object is part of the internal implementation of
588 : * another object, or is part of the extension that is the
589 : * other object. We have three cases:
590 : *
591 : * 1. At the outermost recursion level, disallow the DROP. (We
592 : * just ereport here, rather than proceeding, since no other
593 : * dependencies are likely to be interesting.) However, if
594 : * the owning object is listed in pendingObjects, just release
595 : * the caller's lock and return; we'll eventually complete the
596 : * DROP when we reach that entry in the pending list.
597 : */
598 5344 : if (stack == NULL)
599 : {
600 : char *otherObjDesc;
601 :
602 8 : if (pendingObjects &&
603 4 : object_address_present(&otherObject, pendingObjects))
604 : {
605 0 : systable_endscan(scan);
606 : /* need to release caller's lock; see notes below */
607 0 : ReleaseDeletionLock(object);
608 0 : return;
609 : }
610 4 : otherObjDesc = getObjectDescription(&otherObject);
611 4 : ereport(ERROR,
612 : (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
613 : errmsg("cannot drop %s because %s requires it",
614 : getObjectDescription(object),
615 : otherObjDesc),
616 : errhint("You can drop %s instead.",
617 : otherObjDesc)));
618 : }
619 :
620 : /*
621 : * 2. When recursing from the other end of this dependency,
622 : * it's okay to continue with the deletion. This holds when
623 : * recursing from a whole object that includes the nominal
624 : * other end as a component, too. Since there can be more
625 : * than one "owning" object, we have to allow matches that are
626 : * more than one level down in the stack.
627 : */
628 5340 : if (stack_address_present_add_flags(&otherObject, 0, stack))
629 5225 : break;
630 :
631 : /*
632 : * 3. Not all the owning objects have been visited, so
633 : * transform this deletion request into a delete of this
634 : * owning object.
635 : *
636 : * First, release caller's lock on this object and get
637 : * deletion lock on the owning object. (We must release
638 : * caller's lock to avoid deadlock against a concurrent
639 : * deletion of the owning object.)
640 : */
641 115 : ReleaseDeletionLock(object);
642 115 : AcquireDeletionLock(&otherObject, 0);
643 :
644 : /*
645 : * The owning object might have been deleted while we waited
646 : * to lock it; if so, neither it nor the current object are
647 : * interesting anymore. We test this by checking the
648 : * pg_depend entry (see notes below).
649 : */
650 115 : if (!systable_recheck_tuple(scan, tup))
651 : {
652 0 : systable_endscan(scan);
653 0 : ReleaseDeletionLock(&otherObject);
654 0 : return;
655 : }
656 :
657 : /*
658 : * Okay, recurse to the owning object instead of proceeding.
659 : *
660 : * We do not need to stack the current object; we want the
661 : * traversal order to be as if the original reference had
662 : * linked to the owning object instead of this one.
663 : *
664 : * The dependency type is a "reverse" dependency: we need to
665 : * delete the owning object if this one is to be deleted, but
666 : * this linkage is never a reason for an automatic deletion.
667 : */
668 115 : findDependentObjects(&otherObject,
669 : DEPFLAG_REVERSE,
670 : flags,
671 : stack,
672 : targetObjects,
673 : pendingObjects,
674 : depRel);
675 : /* And we're done here. */
676 115 : systable_endscan(scan);
677 115 : return;
678 : case DEPENDENCY_PIN:
679 :
680 : /*
681 : * Should not happen; PIN dependencies should have zeroes in
682 : * the depender fields...
683 : */
684 0 : elog(ERROR, "incorrect use of PIN dependency with %s",
685 : getObjectDescription(object));
686 : break;
687 : default:
688 0 : elog(ERROR, "unrecognized dependency type '%c' for %s",
689 : foundDep->deptype, getObjectDescription(object));
690 : break;
691 : }
692 : }
693 :
694 9377 : systable_endscan(scan);
695 :
696 : /*
697 : * Now recurse to any dependent objects. We must visit them first since
698 : * they have to be deleted before the current object.
699 : */
700 9377 : mystack.object = object; /* set up a new stack level */
701 9377 : mystack.flags = objflags;
702 9377 : mystack.next = stack;
703 :
704 9377 : ScanKeyInit(&key[0],
705 : Anum_pg_depend_refclassid,
706 : BTEqualStrategyNumber, F_OIDEQ,
707 9377 : ObjectIdGetDatum(object->classId));
708 9377 : ScanKeyInit(&key[1],
709 : Anum_pg_depend_refobjid,
710 : BTEqualStrategyNumber, F_OIDEQ,
711 9377 : ObjectIdGetDatum(object->objectId));
712 9377 : if (object->objectSubId != 0)
713 : {
714 119 : ScanKeyInit(&key[2],
715 : Anum_pg_depend_refobjsubid,
716 : BTEqualStrategyNumber, F_INT4EQ,
717 119 : Int32GetDatum(object->objectSubId));
718 119 : nkeys = 3;
719 : }
720 : else
721 9258 : nkeys = 2;
722 :
723 9377 : scan = systable_beginscan(*depRel, DependReferenceIndexId, true,
724 : NULL, nkeys, key);
725 :
726 28133 : while (HeapTupleIsValid(tup = systable_getnext(scan)))
727 : {
728 9379 : Form_pg_depend foundDep = (Form_pg_depend) GETSTRUCT(tup);
729 : int subflags;
730 :
731 9379 : otherObject.classId = foundDep->classid;
732 9379 : otherObject.objectId = foundDep->objid;
733 9379 : otherObject.objectSubId = foundDep->objsubid;
734 :
735 : /*
736 : * Must lock the dependent object before recursing to it.
737 : */
738 9379 : AcquireDeletionLock(&otherObject, 0);
739 :
740 : /*
741 : * The dependent object might have been deleted while we waited to
742 : * lock it; if so, we don't need to do anything more with it. We can
743 : * test this cheaply and independently of the object's type by seeing
744 : * if the pg_depend tuple we are looking at is still live. (If the
745 : * object got deleted, the tuple would have been deleted too.)
746 : */
747 9379 : if (!systable_recheck_tuple(scan, tup))
748 : {
749 : /* release the now-useless lock */
750 0 : ReleaseDeletionLock(&otherObject);
751 : /* and continue scanning for dependencies */
752 0 : continue;
753 : }
754 :
755 : /* Recurse, passing objflags indicating the dependency type */
756 9379 : switch (foundDep->deptype)
757 : {
758 : case DEPENDENCY_NORMAL:
759 1882 : subflags = DEPFLAG_NORMAL;
760 1882 : break;
761 : case DEPENDENCY_AUTO:
762 : case DEPENDENCY_AUTO_EXTENSION:
763 2272 : subflags = DEPFLAG_AUTO;
764 2272 : break;
765 : case DEPENDENCY_INTERNAL:
766 5225 : subflags = DEPFLAG_INTERNAL;
767 5225 : break;
768 : case DEPENDENCY_EXTENSION:
769 0 : subflags = DEPFLAG_EXTENSION;
770 0 : break;
771 : case DEPENDENCY_PIN:
772 :
773 : /*
774 : * For a PIN dependency we just ereport immediately; there
775 : * won't be any others to report.
776 : */
777 0 : ereport(ERROR,
778 : (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
779 : errmsg("cannot drop %s because it is required by the database system",
780 : getObjectDescription(object))));
781 : subflags = 0; /* keep compiler quiet */
782 : break;
783 : default:
784 0 : elog(ERROR, "unrecognized dependency type '%c' for %s",
785 : foundDep->deptype, getObjectDescription(object));
786 : subflags = 0; /* keep compiler quiet */
787 : break;
788 : }
789 :
790 9379 : findDependentObjects(&otherObject,
791 : subflags,
792 : flags,
793 : &mystack,
794 : targetObjects,
795 : pendingObjects,
796 : depRel);
797 : }
798 :
799 9377 : systable_endscan(scan);
800 :
801 : /*
802 : * Finally, we can add the target object to targetObjects. Be careful to
803 : * include any flags that were passed back down to us from inner recursion
804 : * levels.
805 : */
806 9377 : extra.flags = mystack.flags;
807 9377 : if (stack)
808 7534 : extra.dependee = *stack->object;
809 : else
810 1843 : memset(&extra.dependee, 0, sizeof(extra.dependee));
811 9377 : add_exact_object_address_extra(object, &extra, targetObjects);
812 : }
813 :
814 : /*
815 : * reportDependentObjects - report about dependencies, and fail if RESTRICT
816 : *
817 : * Tell the user about dependent objects that we are going to delete
818 : * (or would need to delete, but are prevented by RESTRICT mode);
819 : * then error out if there are any and it's not CASCADE mode.
820 : *
821 : * targetObjects: list of objects that are scheduled to be deleted
822 : * behavior: RESTRICT or CASCADE
823 : * flags: other flags for the deletion operation
824 : * origObject: base object of deletion, or NULL if not available
825 : * (the latter case occurs in DROP OWNED)
826 : */
827 : static void
828 1702 : reportDependentObjects(const ObjectAddresses *targetObjects,
829 : DropBehavior behavior,
830 : int flags,
831 : const ObjectAddress *origObject)
832 : {
833 1702 : int msglevel = (flags & PERFORM_DELETION_QUIETLY) ? DEBUG2 : NOTICE;
834 1702 : bool ok = true;
835 : StringInfoData clientdetail;
836 : StringInfoData logdetail;
837 1702 : int numReportedClient = 0;
838 1702 : int numNotReportedClient = 0;
839 : int i;
840 :
841 : /*
842 : * If no error is to be thrown, and the msglevel is too low to be shown to
843 : * either client or server log, there's no need to do any of the work.
844 : *
845 : * Note: this code doesn't know all there is to be known about elog
846 : * levels, but it works for NOTICE and DEBUG2, which are the only values
847 : * msglevel can currently have. We also assume we are running in a normal
848 : * operating environment.
849 : */
850 1983 : if (behavior == DROP_CASCADE &&
851 376 : msglevel < client_min_messages &&
852 95 : (msglevel < log_min_messages || log_min_messages == LOG))
853 1774 : return;
854 :
855 : /*
856 : * We limit the number of dependencies reported to the client to
857 : * MAX_REPORTED_DEPS, since client software may not deal well with
858 : * enormous error strings. The server log always gets a full report.
859 : */
860 : #define MAX_REPORTED_DEPS 100
861 :
862 1607 : initStringInfo(&clientdetail);
863 1607 : initStringInfo(&logdetail);
864 :
865 : /*
866 : * We process the list back to front (ie, in dependency order not deletion
867 : * order), since this makes for a more understandable display.
868 : */
869 9851 : for (i = targetObjects->numrefs - 1; i >= 0; i--)
870 : {
871 8244 : const ObjectAddress *obj = &targetObjects->refs[i];
872 8244 : const ObjectAddressExtra *extra = &targetObjects->extras[i];
873 : char *objDesc;
874 :
875 : /* Ignore the original deletion target(s) */
876 8244 : if (extra->flags & DEPFLAG_ORIGINAL)
877 1768 : continue;
878 :
879 6476 : objDesc = getObjectDescription(obj);
880 :
881 : /*
882 : * If, at any stage of the recursive search, we reached the object via
883 : * an AUTO, INTERNAL, or EXTENSION dependency, then it's okay to
884 : * delete it even in RESTRICT mode.
885 : */
886 6476 : if (extra->flags & (DEPFLAG_AUTO |
887 : DEPFLAG_INTERNAL |
888 : DEPFLAG_EXTENSION))
889 : {
890 : /*
891 : * auto-cascades are reported at DEBUG2, not msglevel. We don't
892 : * try to combine them with the regular message because the
893 : * results are too confusing when client_min_messages and
894 : * log_min_messages are different.
895 : */
896 5992 : ereport(DEBUG2,
897 : (errmsg("drop auto-cascades to %s",
898 : objDesc)));
899 : }
900 484 : else if (behavior == DROP_RESTRICT)
901 : {
902 40 : char *otherDesc = getObjectDescription(&extra->dependee);
903 :
904 40 : if (numReportedClient < MAX_REPORTED_DEPS)
905 : {
906 : /* separate entries with a newline */
907 40 : if (clientdetail.len != 0)
908 17 : appendStringInfoChar(&clientdetail, '\n');
909 40 : appendStringInfo(&clientdetail, _("%s depends on %s"),
910 : objDesc, otherDesc);
911 40 : numReportedClient++;
912 : }
913 : else
914 0 : numNotReportedClient++;
915 : /* separate entries with a newline */
916 40 : if (logdetail.len != 0)
917 17 : appendStringInfoChar(&logdetail, '\n');
918 40 : appendStringInfo(&logdetail, _("%s depends on %s"),
919 : objDesc, otherDesc);
920 40 : pfree(otherDesc);
921 40 : ok = false;
922 : }
923 : else
924 : {
925 444 : if (numReportedClient < MAX_REPORTED_DEPS)
926 : {
927 : /* separate entries with a newline */
928 444 : if (clientdetail.len != 0)
929 323 : appendStringInfoChar(&clientdetail, '\n');
930 444 : appendStringInfo(&clientdetail, _("drop cascades to %s"),
931 : objDesc);
932 444 : numReportedClient++;
933 : }
934 : else
935 0 : numNotReportedClient++;
936 : /* separate entries with a newline */
937 444 : if (logdetail.len != 0)
938 323 : appendStringInfoChar(&logdetail, '\n');
939 444 : appendStringInfo(&logdetail, _("drop cascades to %s"),
940 : objDesc);
941 : }
942 :
943 6476 : pfree(objDesc);
944 : }
945 :
946 1607 : if (numNotReportedClient > 0)
947 0 : appendStringInfo(&clientdetail, ngettext("\nand %d other object "
948 : "(see server log for list)",
949 : "\nand %d other objects "
950 : "(see server log for list)",
951 : numNotReportedClient),
952 : numNotReportedClient);
953 :
954 1607 : if (!ok)
955 : {
956 23 : if (origObject)
957 22 : ereport(ERROR,
958 : (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
959 : errmsg("cannot drop %s because other objects depend on it",
960 : getObjectDescription(origObject)),
961 : errdetail("%s", clientdetail.data),
962 : errdetail_log("%s", logdetail.data),
963 : errhint("Use DROP ... CASCADE to drop the dependent objects too.")));
964 : else
965 1 : ereport(ERROR,
966 : (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
967 : errmsg("cannot drop desired object(s) because other objects depend on them"),
968 : errdetail("%s", clientdetail.data),
969 : errdetail_log("%s", logdetail.data),
970 : errhint("Use DROP ... CASCADE to drop the dependent objects too.")));
971 : }
972 1584 : else if (numReportedClient > 1)
973 : {
974 58 : ereport(msglevel,
975 : /* translator: %d always has a value larger than 1 */
976 : (errmsg_plural("drop cascades to %d other object",
977 : "drop cascades to %d other objects",
978 : numReportedClient + numNotReportedClient,
979 : numReportedClient + numNotReportedClient),
980 : errdetail("%s", clientdetail.data),
981 : errdetail_log("%s", logdetail.data)));
982 : }
983 1526 : else if (numReportedClient == 1)
984 : {
985 : /* we just use the single item as-is */
986 63 : ereport(msglevel,
987 : (errmsg_internal("%s", clientdetail.data)));
988 : }
989 :
990 1584 : pfree(clientdetail.data);
991 1584 : pfree(logdetail.data);
992 : }
993 :
994 : /*
995 : * deleteOneObject: delete a single object for performDeletion.
996 : *
997 : * *depRel is the already-open pg_depend relation.
998 : */
999 : static void
1000 9057 : deleteOneObject(const ObjectAddress *object, Relation *depRel, int flags)
1001 : {
1002 : ScanKeyData key[3];
1003 : int nkeys;
1004 : SysScanDesc scan;
1005 : HeapTuple tup;
1006 :
1007 : /* DROP hook of the objects being removed */
1008 9057 : InvokeObjectDropHookArg(object->classId, object->objectId,
1009 : object->objectSubId, flags);
1010 :
1011 : /*
1012 : * Close depRel if we are doing a drop concurrently. The object deletion
1013 : * subroutine will commit the current transaction, so we can't keep the
1014 : * relation open across doDeletion().
1015 : */
1016 9057 : if (flags & PERFORM_DELETION_CONCURRENTLY)
1017 6 : heap_close(*depRel, RowExclusiveLock);
1018 :
1019 : /*
1020 : * Delete the object itself, in an object-type-dependent way.
1021 : *
1022 : * We used to do this after removing the outgoing dependency links, but it
1023 : * seems just as reasonable to do it beforehand. In the concurrent case
1024 : * we *must* do it in this order, because we can't make any transactional
1025 : * updates before calling doDeletion() --- they'd get committed right
1026 : * away, which is not cool if the deletion then fails.
1027 : */
1028 9057 : doDeletion(object, flags);
1029 :
1030 : /*
1031 : * Reopen depRel if we closed it above
1032 : */
1033 9057 : if (flags & PERFORM_DELETION_CONCURRENTLY)
1034 6 : *depRel = heap_open(DependRelationId, RowExclusiveLock);
1035 :
1036 : /*
1037 : * Now remove any pg_depend records that link from this object to others.
1038 : * (Any records linking to this object should be gone already.)
1039 : *
1040 : * When dropping a whole object (subId = 0), remove all pg_depend records
1041 : * for its sub-objects too.
1042 : */
1043 9057 : ScanKeyInit(&key[0],
1044 : Anum_pg_depend_classid,
1045 : BTEqualStrategyNumber, F_OIDEQ,
1046 9057 : ObjectIdGetDatum(object->classId));
1047 9057 : ScanKeyInit(&key[1],
1048 : Anum_pg_depend_objid,
1049 : BTEqualStrategyNumber, F_OIDEQ,
1050 9057 : ObjectIdGetDatum(object->objectId));
1051 9057 : if (object->objectSubId != 0)
1052 : {
1053 117 : ScanKeyInit(&key[2],
1054 : Anum_pg_depend_objsubid,
1055 : BTEqualStrategyNumber, F_INT4EQ,
1056 117 : Int32GetDatum(object->objectSubId));
1057 117 : nkeys = 3;
1058 : }
1059 : else
1060 8940 : nkeys = 2;
1061 :
1062 9057 : scan = systable_beginscan(*depRel, DependDependerIndexId, true,
1063 : NULL, nkeys, key);
1064 :
1065 30102 : while (HeapTupleIsValid(tup = systable_getnext(scan)))
1066 : {
1067 11988 : CatalogTupleDelete(*depRel, &tup->t_self);
1068 : }
1069 :
1070 9057 : systable_endscan(scan);
1071 :
1072 : /*
1073 : * Delete shared dependency references related to this object. Again, if
1074 : * subId = 0, remove records for sub-objects too.
1075 : */
1076 9057 : deleteSharedDependencyRecordsFor(object->classId, object->objectId,
1077 : object->objectSubId);
1078 :
1079 :
1080 : /*
1081 : * Delete any comments, security labels, or initial privileges associated
1082 : * with this object. (This is a convenient place to do these things,
1083 : * rather than having every object type know to do it.)
1084 : */
1085 9057 : DeleteComments(object->objectId, object->classId, object->objectSubId);
1086 9057 : DeleteSecurityLabel(object);
1087 9057 : DeleteInitPrivs(object);
1088 :
1089 : /*
1090 : * CommandCounterIncrement here to ensure that preceding changes are all
1091 : * visible to the next deletion step.
1092 : */
1093 9057 : CommandCounterIncrement();
1094 :
1095 : /*
1096 : * And we're done!
1097 : */
1098 9057 : }
1099 :
1100 : /*
1101 : * doDeletion: actually delete a single object
1102 : */
1103 : static void
1104 9057 : doDeletion(const ObjectAddress *object, int flags)
1105 : {
1106 9057 : switch (getObjectClass(object))
1107 : {
1108 : case OCLASS_CLASS:
1109 : {
1110 3188 : char relKind = get_rel_relkind(object->objectId);
1111 :
1112 3188 : if (relKind == RELKIND_INDEX)
1113 : {
1114 930 : bool concurrent = ((flags & PERFORM_DELETION_CONCURRENTLY) != 0);
1115 :
1116 930 : Assert(object->objectSubId == 0);
1117 930 : index_drop(object->objectId, concurrent);
1118 : }
1119 : else
1120 : {
1121 2258 : if (object->objectSubId != 0)
1122 117 : RemoveAttributeById(object->objectId,
1123 117 : object->objectSubId);
1124 : else
1125 2141 : heap_drop_with_catalog(object->objectId);
1126 : }
1127 :
1128 : /*
1129 : * for a sequence, in addition to dropping the heap, also
1130 : * delete pg_sequence tuple
1131 : */
1132 3188 : if (relKind == RELKIND_SEQUENCE)
1133 85 : DeleteSequenceTuple(object->objectId);
1134 3188 : break;
1135 : }
1136 :
1137 : case OCLASS_PROC:
1138 266 : RemoveFunctionById(object->objectId);
1139 266 : break;
1140 :
1141 : case OCLASS_TYPE:
1142 3773 : RemoveTypeById(object->objectId);
1143 3773 : break;
1144 :
1145 : case OCLASS_CAST:
1146 4 : DropCastById(object->objectId);
1147 4 : break;
1148 :
1149 : case OCLASS_COLLATION:
1150 2 : RemoveCollationById(object->objectId);
1151 2 : break;
1152 :
1153 : case OCLASS_CONSTRAINT:
1154 507 : RemoveConstraintById(object->objectId);
1155 507 : break;
1156 :
1157 : case OCLASS_CONVERSION:
1158 8 : RemoveConversionById(object->objectId);
1159 8 : break;
1160 :
1161 : case OCLASS_DEFAULT:
1162 157 : RemoveAttrDefaultById(object->objectId);
1163 157 : break;
1164 :
1165 : case OCLASS_LANGUAGE:
1166 2 : DropProceduralLanguageById(object->objectId);
1167 2 : break;
1168 :
1169 : case OCLASS_LARGEOBJECT:
1170 12 : LargeObjectDrop(object->objectId);
1171 12 : break;
1172 :
1173 : case OCLASS_OPERATOR:
1174 13 : RemoveOperatorById(object->objectId);
1175 13 : break;
1176 :
1177 : case OCLASS_OPCLASS:
1178 6 : RemoveOpClassById(object->objectId);
1179 6 : break;
1180 :
1181 : case OCLASS_OPFAMILY:
1182 18 : RemoveOpFamilyById(object->objectId);
1183 18 : break;
1184 :
1185 : case OCLASS_AM:
1186 1 : RemoveAccessMethodById(object->objectId);
1187 1 : break;
1188 :
1189 : case OCLASS_AMOP:
1190 35 : RemoveAmOpEntryById(object->objectId);
1191 35 : break;
1192 :
1193 : case OCLASS_AMPROC:
1194 11 : RemoveAmProcEntryById(object->objectId);
1195 11 : break;
1196 :
1197 : case OCLASS_REWRITE:
1198 311 : RemoveRewriteRuleById(object->objectId);
1199 311 : break;
1200 :
1201 : case OCLASS_TRIGGER:
1202 471 : RemoveTriggerById(object->objectId);
1203 471 : break;
1204 :
1205 : case OCLASS_SCHEMA:
1206 45 : RemoveSchemaById(object->objectId);
1207 45 : break;
1208 :
1209 : case OCLASS_STATISTIC_EXT:
1210 18 : RemoveStatisticsById(object->objectId);
1211 18 : break;
1212 :
1213 : case OCLASS_TSPARSER:
1214 5 : RemoveTSParserById(object->objectId);
1215 5 : break;
1216 :
1217 : case OCLASS_TSDICT:
1218 7 : RemoveTSDictionaryById(object->objectId);
1219 7 : break;
1220 :
1221 : case OCLASS_TSTEMPLATE:
1222 5 : RemoveTSTemplateById(object->objectId);
1223 5 : break;
1224 :
1225 : case OCLASS_TSCONFIG:
1226 7 : RemoveTSConfigurationById(object->objectId);
1227 7 : break;
1228 :
1229 : /*
1230 : * OCLASS_ROLE, OCLASS_DATABASE, OCLASS_TBLSPACE intentionally not
1231 : * handled here
1232 : */
1233 :
1234 : case OCLASS_FDW:
1235 13 : RemoveForeignDataWrapperById(object->objectId);
1236 13 : break;
1237 :
1238 : case OCLASS_FOREIGN_SERVER:
1239 29 : RemoveForeignServerById(object->objectId);
1240 29 : break;
1241 :
1242 : case OCLASS_USER_MAPPING:
1243 33 : RemoveUserMappingById(object->objectId);
1244 33 : break;
1245 :
1246 : case OCLASS_DEFACL:
1247 12 : RemoveDefaultACLById(object->objectId);
1248 12 : break;
1249 :
1250 : case OCLASS_EXTENSION:
1251 0 : RemoveExtensionById(object->objectId);
1252 0 : break;
1253 :
1254 : case OCLASS_EVENT_TRIGGER:
1255 10 : RemoveEventTriggerById(object->objectId);
1256 10 : break;
1257 :
1258 : case OCLASS_POLICY:
1259 69 : RemovePolicyById(object->objectId);
1260 69 : break;
1261 :
1262 : case OCLASS_PUBLICATION:
1263 8 : RemovePublicationById(object->objectId);
1264 8 : break;
1265 :
1266 : case OCLASS_PUBLICATION_REL:
1267 11 : RemovePublicationRelById(object->objectId);
1268 11 : break;
1269 :
1270 : case OCLASS_TRANSFORM:
1271 0 : DropTransformById(object->objectId);
1272 0 : break;
1273 :
1274 : /*
1275 : * These global object types are not supported here.
1276 : */
1277 : case OCLASS_ROLE:
1278 : case OCLASS_DATABASE:
1279 : case OCLASS_TBLSPACE:
1280 : case OCLASS_SUBSCRIPTION:
1281 0 : elog(ERROR, "global objects cannot be deleted by doDeletion");
1282 : break;
1283 :
1284 : /*
1285 : * There's intentionally no default: case here; we want the
1286 : * compiler to warn if a new OCLASS hasn't been handled above.
1287 : */
1288 : }
1289 9057 : }
1290 :
1291 : /*
1292 : * AcquireDeletionLock - acquire a suitable lock for deleting an object
1293 : *
1294 : * We use LockRelation for relations, LockDatabaseObject for everything
1295 : * else. Note that dependency.c is not concerned with deleting any kind of
1296 : * shared-across-databases object, so we have no need for LockSharedObject.
1297 : */
1298 : static void
1299 11361 : AcquireDeletionLock(const ObjectAddress *object, int flags)
1300 : {
1301 11361 : if (object->classId == RelationRelationId)
1302 : {
1303 : /*
1304 : * In DROP INDEX CONCURRENTLY, take only ShareUpdateExclusiveLock on
1305 : * the index for the moment. index_drop() will promote the lock once
1306 : * it's safe to do so. In all other cases we need full exclusive
1307 : * lock.
1308 : */
1309 3906 : if (flags & PERFORM_DELETION_CONCURRENTLY)
1310 6 : LockRelationOid(object->objectId, ShareUpdateExclusiveLock);
1311 : else
1312 3900 : LockRelationOid(object->objectId, AccessExclusiveLock);
1313 : }
1314 : else
1315 : {
1316 : /* assume we should lock the whole object not a sub-object */
1317 7455 : LockDatabaseObject(object->classId, object->objectId, 0,
1318 : AccessExclusiveLock);
1319 : }
1320 11361 : }
1321 :
1322 : /*
1323 : * ReleaseDeletionLock - release an object deletion lock
1324 : */
1325 : static void
1326 115 : ReleaseDeletionLock(const ObjectAddress *object)
1327 : {
1328 115 : if (object->classId == RelationRelationId)
1329 0 : UnlockRelationOid(object->objectId, AccessExclusiveLock);
1330 : else
1331 : /* assume we should lock the whole object not a sub-object */
1332 115 : UnlockDatabaseObject(object->classId, object->objectId, 0,
1333 : AccessExclusiveLock);
1334 115 : }
1335 :
1336 : /*
1337 : * recordDependencyOnExpr - find expression dependencies
1338 : *
1339 : * This is used to find the dependencies of rules, constraint expressions,
1340 : * etc.
1341 : *
1342 : * Given an expression or query in node-tree form, find all the objects
1343 : * it refers to (tables, columns, operators, functions, etc). Record
1344 : * a dependency of the specified type from the given depender object
1345 : * to each object mentioned in the expression.
1346 : *
1347 : * rtable is the rangetable to be used to interpret Vars with varlevelsup=0.
1348 : * It can be NIL if no such variables are expected.
1349 : */
1350 : void
1351 959 : recordDependencyOnExpr(const ObjectAddress *depender,
1352 : Node *expr, List *rtable,
1353 : DependencyType behavior)
1354 : {
1355 : find_expr_references_context context;
1356 :
1357 959 : context.addrs = new_object_addresses();
1358 :
1359 : /* Set up interpretation for Vars at varlevelsup = 0 */
1360 959 : context.rtables = list_make1(rtable);
1361 :
1362 : /* Scan the expression tree for referenceable objects */
1363 959 : find_expr_references_walker(expr, &context);
1364 :
1365 : /* Remove any duplicates */
1366 959 : eliminate_duplicate_dependencies(context.addrs);
1367 :
1368 : /* And record 'em */
1369 1918 : recordMultipleDependencies(depender,
1370 1918 : context.addrs->refs, context.addrs->numrefs,
1371 : behavior);
1372 :
1373 959 : free_object_addresses(context.addrs);
1374 959 : }
1375 :
1376 : /*
1377 : * recordDependencyOnSingleRelExpr - find expression dependencies
1378 : *
1379 : * As above, but only one relation is expected to be referenced (with
1380 : * varno = 1 and varlevelsup = 0). Pass the relation OID instead of a
1381 : * range table. An additional frammish is that dependencies on that
1382 : * relation (or its component columns) will be marked with 'self_behavior',
1383 : * whereas 'behavior' is used for everything else.
1384 : *
1385 : * NOTE: the caller should ensure that a whole-table dependency on the
1386 : * specified relation is created separately, if one is needed. In particular,
1387 : * a whole-row Var "relation.*" will not cause this routine to emit any
1388 : * dependency item. This is appropriate behavior for subexpressions of an
1389 : * ordinary query, so other cases need to cope as necessary.
1390 : */
1391 : void
1392 297 : recordDependencyOnSingleRelExpr(const ObjectAddress *depender,
1393 : Node *expr, Oid relId,
1394 : DependencyType behavior,
1395 : DependencyType self_behavior,
1396 : bool ignore_self)
1397 : {
1398 : find_expr_references_context context;
1399 : RangeTblEntry rte;
1400 :
1401 297 : context.addrs = new_object_addresses();
1402 :
1403 : /* We gin up a rather bogus rangetable list to handle Vars */
1404 297 : MemSet(&rte, 0, sizeof(rte));
1405 297 : rte.type = T_RangeTblEntry;
1406 297 : rte.rtekind = RTE_RELATION;
1407 297 : rte.relid = relId;
1408 297 : rte.relkind = RELKIND_RELATION; /* no need for exactness here */
1409 :
1410 297 : context.rtables = list_make1(list_make1(&rte));
1411 :
1412 : /* Scan the expression tree for referenceable objects */
1413 297 : find_expr_references_walker(expr, &context);
1414 :
1415 : /* Remove any duplicates */
1416 297 : eliminate_duplicate_dependencies(context.addrs);
1417 :
1418 : /* Separate self-dependencies if necessary */
1419 297 : if (behavior != self_behavior && context.addrs->numrefs > 0)
1420 : {
1421 : ObjectAddresses *self_addrs;
1422 : ObjectAddress *outobj;
1423 : int oldref,
1424 : outrefs;
1425 :
1426 60 : self_addrs = new_object_addresses();
1427 :
1428 60 : outobj = context.addrs->refs;
1429 60 : outrefs = 0;
1430 230 : for (oldref = 0; oldref < context.addrs->numrefs; oldref++)
1431 : {
1432 170 : ObjectAddress *thisobj = context.addrs->refs + oldref;
1433 :
1434 238 : if (thisobj->classId == RelationRelationId &&
1435 68 : thisobj->objectId == relId)
1436 : {
1437 : /* Move this ref into self_addrs */
1438 68 : add_exact_object_address(thisobj, self_addrs);
1439 : }
1440 : else
1441 : {
1442 : /* Keep it in context.addrs */
1443 102 : *outobj = *thisobj;
1444 102 : outobj++;
1445 102 : outrefs++;
1446 : }
1447 : }
1448 60 : context.addrs->numrefs = outrefs;
1449 :
1450 : /* Record the self-dependencies */
1451 60 : if (!ignore_self)
1452 98 : recordMultipleDependencies(depender,
1453 49 : self_addrs->refs, self_addrs->numrefs,
1454 : self_behavior);
1455 :
1456 60 : free_object_addresses(self_addrs);
1457 : }
1458 :
1459 : /* Record the external dependencies */
1460 594 : recordMultipleDependencies(depender,
1461 594 : context.addrs->refs, context.addrs->numrefs,
1462 : behavior);
1463 :
1464 297 : free_object_addresses(context.addrs);
1465 297 : }
1466 :
1467 : /*
1468 : * Recursively search an expression tree for object references.
1469 : *
1470 : * Note: we avoid creating references to columns of tables that participate
1471 : * in an SQL JOIN construct, but are not actually used anywhere in the query.
1472 : * To do so, we do not scan the joinaliasvars list of a join RTE while
1473 : * scanning the query rangetable, but instead scan each individual entry
1474 : * of the alias list when we find a reference to it.
1475 : *
1476 : * Note: in many cases we do not need to create dependencies on the datatypes
1477 : * involved in an expression, because we'll have an indirect dependency via
1478 : * some other object. For instance Var nodes depend on a column which depends
1479 : * on the datatype, and OpExpr nodes depend on the operator which depends on
1480 : * the datatype. However we do need a type dependency if there is no such
1481 : * indirect dependency, as for example in Const and CoerceToDomain nodes.
1482 : *
1483 : * Similarly, we don't need to create dependencies on collations except where
1484 : * the collation is being freshly introduced to the expression.
1485 : */
1486 : static bool
1487 33952 : find_expr_references_walker(Node *node,
1488 : find_expr_references_context *context)
1489 : {
1490 33952 : if (node == NULL)
1491 14212 : return false;
1492 19740 : if (IsA(node, Var))
1493 : {
1494 4856 : Var *var = (Var *) node;
1495 : List *rtable;
1496 : RangeTblEntry *rte;
1497 :
1498 : /* Find matching rtable entry, or complain if not found */
1499 4856 : if (var->varlevelsup >= list_length(context->rtables))
1500 0 : elog(ERROR, "invalid varlevelsup %d", var->varlevelsup);
1501 4856 : rtable = (List *) list_nth(context->rtables, var->varlevelsup);
1502 4856 : if (var->varno <= 0 || var->varno > list_length(rtable))
1503 0 : elog(ERROR, "invalid varno %d", var->varno);
1504 4856 : rte = rt_fetch(var->varno, rtable);
1505 :
1506 : /*
1507 : * A whole-row Var references no specific columns, so adds no new
1508 : * dependency. (We assume that there is a whole-table dependency
1509 : * arising from each underlying rangetable entry. While we could
1510 : * record such a dependency when finding a whole-row Var that
1511 : * references a relation directly, it's quite unclear how to extend
1512 : * that to whole-row Vars for JOINs, so it seems better to leave the
1513 : * responsibility with the range table. Note that this poses some
1514 : * risks for identifying dependencies of stand-alone expressions:
1515 : * whole-table references may need to be created separately.)
1516 : */
1517 4856 : if (var->varattno == InvalidAttrNumber)
1518 69 : return false;
1519 4787 : if (rte->rtekind == RTE_RELATION)
1520 : {
1521 : /* If it's a plain relation, reference this column */
1522 3577 : add_object_address(OCLASS_CLASS, rte->relid, var->varattno,
1523 : context->addrs);
1524 : }
1525 1210 : else if (rte->rtekind == RTE_JOIN)
1526 : {
1527 : /* Scan join output column to add references to join inputs */
1528 : List *save_rtables;
1529 :
1530 : /* We must make the context appropriate for join's level */
1531 444 : save_rtables = context->rtables;
1532 444 : context->rtables = list_copy_tail(context->rtables,
1533 444 : var->varlevelsup);
1534 888 : if (var->varattno <= 0 ||
1535 444 : var->varattno > list_length(rte->joinaliasvars))
1536 0 : elog(ERROR, "invalid varattno %d", var->varattno);
1537 444 : find_expr_references_walker((Node *) list_nth(rte->joinaliasvars,
1538 444 : var->varattno - 1),
1539 : context);
1540 444 : list_free(context->rtables);
1541 444 : context->rtables = save_rtables;
1542 : }
1543 4787 : return false;
1544 : }
1545 14884 : else if (IsA(node, Const))
1546 : {
1547 2299 : Const *con = (Const *) node;
1548 : Oid objoid;
1549 :
1550 : /* A constant must depend on the constant's datatype */
1551 2299 : add_object_address(OCLASS_TYPE, con->consttype, 0,
1552 : context->addrs);
1553 :
1554 : /*
1555 : * We must also depend on the constant's collation: it could be
1556 : * different from the datatype's, if a CollateExpr was const-folded to
1557 : * a simple constant. However we can save work in the most common
1558 : * case where the collation is "default", since we know that's pinned.
1559 : */
1560 2986 : if (OidIsValid(con->constcollid) &&
1561 687 : con->constcollid != DEFAULT_COLLATION_OID)
1562 0 : add_object_address(OCLASS_COLLATION, con->constcollid, 0,
1563 : context->addrs);
1564 :
1565 : /*
1566 : * If it's a regclass or similar literal referring to an existing
1567 : * object, add a reference to that object. (Currently, only the
1568 : * regclass and regconfig cases have any likely use, but we may as
1569 : * well handle all the OID-alias datatypes consistently.)
1570 : */
1571 2299 : if (!con->constisnull)
1572 : {
1573 2057 : switch (con->consttype)
1574 : {
1575 : case REGPROCOID:
1576 : case REGPROCEDUREOID:
1577 0 : objoid = DatumGetObjectId(con->constvalue);
1578 0 : if (SearchSysCacheExists1(PROCOID,
1579 : ObjectIdGetDatum(objoid)))
1580 0 : add_object_address(OCLASS_PROC, objoid, 0,
1581 : context->addrs);
1582 0 : break;
1583 : case REGOPEROID:
1584 : case REGOPERATOROID:
1585 0 : objoid = DatumGetObjectId(con->constvalue);
1586 0 : if (SearchSysCacheExists1(OPEROID,
1587 : ObjectIdGetDatum(objoid)))
1588 0 : add_object_address(OCLASS_OPERATOR, objoid, 0,
1589 : context->addrs);
1590 0 : break;
1591 : case REGCLASSOID:
1592 107 : objoid = DatumGetObjectId(con->constvalue);
1593 107 : if (SearchSysCacheExists1(RELOID,
1594 : ObjectIdGetDatum(objoid)))
1595 107 : add_object_address(OCLASS_CLASS, objoid, 0,
1596 : context->addrs);
1597 107 : break;
1598 : case REGTYPEOID:
1599 0 : objoid = DatumGetObjectId(con->constvalue);
1600 0 : if (SearchSysCacheExists1(TYPEOID,
1601 : ObjectIdGetDatum(objoid)))
1602 0 : add_object_address(OCLASS_TYPE, objoid, 0,
1603 : context->addrs);
1604 0 : break;
1605 : case REGCONFIGOID:
1606 0 : objoid = DatumGetObjectId(con->constvalue);
1607 0 : if (SearchSysCacheExists1(TSCONFIGOID,
1608 : ObjectIdGetDatum(objoid)))
1609 0 : add_object_address(OCLASS_TSCONFIG, objoid, 0,
1610 : context->addrs);
1611 0 : break;
1612 : case REGDICTIONARYOID:
1613 0 : objoid = DatumGetObjectId(con->constvalue);
1614 0 : if (SearchSysCacheExists1(TSDICTOID,
1615 : ObjectIdGetDatum(objoid)))
1616 0 : add_object_address(OCLASS_TSDICT, objoid, 0,
1617 : context->addrs);
1618 0 : break;
1619 :
1620 : case REGNAMESPACEOID:
1621 0 : objoid = DatumGetObjectId(con->constvalue);
1622 0 : if (SearchSysCacheExists1(NAMESPACEOID,
1623 : ObjectIdGetDatum(objoid)))
1624 0 : add_object_address(OCLASS_SCHEMA, objoid, 0,
1625 : context->addrs);
1626 0 : break;
1627 :
1628 : /*
1629 : * Dependencies for regrole should be shared among all
1630 : * databases, so explicitly inhibit to have dependencies.
1631 : */
1632 : case REGROLEOID:
1633 0 : ereport(ERROR,
1634 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1635 : errmsg("constant of the type %s cannot be used here",
1636 : "regrole")));
1637 : break;
1638 : }
1639 : }
1640 2299 : return false;
1641 : }
1642 12585 : else if (IsA(node, Param))
1643 : {
1644 24 : Param *param = (Param *) node;
1645 :
1646 : /* A parameter must depend on the parameter's datatype */
1647 24 : add_object_address(OCLASS_TYPE, param->paramtype, 0,
1648 : context->addrs);
1649 : /* and its collation, just as for Consts */
1650 39 : if (OidIsValid(param->paramcollid) &&
1651 15 : param->paramcollid != DEFAULT_COLLATION_OID)
1652 0 : add_object_address(OCLASS_COLLATION, param->paramcollid, 0,
1653 : context->addrs);
1654 : }
1655 12561 : else if (IsA(node, FuncExpr))
1656 : {
1657 1262 : FuncExpr *funcexpr = (FuncExpr *) node;
1658 :
1659 1262 : add_object_address(OCLASS_PROC, funcexpr->funcid, 0,
1660 : context->addrs);
1661 : /* fall through to examine arguments */
1662 : }
1663 11299 : else if (IsA(node, OpExpr))
1664 : {
1665 1319 : OpExpr *opexpr = (OpExpr *) node;
1666 :
1667 1319 : add_object_address(OCLASS_OPERATOR, opexpr->opno, 0,
1668 : context->addrs);
1669 : /* fall through to examine arguments */
1670 : }
1671 9980 : else if (IsA(node, DistinctExpr))
1672 : {
1673 1 : DistinctExpr *distinctexpr = (DistinctExpr *) node;
1674 :
1675 1 : add_object_address(OCLASS_OPERATOR, distinctexpr->opno, 0,
1676 : context->addrs);
1677 : /* fall through to examine arguments */
1678 : }
1679 9979 : else if (IsA(node, NullIfExpr))
1680 : {
1681 1 : NullIfExpr *nullifexpr = (NullIfExpr *) node;
1682 :
1683 1 : add_object_address(OCLASS_OPERATOR, nullifexpr->opno, 0,
1684 : context->addrs);
1685 : /* fall through to examine arguments */
1686 : }
1687 9978 : else if (IsA(node, ScalarArrayOpExpr))
1688 : {
1689 67 : ScalarArrayOpExpr *opexpr = (ScalarArrayOpExpr *) node;
1690 :
1691 67 : add_object_address(OCLASS_OPERATOR, opexpr->opno, 0,
1692 : context->addrs);
1693 : /* fall through to examine arguments */
1694 : }
1695 9911 : else if (IsA(node, Aggref))
1696 : {
1697 37 : Aggref *aggref = (Aggref *) node;
1698 :
1699 37 : add_object_address(OCLASS_PROC, aggref->aggfnoid, 0,
1700 : context->addrs);
1701 : /* fall through to examine arguments */
1702 : }
1703 9874 : else if (IsA(node, WindowFunc))
1704 : {
1705 2 : WindowFunc *wfunc = (WindowFunc *) node;
1706 :
1707 2 : add_object_address(OCLASS_PROC, wfunc->winfnoid, 0,
1708 : context->addrs);
1709 : /* fall through to examine arguments */
1710 : }
1711 9872 : else if (IsA(node, SubPlan))
1712 : {
1713 : /* Extra work needed here if we ever need this case */
1714 0 : elog(ERROR, "already-planned subqueries not supported");
1715 : }
1716 9872 : else if (IsA(node, RelabelType))
1717 : {
1718 91 : RelabelType *relab = (RelabelType *) node;
1719 :
1720 : /* since there is no function dependency, need to depend on type */
1721 91 : add_object_address(OCLASS_TYPE, relab->resulttype, 0,
1722 : context->addrs);
1723 : /* the collation might not be referenced anywhere else, either */
1724 124 : if (OidIsValid(relab->resultcollid) &&
1725 33 : relab->resultcollid != DEFAULT_COLLATION_OID)
1726 0 : add_object_address(OCLASS_COLLATION, relab->resultcollid, 0,
1727 : context->addrs);
1728 : }
1729 9781 : else if (IsA(node, CoerceViaIO))
1730 : {
1731 44 : CoerceViaIO *iocoerce = (CoerceViaIO *) node;
1732 :
1733 : /* since there is no exposed function, need to depend on type */
1734 44 : add_object_address(OCLASS_TYPE, iocoerce->resulttype, 0,
1735 : context->addrs);
1736 : }
1737 9737 : else if (IsA(node, ArrayCoerceExpr))
1738 : {
1739 5 : ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node;
1740 :
1741 5 : if (OidIsValid(acoerce->elemfuncid))
1742 1 : add_object_address(OCLASS_PROC, acoerce->elemfuncid, 0,
1743 : context->addrs);
1744 5 : add_object_address(OCLASS_TYPE, acoerce->resulttype, 0,
1745 : context->addrs);
1746 : /* fall through to examine arguments */
1747 : }
1748 9732 : else if (IsA(node, ConvertRowtypeExpr))
1749 : {
1750 0 : ConvertRowtypeExpr *cvt = (ConvertRowtypeExpr *) node;
1751 :
1752 : /* since there is no function dependency, need to depend on type */
1753 0 : add_object_address(OCLASS_TYPE, cvt->resulttype, 0,
1754 : context->addrs);
1755 : }
1756 9732 : else if (IsA(node, CollateExpr))
1757 : {
1758 4 : CollateExpr *coll = (CollateExpr *) node;
1759 :
1760 4 : add_object_address(OCLASS_COLLATION, coll->collOid, 0,
1761 : context->addrs);
1762 : }
1763 9728 : else if (IsA(node, RowExpr))
1764 : {
1765 1 : RowExpr *rowexpr = (RowExpr *) node;
1766 :
1767 1 : add_object_address(OCLASS_TYPE, rowexpr->row_typeid, 0,
1768 : context->addrs);
1769 : }
1770 9727 : else if (IsA(node, RowCompareExpr))
1771 : {
1772 0 : RowCompareExpr *rcexpr = (RowCompareExpr *) node;
1773 : ListCell *l;
1774 :
1775 0 : foreach(l, rcexpr->opnos)
1776 : {
1777 0 : add_object_address(OCLASS_OPERATOR, lfirst_oid(l), 0,
1778 : context->addrs);
1779 : }
1780 0 : foreach(l, rcexpr->opfamilies)
1781 : {
1782 0 : add_object_address(OCLASS_OPFAMILY, lfirst_oid(l), 0,
1783 : context->addrs);
1784 : }
1785 : /* fall through to examine arguments */
1786 : }
1787 9727 : else if (IsA(node, CoerceToDomain))
1788 : {
1789 607 : CoerceToDomain *cd = (CoerceToDomain *) node;
1790 :
1791 607 : add_object_address(OCLASS_TYPE, cd->resulttype, 0,
1792 : context->addrs);
1793 : }
1794 9120 : else if (IsA(node, NextValueExpr))
1795 : {
1796 0 : NextValueExpr *nve = (NextValueExpr *) node;
1797 :
1798 0 : add_object_address(OCLASS_CLASS, nve->seqid, 0,
1799 : context->addrs);
1800 : }
1801 9120 : else if (IsA(node, OnConflictExpr))
1802 : {
1803 3 : OnConflictExpr *onconflict = (OnConflictExpr *) node;
1804 :
1805 3 : if (OidIsValid(onconflict->constraint))
1806 0 : add_object_address(OCLASS_CONSTRAINT, onconflict->constraint, 0,
1807 : context->addrs);
1808 : /* fall through to examine arguments */
1809 : }
1810 9117 : else if (IsA(node, SortGroupClause))
1811 : {
1812 126 : SortGroupClause *sgc = (SortGroupClause *) node;
1813 :
1814 126 : add_object_address(OCLASS_OPERATOR, sgc->eqop, 0,
1815 : context->addrs);
1816 126 : if (OidIsValid(sgc->sortop))
1817 126 : add_object_address(OCLASS_OPERATOR, sgc->sortop, 0,
1818 : context->addrs);
1819 126 : return false;
1820 : }
1821 8991 : else if (IsA(node, Query))
1822 : {
1823 : /* Recurse into RTE subquery or not-yet-planned sublink subquery */
1824 757 : Query *query = (Query *) node;
1825 : ListCell *lc;
1826 : bool result;
1827 :
1828 : /*
1829 : * Add whole-relation refs for each plain relation mentioned in the
1830 : * subquery's rtable.
1831 : *
1832 : * Note: query_tree_walker takes care of recursing into RTE_FUNCTION
1833 : * RTEs, subqueries, etc, so no need to do that here. But keep it
1834 : * from looking at join alias lists.
1835 : *
1836 : * Note: we don't need to worry about collations mentioned in
1837 : * RTE_VALUES or RTE_CTE RTEs, because those must just duplicate
1838 : * collations referenced in other parts of the Query. We do have to
1839 : * worry about collations mentioned in RTE_FUNCTION, but we take care
1840 : * of those when we recurse to the RangeTblFunction node(s).
1841 : */
1842 3074 : foreach(lc, query->rtable)
1843 : {
1844 2317 : RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
1845 :
1846 2317 : switch (rte->rtekind)
1847 : {
1848 : case RTE_RELATION:
1849 1909 : add_object_address(OCLASS_CLASS, rte->relid, 0,
1850 : context->addrs);
1851 1909 : break;
1852 : default:
1853 408 : break;
1854 : }
1855 : }
1856 :
1857 : /*
1858 : * If the query is an INSERT or UPDATE, we should create a dependency
1859 : * on each target column, to prevent the specific target column from
1860 : * being dropped. Although we will visit the TargetEntry nodes again
1861 : * during query_tree_walker, we won't have enough context to do this
1862 : * conveniently, so do it here.
1863 : */
1864 1467 : if (query->commandType == CMD_INSERT ||
1865 710 : query->commandType == CMD_UPDATE)
1866 : {
1867 : RangeTblEntry *rte;
1868 :
1869 136 : if (query->resultRelation <= 0 ||
1870 68 : query->resultRelation > list_length(query->rtable))
1871 0 : elog(ERROR, "invalid resultRelation %d",
1872 : query->resultRelation);
1873 68 : rte = rt_fetch(query->resultRelation, query->rtable);
1874 68 : if (rte->rtekind == RTE_RELATION)
1875 : {
1876 205 : foreach(lc, query->targetList)
1877 : {
1878 137 : TargetEntry *tle = (TargetEntry *) lfirst(lc);
1879 :
1880 137 : if (tle->resjunk)
1881 0 : continue; /* ignore junk tlist items */
1882 137 : add_object_address(OCLASS_CLASS, rte->relid, tle->resno,
1883 : context->addrs);
1884 : }
1885 : }
1886 : }
1887 :
1888 : /*
1889 : * Add dependencies on constraints listed in query's constraintDeps
1890 : */
1891 763 : foreach(lc, query->constraintDeps)
1892 : {
1893 6 : add_object_address(OCLASS_CONSTRAINT, lfirst_oid(lc), 0,
1894 : context->addrs);
1895 : }
1896 :
1897 : /* query_tree_walker ignores ORDER BY etc, but we need those opers */
1898 757 : find_expr_references_walker((Node *) query->sortClause, context);
1899 757 : find_expr_references_walker((Node *) query->groupClause, context);
1900 757 : find_expr_references_walker((Node *) query->windowClause, context);
1901 757 : find_expr_references_walker((Node *) query->distinctClause, context);
1902 :
1903 : /* Examine substructure of query */
1904 757 : context->rtables = lcons(query->rtable, context->rtables);
1905 757 : result = query_tree_walker(query,
1906 : find_expr_references_walker,
1907 : (void *) context,
1908 : QTW_IGNORE_JOINALIASES);
1909 757 : context->rtables = list_delete_first(context->rtables);
1910 757 : return result;
1911 : }
1912 8234 : else if (IsA(node, SetOperationStmt))
1913 : {
1914 50 : SetOperationStmt *setop = (SetOperationStmt *) node;
1915 :
1916 : /* we need to look at the groupClauses for operator references */
1917 50 : find_expr_references_walker((Node *) setop->groupClauses, context);
1918 : /* fall through to examine child nodes */
1919 : }
1920 8184 : else if (IsA(node, RangeTblFunction))
1921 : {
1922 72 : RangeTblFunction *rtfunc = (RangeTblFunction *) node;
1923 : ListCell *ct;
1924 :
1925 : /*
1926 : * Add refs for any datatypes and collations used in a column
1927 : * definition list for a RECORD function. (For other cases, it should
1928 : * be enough to depend on the function itself.)
1929 : */
1930 87 : foreach(ct, rtfunc->funccoltypes)
1931 : {
1932 15 : add_object_address(OCLASS_TYPE, lfirst_oid(ct), 0,
1933 : context->addrs);
1934 : }
1935 87 : foreach(ct, rtfunc->funccolcollations)
1936 : {
1937 15 : Oid collid = lfirst_oid(ct);
1938 :
1939 15 : if (OidIsValid(collid) && collid != DEFAULT_COLLATION_OID)
1940 0 : add_object_address(OCLASS_COLLATION, collid, 0,
1941 : context->addrs);
1942 : }
1943 : }
1944 8112 : else if (IsA(node, TableSampleClause))
1945 : {
1946 2 : TableSampleClause *tsc = (TableSampleClause *) node;
1947 :
1948 2 : add_object_address(OCLASS_PROC, tsc->tsmhandler, 0,
1949 : context->addrs);
1950 : /* fall through to examine arguments */
1951 : }
1952 :
1953 11702 : return expression_tree_walker(node, find_expr_references_walker,
1954 : (void *) context);
1955 : }
1956 :
1957 : /*
1958 : * Given an array of dependency references, eliminate any duplicates.
1959 : */
1960 : static void
1961 1333 : eliminate_duplicate_dependencies(ObjectAddresses *addrs)
1962 : {
1963 : ObjectAddress *priorobj;
1964 : int oldref,
1965 : newrefs;
1966 :
1967 : /*
1968 : * We can't sort if the array has "extra" data, because there's no way to
1969 : * keep it in sync. Fortunately that combination of features is not
1970 : * needed.
1971 : */
1972 1333 : Assert(!addrs->extras);
1973 :
1974 1333 : if (addrs->numrefs <= 1)
1975 1563 : return; /* nothing to do */
1976 :
1977 : /* Sort the refs so that duplicates are adjacent */
1978 1103 : qsort((void *) addrs->refs, addrs->numrefs, sizeof(ObjectAddress),
1979 : object_address_comparator);
1980 :
1981 : /* Remove dups */
1982 1103 : priorobj = addrs->refs;
1983 1103 : newrefs = 1;
1984 12864 : for (oldref = 1; oldref < addrs->numrefs; oldref++)
1985 : {
1986 11761 : ObjectAddress *thisobj = addrs->refs + oldref;
1987 :
1988 21720 : if (priorobj->classId == thisobj->classId &&
1989 9959 : priorobj->objectId == thisobj->objectId)
1990 : {
1991 8015 : if (priorobj->objectSubId == thisobj->objectSubId)
1992 5808 : continue; /* identical, so drop thisobj */
1993 :
1994 : /*
1995 : * If we have a whole-object reference and a reference to a part
1996 : * of the same object, we don't need the whole-object reference
1997 : * (for example, we don't need to reference both table foo and
1998 : * column foo.bar). The whole-object reference will always appear
1999 : * first in the sorted list.
2000 : */
2001 2207 : if (priorobj->objectSubId == 0)
2002 : {
2003 : /* replace whole ref with partial */
2004 771 : priorobj->objectSubId = thisobj->objectSubId;
2005 771 : continue;
2006 : }
2007 : }
2008 : /* Not identical, so add thisobj to output set */
2009 5182 : priorobj++;
2010 5182 : *priorobj = *thisobj;
2011 5182 : newrefs++;
2012 : }
2013 :
2014 1103 : addrs->numrefs = newrefs;
2015 : }
2016 :
2017 : /*
2018 : * qsort comparator for ObjectAddress items
2019 : */
2020 : static int
2021 42271 : object_address_comparator(const void *a, const void *b)
2022 : {
2023 42271 : const ObjectAddress *obja = (const ObjectAddress *) a;
2024 42271 : const ObjectAddress *objb = (const ObjectAddress *) b;
2025 :
2026 42271 : if (obja->classId < objb->classId)
2027 5537 : return -1;
2028 36734 : if (obja->classId > objb->classId)
2029 8825 : return 1;
2030 27909 : if (obja->objectId < objb->objectId)
2031 6476 : return -1;
2032 21433 : if (obja->objectId > objb->objectId)
2033 8033 : return 1;
2034 :
2035 : /*
2036 : * We sort the subId as an unsigned int so that 0 will come first. See
2037 : * logic in eliminate_duplicate_dependencies.
2038 : */
2039 13400 : if ((unsigned int) obja->objectSubId < (unsigned int) objb->objectSubId)
2040 3259 : return -1;
2041 10141 : if ((unsigned int) obja->objectSubId > (unsigned int) objb->objectSubId)
2042 3085 : return 1;
2043 7056 : return 0;
2044 : }
2045 :
2046 : /*
2047 : * Routines for handling an expansible array of ObjectAddress items.
2048 : *
2049 : * new_object_addresses: create a new ObjectAddresses array.
2050 : */
2051 : ObjectAddresses *
2052 4539 : new_object_addresses(void)
2053 : {
2054 : ObjectAddresses *addrs;
2055 :
2056 4539 : addrs = palloc(sizeof(ObjectAddresses));
2057 :
2058 4539 : addrs->numrefs = 0;
2059 4539 : addrs->maxrefs = 32;
2060 4539 : addrs->refs = (ObjectAddress *)
2061 4539 : palloc(addrs->maxrefs * sizeof(ObjectAddress));
2062 4539 : addrs->extras = NULL; /* until/unless needed */
2063 :
2064 4539 : return addrs;
2065 : }
2066 :
2067 : /*
2068 : * Add an entry to an ObjectAddresses array.
2069 : *
2070 : * It is convenient to specify the class by ObjectClass rather than directly
2071 : * by catalog OID.
2072 : */
2073 : static void
2074 11770 : add_object_address(ObjectClass oclass, Oid objectId, int32 subId,
2075 : ObjectAddresses *addrs)
2076 : {
2077 : ObjectAddress *item;
2078 :
2079 : /*
2080 : * Make sure object_classes is kept up to date with the ObjectClass enum.
2081 : */
2082 : StaticAssertStmt(lengthof(object_classes) == LAST_OCLASS + 1,
2083 : "object_classes[] must cover all ObjectClasses");
2084 :
2085 : /* enlarge array if needed */
2086 11770 : if (addrs->numrefs >= addrs->maxrefs)
2087 : {
2088 96 : addrs->maxrefs *= 2;
2089 96 : addrs->refs = (ObjectAddress *)
2090 96 : repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2091 96 : Assert(!addrs->extras);
2092 : }
2093 : /* record this item */
2094 11770 : item = addrs->refs + addrs->numrefs;
2095 11770 : item->classId = object_classes[oclass];
2096 11770 : item->objectId = objectId;
2097 11770 : item->objectSubId = subId;
2098 11770 : addrs->numrefs++;
2099 11770 : }
2100 :
2101 : /*
2102 : * Add an entry to an ObjectAddresses array.
2103 : *
2104 : * As above, but specify entry exactly.
2105 : */
2106 : void
2107 2779 : add_exact_object_address(const ObjectAddress *object,
2108 : ObjectAddresses *addrs)
2109 : {
2110 : ObjectAddress *item;
2111 :
2112 : /* enlarge array if needed */
2113 2779 : if (addrs->numrefs >= addrs->maxrefs)
2114 : {
2115 0 : addrs->maxrefs *= 2;
2116 0 : addrs->refs = (ObjectAddress *)
2117 0 : repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2118 0 : Assert(!addrs->extras);
2119 : }
2120 : /* record this item */
2121 2779 : item = addrs->refs + addrs->numrefs;
2122 2779 : *item = *object;
2123 2779 : addrs->numrefs++;
2124 2779 : }
2125 :
2126 : /*
2127 : * Add an entry to an ObjectAddresses array.
2128 : *
2129 : * As above, but specify entry exactly and provide some "extra" data too.
2130 : */
2131 : static void
2132 9377 : add_exact_object_address_extra(const ObjectAddress *object,
2133 : const ObjectAddressExtra *extra,
2134 : ObjectAddresses *addrs)
2135 : {
2136 : ObjectAddress *item;
2137 : ObjectAddressExtra *itemextra;
2138 :
2139 : /* allocate extra space if first time */
2140 9377 : if (!addrs->extras)
2141 1702 : addrs->extras = (ObjectAddressExtra *)
2142 1702 : palloc(addrs->maxrefs * sizeof(ObjectAddressExtra));
2143 :
2144 : /* enlarge array if needed */
2145 9377 : if (addrs->numrefs >= addrs->maxrefs)
2146 : {
2147 49 : addrs->maxrefs *= 2;
2148 49 : addrs->refs = (ObjectAddress *)
2149 49 : repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2150 49 : addrs->extras = (ObjectAddressExtra *)
2151 49 : repalloc(addrs->extras, addrs->maxrefs * sizeof(ObjectAddressExtra));
2152 : }
2153 : /* record this item */
2154 9377 : item = addrs->refs + addrs->numrefs;
2155 9377 : *item = *object;
2156 9377 : itemextra = addrs->extras + addrs->numrefs;
2157 9377 : *itemextra = *extra;
2158 9377 : addrs->numrefs++;
2159 9377 : }
2160 :
2161 : /*
2162 : * Test whether an object is present in an ObjectAddresses array.
2163 : *
2164 : * We return "true" if object is a subobject of something in the array, too.
2165 : */
2166 : bool
2167 69 : object_address_present(const ObjectAddress *object,
2168 : const ObjectAddresses *addrs)
2169 : {
2170 : int i;
2171 :
2172 236 : for (i = addrs->numrefs - 1; i >= 0; i--)
2173 : {
2174 167 : const ObjectAddress *thisobj = addrs->refs + i;
2175 :
2176 212 : if (object->classId == thisobj->classId &&
2177 45 : object->objectId == thisobj->objectId)
2178 : {
2179 0 : if (object->objectSubId == thisobj->objectSubId ||
2180 0 : thisobj->objectSubId == 0)
2181 0 : return true;
2182 : }
2183 : }
2184 :
2185 69 : return false;
2186 : }
2187 :
2188 : /*
2189 : * As above, except that if the object is present then also OR the given
2190 : * flags into its associated extra data (which must exist).
2191 : */
2192 : static bool
2193 11355 : object_address_present_add_flags(const ObjectAddress *object,
2194 : int flags,
2195 : ObjectAddresses *addrs)
2196 : {
2197 11355 : bool result = false;
2198 : int i;
2199 :
2200 210279 : for (i = addrs->numrefs - 1; i >= 0; i--)
2201 : {
2202 198924 : ObjectAddress *thisobj = addrs->refs + i;
2203 :
2204 261596 : if (object->classId == thisobj->classId &&
2205 62672 : object->objectId == thisobj->objectId)
2206 : {
2207 1860 : if (object->objectSubId == thisobj->objectSubId)
2208 : {
2209 1848 : ObjectAddressExtra *thisextra = addrs->extras + i;
2210 :
2211 1848 : thisextra->flags |= flags;
2212 1848 : result = true;
2213 : }
2214 12 : else if (thisobj->objectSubId == 0)
2215 : {
2216 : /*
2217 : * We get here if we find a need to delete a column after
2218 : * having already decided to drop its whole table. Obviously
2219 : * we no longer need to drop the subobject, so report that we
2220 : * found the subobject in the array. But don't plaster its
2221 : * flags on the whole object.
2222 : */
2223 11 : result = true;
2224 : }
2225 1 : else if (object->objectSubId == 0)
2226 : {
2227 : /*
2228 : * We get here if we find a need to delete a whole table after
2229 : * having already decided to drop one of its columns. We
2230 : * can't report that the whole object is in the array, but we
2231 : * should mark the subobject with the whole object's flags.
2232 : *
2233 : * It might seem attractive to physically delete the column's
2234 : * array entry, or at least mark it as no longer needing
2235 : * separate deletion. But that could lead to, e.g., dropping
2236 : * the column's datatype before we drop the table, which does
2237 : * not seem like a good idea. This is a very rare situation
2238 : * in practice, so we just take the hit of doing a separate
2239 : * DROP COLUMN action even though we know we're gonna delete
2240 : * the table later.
2241 : *
2242 : * Because there could be other subobjects of this object in
2243 : * the array, this case means we always have to loop through
2244 : * the whole array; we cannot exit early on a match.
2245 : */
2246 0 : ObjectAddressExtra *thisextra = addrs->extras + i;
2247 :
2248 0 : thisextra->flags |= flags;
2249 : }
2250 : }
2251 : }
2252 :
2253 11355 : return result;
2254 : }
2255 :
2256 : /*
2257 : * Similar to above, except we search an ObjectAddressStack.
2258 : */
2259 : static bool
2260 16701 : stack_address_present_add_flags(const ObjectAddress *object,
2261 : int flags,
2262 : ObjectAddressStack *stack)
2263 : {
2264 16701 : bool result = false;
2265 : ObjectAddressStack *stackptr;
2266 :
2267 45097 : for (stackptr = stack; stackptr; stackptr = stackptr->next)
2268 : {
2269 28396 : const ObjectAddress *thisobj = stackptr->object;
2270 :
2271 40725 : if (object->classId == thisobj->classId &&
2272 12329 : object->objectId == thisobj->objectId)
2273 : {
2274 5231 : if (object->objectSubId == thisobj->objectSubId)
2275 : {
2276 5228 : stackptr->flags |= flags;
2277 5228 : result = true;
2278 : }
2279 3 : else if (thisobj->objectSubId == 0)
2280 : {
2281 : /*
2282 : * We're visiting a column with whole table already on stack.
2283 : * As in object_address_present_add_flags(), we can skip
2284 : * further processing of the subobject, but we don't want to
2285 : * propagate flags for the subobject to the whole object.
2286 : */
2287 3 : result = true;
2288 : }
2289 0 : else if (object->objectSubId == 0)
2290 : {
2291 : /*
2292 : * We're visiting a table with column already on stack. As in
2293 : * object_address_present_add_flags(), we should propagate
2294 : * flags for the whole object to each of its subobjects.
2295 : */
2296 0 : stackptr->flags |= flags;
2297 : }
2298 : }
2299 : }
2300 :
2301 16701 : return result;
2302 : }
2303 :
2304 : /*
2305 : * Record multiple dependencies from an ObjectAddresses array, after first
2306 : * removing any duplicates.
2307 : */
2308 : void
2309 77 : record_object_address_dependencies(const ObjectAddress *depender,
2310 : ObjectAddresses *referenced,
2311 : DependencyType behavior)
2312 : {
2313 77 : eliminate_duplicate_dependencies(referenced);
2314 154 : recordMultipleDependencies(depender,
2315 77 : referenced->refs, referenced->numrefs,
2316 : behavior);
2317 77 : }
2318 :
2319 : /*
2320 : * Clean up when done with an ObjectAddresses array.
2321 : */
2322 : void
2323 4403 : free_object_addresses(ObjectAddresses *addrs)
2324 : {
2325 4403 : pfree(addrs->refs);
2326 4403 : if (addrs->extras)
2327 1679 : pfree(addrs->extras);
2328 4403 : pfree(addrs);
2329 4403 : }
2330 :
2331 : /*
2332 : * Determine the class of a given object identified by objectAddress.
2333 : *
2334 : * This function is essentially the reverse mapping for the object_classes[]
2335 : * table. We implement it as a function because the OIDs aren't consecutive.
2336 : */
2337 : ObjectClass
2338 17078 : getObjectClass(const ObjectAddress *object)
2339 : {
2340 : /* only pg_class entries can have nonzero objectSubId */
2341 28712 : if (object->classId != RelationRelationId &&
2342 11634 : object->objectSubId != 0)
2343 0 : elog(ERROR, "invalid non-zero objectSubId for object class %u",
2344 : object->classId);
2345 :
2346 17078 : switch (object->classId)
2347 : {
2348 : case RelationRelationId:
2349 : /* caller must check objectSubId */
2350 5444 : return OCLASS_CLASS;
2351 :
2352 : case ProcedureRelationId:
2353 392 : return OCLASS_PROC;
2354 :
2355 : case TypeRelationId:
2356 7394 : return OCLASS_TYPE;
2357 :
2358 : case CastRelationId:
2359 19 : return OCLASS_CAST;
2360 :
2361 : case CollationRelationId:
2362 19 : return OCLASS_COLLATION;
2363 :
2364 : case ConstraintRelationId:
2365 983 : return OCLASS_CONSTRAINT;
2366 :
2367 : case ConversionRelationId:
2368 27 : return OCLASS_CONVERSION;
2369 :
2370 : case AttrDefaultRelationId:
2371 325 : return OCLASS_DEFAULT;
2372 :
2373 : case LanguageRelationId:
2374 16 : return OCLASS_LANGUAGE;
2375 :
2376 : case LargeObjectRelationId:
2377 12 : return OCLASS_LARGEOBJECT;
2378 :
2379 : case OperatorRelationId:
2380 32 : return OCLASS_OPERATOR;
2381 :
2382 : case OperatorClassRelationId:
2383 28 : return OCLASS_OPCLASS;
2384 :
2385 : case OperatorFamilyRelationId:
2386 45 : return OCLASS_OPFAMILY;
2387 :
2388 : case AccessMethodRelationId:
2389 16 : return OCLASS_AM;
2390 :
2391 : case AccessMethodOperatorRelationId:
2392 92 : return OCLASS_AMOP;
2393 :
2394 : case AccessMethodProcedureRelationId:
2395 43 : return OCLASS_AMPROC;
2396 :
2397 : case RewriteRelationId:
2398 599 : return OCLASS_REWRITE;
2399 :
2400 : case TriggerRelationId:
2401 855 : return OCLASS_TRIGGER;
2402 :
2403 : case NamespaceRelationId:
2404 99 : return OCLASS_SCHEMA;
2405 :
2406 : case StatisticExtRelationId:
2407 47 : return OCLASS_STATISTIC_EXT;
2408 :
2409 : case TSParserRelationId:
2410 24 : return OCLASS_TSPARSER;
2411 :
2412 : case TSDictionaryRelationId:
2413 27 : return OCLASS_TSDICT;
2414 :
2415 : case TSTemplateRelationId:
2416 24 : return OCLASS_TSTEMPLATE;
2417 :
2418 : case TSConfigRelationId:
2419 27 : return OCLASS_TSCONFIG;
2420 :
2421 : case AuthIdRelationId:
2422 14 : return OCLASS_ROLE;
2423 :
2424 : case DatabaseRelationId:
2425 2 : return OCLASS_DATABASE;
2426 :
2427 : case TableSpaceRelationId:
2428 0 : return OCLASS_TBLSPACE;
2429 :
2430 : case ForeignDataWrapperRelationId:
2431 37 : return OCLASS_FDW;
2432 :
2433 : case ForeignServerRelationId:
2434 62 : return OCLASS_FOREIGN_SERVER;
2435 :
2436 : case UserMappingRelationId:
2437 71 : return OCLASS_USER_MAPPING;
2438 :
2439 : case DefaultAclRelationId:
2440 51 : return OCLASS_DEFACL;
2441 :
2442 : case ExtensionRelationId:
2443 0 : return OCLASS_EXTENSION;
2444 :
2445 : case EventTriggerRelationId:
2446 22 : return OCLASS_EVENT_TRIGGER;
2447 :
2448 : case PolicyRelationId:
2449 146 : return OCLASS_POLICY;
2450 :
2451 : case PublicationRelationId:
2452 22 : return OCLASS_PUBLICATION;
2453 :
2454 : case PublicationRelRelationId:
2455 34 : return OCLASS_PUBLICATION_REL;
2456 :
2457 : case SubscriptionRelationId:
2458 14 : return OCLASS_SUBSCRIPTION;
2459 :
2460 : case TransformRelationId:
2461 14 : return OCLASS_TRANSFORM;
2462 : }
2463 :
2464 : /* shouldn't get here */
2465 0 : elog(ERROR, "unrecognized object class: %u", object->classId);
2466 : return OCLASS_CLASS; /* keep compiler quiet */
2467 : }
2468 :
2469 : /*
2470 : * delete initial ACL for extension objects
2471 : */
2472 : static void
2473 9057 : DeleteInitPrivs(const ObjectAddress *object)
2474 : {
2475 : Relation relation;
2476 : ScanKeyData key[3];
2477 : SysScanDesc scan;
2478 : HeapTuple oldtuple;
2479 :
2480 9057 : relation = heap_open(InitPrivsRelationId, RowExclusiveLock);
2481 :
2482 9057 : ScanKeyInit(&key[0],
2483 : Anum_pg_init_privs_objoid,
2484 : BTEqualStrategyNumber, F_OIDEQ,
2485 9057 : ObjectIdGetDatum(object->objectId));
2486 9057 : ScanKeyInit(&key[1],
2487 : Anum_pg_init_privs_classoid,
2488 : BTEqualStrategyNumber, F_OIDEQ,
2489 9057 : ObjectIdGetDatum(object->classId));
2490 9057 : ScanKeyInit(&key[2],
2491 : Anum_pg_init_privs_objsubid,
2492 : BTEqualStrategyNumber, F_INT4EQ,
2493 9057 : Int32GetDatum(object->objectSubId));
2494 :
2495 9057 : scan = systable_beginscan(relation, InitPrivsObjIndexId, true,
2496 : NULL, 3, key);
2497 :
2498 18114 : while (HeapTupleIsValid(oldtuple = systable_getnext(scan)))
2499 0 : CatalogTupleDelete(relation, &oldtuple->t_self);
2500 :
2501 9057 : systable_endscan(scan);
2502 :
2503 9057 : heap_close(relation, RowExclusiveLock);
2504 9057 : }
|